用户名: 密码: 验证码:
断陷盆地及断层破碎带场地地震动效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震动场的确定一直是工程地震的主要研究内容之一,发震断层的震源效应和地震动衰减规律影响地震动场的确定,同时局部场地条件也是一个非常重要的影响因素,其包括局部土层、局部地形和局部构造,而局部断层构造对地震动场的影响研究国内外不同学者的认识还不统一
     “十五”期间在中国西南的重点监视防御区的鲜水河断裂带、安宁河断裂带周边布设了大量强震动观测台站,这些台站自正式投入运营后的两个月恰逢汶川地震发生,获取了此次地震主、余震的大量强震动记录,其中很多记录为研究非发震断层对场地地震动的影响提供了重要资料。
     本文以汶川地震中的非发震断层鲜水河断裂带、安宁河断裂带、渭河断裂带周边所获取的加速度记录为依据,研究了这些记录在峰值、频谱之间的差异,并通过这些地区的局部场地条件差异进行了初步解释,在此基础上通过数值模拟方法,利用基于显式有限元和局部透射人工边界的二维有限元模型对这几个地区的地面运动进行了模拟,数值试验结果表明:这些简单的理想化模型对这一地区地震动的本质特征进行了重现,并对产生地面运动差异的机理进行了合理解释。
     通过对西昌地区地震动记录差异性进行分析,揭示了由深部断层构造所控制的断陷盆地对地震动影响显著:宝鸡地区地震动记录差异性结果表明由断层控制的断陷盆地及断层陡坎地形对地震动影响显著;通过对石棉地区地震动记录差异性结果的分析,揭示了非发震断层近震源侧地震动强度更大、高频更丰富的特点,并指出了非发震断层的隔震效应。
     本文就断层参数对场地地震动影响方面进行了大量研究,得到了若干结论。通过数值模型计算揭示了以断层破碎带为表征的各种断层参数对场地地震动的影响。研究结果表明:断层低速度破碎带的存在产生了大量的转换波;介质波速差异较大时(3倍以上)断层破碎带中产生明显的断层陷波;断层低速度破碎带的存在使输入场地的能量向低速度带中集聚,且随着破碎带宽度增大,这种集聚效应增大;竖向断层破碎带能阻隔斜入射地震波,在入射波动所指向的一侧地面运动更小,且随着入射角度增加,这种阻隔效应更明显。
     针对宽度和介质波速对地震动影响研究表明,断层场地对地震动的放大效应与频率相关,模型放大效应对不同卓越频率的输入地震动具有选择性,宽度较窄和介质波速较高的断层破碎带对地震动中较高的频率成份放大显著,而宽度较宽和介质波速较低的断层破碎带对地震动中较低的频率成份放大显著。其原因是放大效应与场地卓越频率有关,破碎带宽度越宽或波速越低,其卓越频率越低。
     对隐伏断层场地的地面运动分析表明,隐伏断层的上覆岩体对垂直入射地震动的传播有阻隔作用,随着上覆岩体厚度的增加,阻隔效应越来越强。另外,断层破碎带对地表地震动的影响随着埋深的增加而变小,当埋深达到一定深度后断层破碎带对地表地震动的影响可以忽略。随着覆盖层厚度的增大,整个场地及破碎带地表投影区的地震动反应幅值和高频成份都逐渐减小,在自由地表影响范围也逐渐减小,且地震动强度沿深度衰减加快:覆盖层波速越低,场地自由地表地震动越强,而断层破碎带对地表地震动的影响越弱;倾滑隐伏断层场地地震动分析结果表明,总体上,断层破碎带上侧区域的地震动反应小于下侧,表明倾斜破碎带对垂直入射地震动具有一定的隔震效应。
Analysis and Simulation of ground motion field is one of the main aspects in engineering seismology. Besides source effect of causative fault and attenuation effect of ground motion, local site conditions are the important influencing factors of ground motion, which contains local site soil, local topography, and local tectonics. There is no common understanding about the effect of the local tectonics on ground motion.
     In the key region of earthquake monitoring and defending in southwestern China, such as the surrounding areas of the Xianshuihe fault zone and Anninghe fault zone, many strong motion observation stations were arranged in the 'tenth five-year plan'. Just two months later after these stations entered formal operation, numerous records were obtained from Wenchuan earthquake and its aftershocks, some of which are very useful to study the effect of the non-causative fault ion ground motion.
     In this study, by analyzing the peak ground acceleration (PGA) and spectral characteristics of the earthquake acceleration records from the main shock and aftershocks of Wenchuan Earthquake, the difference of the ground motion at both sides of the non-causative faults such as Xianshuihe fault zone, Anninghe fault zone and Weihe fault zone are discussed. By analyzing the difference of the local site conditions at the observation stations, such as local site soil, local topography, and local tectonics, pilot explaining of the discrepancy is attained, and numerical solution of 2-D model of those sites derived by the explicit finite element combining with local multi-transmitting artificial boundary method is used for interpreting the mechanism of difference of the ground motion. Results of numerical calculation indicate that, in spite of its simplicity, such an idealized model is also successful in reproducing many of the essential characters of ground motion and the mechanism of the difference of ground motion within the fault zones of Xianshuihe, Anninghe and Weihe.
     The character of dislocation basin under control of the Anninghe fault zone may be used for the interpretation of observed seismic data obtained in Wenchuan main shock and theoretical calculations of near fault responses in Xichang City. And the character of dislocation basin and fault scarp under control of the fault may be used for the interpretation of observed seismic data obtained in Wenchuan mainshock and theoretical calculations of near fault responses in Baoji City. By comparing the difference between the acceleration records in Shimian region obtained in Wenchuan main shock and its aftershocks and Shimian shock, and theoretical calculations of near fault responses in this area, anomalously large amplitude and extremely rich high frenquency in the ground motion are found near source side (right side of the fault in this case). The results indicate that the non-causative fault can obstruct the spread of seismic wave. And the isolation effect of the non-causative fault is found.
     Abundant research on the fault parameter influencing the site ground motion was done, and some valuable results are achieved. Numerous numerical simulation indicates that the parameters of low velocity fault zone (LVFZ), such as the width and wave velocity, influence the site ground motion prominently. The numerical simulation shows that transform waves can develop inside LVFZ when struck by external, vertically incident seismic radiation. And trapped waves can develop obviously inside the LVFZ while the wall rock's wave velocity is 3 times larger than LVFZ's. This result implies that the invariance of energy, struck by external incident seismic radiation, is congregated at the low velocity zone, and the convergence effect increases with the increase of the width of the LVFZ. The study of 2-D vertical LVFZ model struck by external oblique incidence seismic radiation shows that, vertical LVFZ can obstruct the spread of oblique incidence seismic wave, and the isolation effect decreases with the increscing incidence angle.
     The study about the seismic response of a variety of LVFZ models with different width and velocity struck by external vertically incident seismic radiation implies that, the amplification characteristics of ground motion in near fault zone site are frequency dependent. The site amplification characteristics are different under the earthquake input with different predominant frequency. The higher frequency components of earthquake input are amplified obviously by the fault fracture zone with narrow width and low medium velocity, rather than vice versa. It is because that the site amplification coefficient is frequency dependent, and the narrower width and lower velocity of fault fracture zone, the lower predominant frequency.
     The analysis of ground motion at the hidden fault site shows that the vertical incidence of earthquake input is obstructed by the overlying rock mass, and with the increase of thickness of the rock mass, the obstruction effect becomes stronger. Besides that, the effect of fault fracture zone on the ground motion becomes smaller with the depth increasing, and the effect can be neglected at some depth. The amplitude and high frequency components of ground motion at the whole site and the projection area of the fault fracture zone decrease with the increase of the depth of overburden, meanwhile, the influence scope of the surface becomes smaller and the intensity of ground motion decreases with the increase of the depth. With the decrease of overburden velocity, the ground motion becomes stronger; however, the effect of fault fracture zone on the ground motion becomes weaker. The analysis of ground motion at the dip-slip fault site shows that the ground motion at the upside area of the fault fracture zone is smaller than that at the underside, and the isolation effect exists when the vertical incidence of earthquake input spreads through the fault fracture zone.
引文
[1]薄景山,齐文浩,刘红帅等.汶川特大地震汉源烈度异常原因的初步分析[J].地震工程与工程振动,2009,29(6):53-64.
    [2]曹炳政,罗奇峰.浅层断层对场地地震动影响的有限元分析[J].地震学报,2003,25(1):96-101.
    [3]邓起东,张裕明,环文林等.我国地震活动和地震地质的主要特征[J].科学通报,1978,23(4):193-199.
    [4]丁国玉.由陷波追踪断层的联系[J].地震科技情报,1998,(11):50-53.
    [5]防灾科技学院.西昌市地震地质工程地质报告[Z].2011.
    [6]郭恩栋,冯启民,薄景山等.覆盖土层场地地震断裂实验[J].地震工程与工程振动,2001,21(3):145-149.
    [7]高丽霞,周锡元,董娣等.加速度均方根地震动统计研究[J].防灾减灾工程学报,2006,26(3):251-256.
    [8]国家地震局鄂尔多斯周缘活动断裂系课题组.鄂尔多斯周缘活动断裂系[M].北京:地震出版社,1988.
    [9]何玉林,何宏林,李勇.大型变电站厂址的地震地质条件研究-四川省石棉地区变电站遴选实例[J].中国地震,2006,22(4):382-393.
    [10]胡聿贤.地震安全性评价技术教程[M].北京:地震出版社,1999.
    [11]胡聿贤.地震工程学(第二版)[M].北京:地震出版社,2006.
    [12]姜葵.1988年云南澜沧-耿马地震[M].昆明:云南大学出版社,1993.
    [13]廖振鹏.近场波动的有限元模拟[J].地震工程与工程振动,1984,4(2),1-14.
    [14]廖振鹏.地震小区划理论与实践[M].北京:地震出版社,1989.
    [15]廖振鹏,刘晶波.波动有限元模拟的基本问题[J].中国科学B辑,1992,(8):874-882.
    [16]廖振鹏.工程波动理论导论(第二版)[M].北京:科学出版社,2002.
    [17]李小军,廖振鹏,杜修力.有阻尼体系动力问题的一种显式差分解法[J].地震工程与工程振动,1992,12(4),74-80.
    [18]李小军,廖振鹏,关慧敏.粘弹性场地地形对地震动影响分析的显式有限元-有限差分方法[J].地震学报,1995,17(3):362-369.
    [19]李山有,王学良,金星等.团树断层场地地震反应的数值模拟[J].地震工程与工程振动,2003,23(4):17-21.
    [20]李山有,马强,武东坡等.断层场地地震反应特征研究[J].地震工程与工程振动,2003,23(5):32-37.
    [21]李仕栋,罗奇峰.非活动隐伏断层对结构地震反应的影响[J].自然灾害学报,2003,12(4):25-28.
    [22]李仕栋,罗奇峰.不同倾角断层对场地动力放大效应的分析[J].地震研究,2004,27(3):283-286.
    [23]梁建文,冯领香,巴振宁.局部断层场地对平面SV波的散射[J].自然灾害学报,2009,18(5):94-106.
    [24]刘光勋,杨景春.临汾盆地活动构造体系与地震活动[J].地质力学丛刊,1979(5):140-150.
    [251刘恢先.唐山大地震震害[M].北京:地震出版社.1985.
    [26]刘晶波,刘祥庆,赵东东.垂直断层破碎带对Rayleigh波传播与场地地震动反应的 影响[J].爆炸与冲击,2008,28,(6):507-514.
    [27]刘祖荫,皇甫岗,金志林.一九七〇年通海地震[M].北京:地震出版社,1999.
    [28]纽马克等著,叶耀先等译.地震工程学原理[M].北京:中国建筑工业出版社,1986.
    [29]彭建兵,张骏,苏生瑞等.渭河盆地活动断裂与地质灾害[J].两安:西北大学出版社,1992.
    [30]任春,罗奇峰.断层破碎带对非发震断层场地地震动的影响[J].地震研究,2005,28(2):162-166.
    [31]荣棉水.粘弹性场地地形对地震动谱特性的影响分析[D].北京:中国地震局地球物理研究所硕士学位论文.2007.
    [32]陕西省地震局.陕西省地震台站建台报告[Z].2007.
    [33]陕西省工程地震勘察研究院.宝鸡陈仓区地震烈度异常段工程地质勘察工作报告[Z].2008.
    [34]舒优良.汶川8.0级地震陕两强震台网数据记录的初步分析[J].灾害学,2008,23(s):125-132.
    [35]四川省地震局.四川省地震台站建台报告系列材料[Z].2004-2007.
    [36]四川省地震局工程地震研究院.大渡河大岗山水电站工程场地地震安全性评价[Z].2004.
    [37]孙平善.断层对地震动影响的分析方法研究(国家自然科学基金项目结题报告)[R].哈尔滨:中国地震局工程力学研究所资料室,1999.
    [38]唐晖.显式积分格式及其在波动有限元模拟中的应用研究[D].北京:中国地震局地球物理研究所硕士学位论文.2005.
    [39]王春华,钱瑞华,孙君秀.汾渭断陷带形成机制及其地震活动性的实验研究[M].北京:地震出版社,1982.
    [40]王海云,谢礼立.自贡市西山公园地形对地震动的影响[J].地球物理学报,2010,53(7):1631-1638.
    [41]王尚旭,狄帮让,魏建新.断层物理模型实验及其地震响应特征分析[J].中国地质大学学报,2002,27(6):733-735,744.
    [42]王艳.非一致地震动场数值方法研究及在结构动力分析中的应用[D].北京:清华大学博士论文,2007.
    [43]温瑞智,周正华,孙平善等.断层场地地震动分析[J].地震工程与工程振动,2002,22(1):21-27.
    [44]信息产业部电子综合勘察研究院.陕西省数字地震网络项目强震动分项目岩土工程勘察报告[Z].2006.
    [45]杨坤光,袁晏明.地质学基础[M].武汉:中国地质大学出版社,2009.
    [46]杨笑梅,王海涛,杨柏坡.三维竖向断层场地对地面运动的影响[J].地震工程与工程振动,2008,28(2):1-7.
    [47]杨笑梅,王海涛,杨柏坡.竖向地裂缝附近的地面运动[J].地震工程与工程振动,2005,25(5):34-40.
    [48]杨笑梅,王海涛,杨柏坡.竖向断层对场地地面运动的影响[J].地震工程与工程振动,2006,26(5):7-13.
    [49]袁一凡.四川汶川8.0级地震损失评估[J].地震工程与工程振动,2008,28(5):10-19.
    [50]张宇翔,袁志祥.汶川8.0级地震陕西灾区震害特征分析[J],地震研究,33(3):329-335.
    [51]中国科学院工程力学研究所通海地震影响场调查组.通海地震的烈度分布与场地影响[A].中国科学院工程力学研究所地震工程研究报告集,第三集[C].北京:科学出版社,1977.
    [52]中国科学院工程力学研究所.海城地震震害[M].北京:地震出版社,1979.
    [53]周国良.河谷地形对多支撑大跨桥梁地震反应影响[D].哈尔滨:中国地震局工程力学研究所博士学位论文.2010.
    [54]周锡元.土质条件对建筑物所受地震荷载的影响[A].中国科学院.工程力学研究所地震工程研究报告集,第二集[C].北京:科学出版社,1965.
    [55]周正华,张艳梅,孙平善等.断层对震害影响的研究[J].自然灾害学报,2003,12(4):20-24.
    [56]周正华,张艳梅,孙平善等.断层场地震害研究综述[J].地震工程与工程振动,2003,23(5):38-41.
    [57]Ben-Zion, Y., and K. Aki. Seismic radiation from an SH line source in a laterally heterogeneous planar fault zone. Bull. Seism. Soc. Am.,1990,80:971-994.
    [58]Ben-Zion, Y., and P. Malin. San Andreas fault zone head waves near Parkfield, California. Science,1991,251:1592-1594.
    [59]Ben-Zion, Y. Properties of seismic fault zone waves and their utility for imaging low velocity structures. J. Geophys. Res.1998,103(12):567-585.
    [60]Ben-Zion, Y., and Y. Huang. Dynamic rupture on an interface between a compliant fault zone layer and a stiffer surrounding solid. J. Geophys. Res.,2002,107 (B2):2042.
    [61]Ben-Zion, Y., Z. Peng, D. Okaya, L. Seeber, J. G. Armbruster, and N. Ozer, A. J. Michael, S. Baris, and M. Aktar. A shallow fault-zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey, Geophys. J. Int.,2003,152:699-717.
    [62]Borcherdt R. D.. Effects of local geology on ground motion near San Francisco Bay. Bull. Seism. Soc. Am.,1970,60:29-61.
    [63]Buchanan D. J., and L. J. Jackson. Coal Geophysics. Geophysics Reprint Series, No.6, SEG, Tulsa, Oklahoma,1986.
    [64]Caserta A.. A time domain finite-difference technique for oblique incidence of antiplane waves in heterogeneous dissipative media. Annali di Geofisica,1998,41: 617-631.
    [65]Caserta, A., F. Bellucci, G. Cultrera, S. Donati, F. Marra, G. Mele, B. Palombo, and A. Rovelli. Site effects in the area of Nocera Umbra (central Italy) during the 1997 Umbria-Marche seismic sequence. J. Seismology,2000,4:555-565.
    [66]Caserta, A., and P. Lanucara. Computer animation as a tool to visualize effects of seismic wave propagation inside heterogeneous media. Annali di Geofisica,2000,43: 119-134.
    [67]Chester, F. M., J. P. Evans, and R. L. Biegel. Internal structure and weakening mechanisms of the San Andreas fault. J. Geophys. Res.,1993,98:771-786.
    [68]Cormier, V. F., and P. Spudich. Amplification of ground motion and waveform complexity in fault zones:examples from the San Andreas and Calaveras Faults. Geophys. J. R. Astro. Soc.,1984,79:135-152.
    [69]Cultrera, G., A. Rovelli, A. Caserta, G. Mele, and R.M. Azzara.Azimuth dependent amplification effects on weak and strong ground motions within a fault zone (Nocera Umbra, central Italy). J. Geophys. Res.,2003,108(B3):2156.
    [70]Donati, S., F. Marra, and A. Rovelli. Damage and ground shaking in the town of Nocera Umbra during Umbria-Marche, central Italy, earthquakes:the special effect of a fault zone. Bull. Seism. Soc. Am.,2001,91:511-519.
    [71]Feng, R., and T. V. McEvilly. Interpretation of seismic reflection profiling for the structure of the SAF zone. Bull. Seism. Soc. Am.,1983,73:1701-1720.
    [72]Field E. H.,Jacob K. H.. A comparison and test of various site-response estimation techniques,including three that are not reference-site dependent. Bull. Seism. Soc. Am.,1995,85(4):1127-1143.
    [73]Galbraith, F. W.. Effect of a fault on explosion-generated ground shock spectra. Bull. Seism. Soc. Am.,1968,58(6):2033-2041.
    [74]Hammer, J. K., and C. A. Langston. Modeling the Effect of San Andreas Fault Structure on Receiver Functions Using Elastic 3D Finite Difference. Bull. Seism. Soc. Am.,1996,86(5):1608-1622.
    [75]Harris, R. A., and S. M. Day. Effects of a low-velocity zone on a dynamic rupture. Bull. Seism. Soc. Am.,1997,87:1267-1280.
    [76]Hays, W. W., J. R. Murphy. The effect of Yucca fault on seismic wave propagation. Bull. Seism. Soc. Am.,1971,61(3):697-706.
    [77]Healy, J. H., and L. G. Peake. Seismic velocity structure along the SAP near Bear Valley. Bull. Seism. Soc. Am.,1975,65:1177-1197.
    [78]Hough, S. E., Y. Ben-Zion, and P. C. Leary. Fault-Zone Waves Observed at the Southern Joshua Tree Earthquake Rupture Zone. Bull. Seism. Soc. Am.,1994.84(3): 761-767.
    [79]Huang, B. S., T. L. Teng, and Y. T. Yeh. Numerical Modeling of Fault-Zone Trapped Waves:Acoustic Case. Bull. Seism. Soc. Am.,1995,85(6):1711-1717.
    [80]Igel, H., Y. Ben-Zion, and P. C. Leary. Simulation of SHand P-SV-wave propagation in fault zones. Geophys. J. Int.,1997,128:533-546.
    [81]Igel, H., G. Jahnke, and Y. Ben-Zion. Numerical simulation of fault zone trapped waves:accuracy and 3-D effects. Pure Appl. Geophys.,2002,159:2067-2083.
    [82]Jahnke, G., H. Igel, and Y. Ben-Zion.3D calculations of fault zone guided waves in various irregular structures. Geophys. J. Int.,2002,151:416-426.
    [83]Johnson, A. M., R. W. Fleming, and K. M. Cruikshank. Shear zones formed along long, straight traces of fault zones during the 28 June 1992 Landers. California, earthquake. Bull. Seism. Soc. Am.,1994,84:499-510.
    [84]Jongmans, D., and P. E. Malin. Microearthquake S-wave observations from 0 to 1 km in the Varian Well at Parkfield, California. Bull. Seism. Soc. Am.,1995, 85:1805-1820.
    [85]Kang, I. B., and A. M. George. Effects of viscoelasticity on seismic wave propagation in fault zones near-surface sediments and inclusions. Bull. Seism. Soc. Am.,1993, 83(3):890-906.
    [86]King, J. L., and B. E. Tucker. Observed variations of earthquake motion across a sediment-filled valley. Bull. Seism. Soc. Am.,1984,74:137-151.
    [87]Korneev, V. A., T. V. McEvilly, and E. D. Karageorgi. Seismological studies at Parkfield.Ⅷ. Modeling the observed controlled source waveform changes. Bull. Seism. Soc. Am.,2002,90:702-708.
    [88]Korneev, V. A., R. M. Nadeau, and T. V. McEvilly. Seismological Studies at Parkfield IX:Fault-Zone Imaging Using Guided Wave Attenuation. Bull. Seism. Soc. Am., 2003,93(4):1415-1426.
    [89]Kuwahara, Y., and H. Ito. Deep structure of the Nojima fault by trapped wave analysis, in Proc. of the International Workshop on the Nojima Fault Core and borehole Data Analysis. U.S. Geol. Surv. Open-File Rept.,2000:00-129,283-289.
    [90]Leary, P. C., Y. G. Li, and K. Aki. Borehole observations of fault zone trapped waves, Oroville, CA. EOS,1985,66:976.
    [91]Leary, P. C., Y. G. Li, and K. Aki. Observation and modeling of fault zone fracture seismic anisotropy--I. P, SV, and SH travel-times. Geophys. J. R. Astro. Soc.,1987, 91:461-484.
    [92]Leary, P. C., H. Igel, and Y. Ben-Zion. Observation and modeling of fault zone seismic trapped waves in aid of precise precursory microearthquake location and evaluation. Earthquake Prediction:State-of-the-Art, Proceedings International Conference, Strasbourg, France,1991:321-328.
    [93]Leary, P.C., and Y. Ben-Zion. A 200 m wide fault zone low velocity layer on the San Andreas fault at Parkfield:results from analytic waveform fits to trapped wave groups. Seism. Res. Lett.,1992:63(1),62.
    [94]Lees, J. M., and P. E. Malin. Tomographic images of P wave velocity variation at Parkfield, California. J. Geophys. Res.,1990,95:21,793-21,804.
    [95]Li, Y. G., P. C. Leary and K. Aki. Observation and modelling of fault-zone fracture seismic anisotropy 11. P-wave polarization anomalies. Geophys. J. R. Astro. Soc. 1987,91:485-492.
    [96]Li, Y. G. and P. C. Leary. Fault zone trapped seismic waves. Bull. Seism. Soc. Am., 1990,80:1245-1271.
    [97]Li, Y. G., P. C. Leary, K. Aki, and P. E. Malin. Seismic trapped modes in the Oroville and San Andreas fault zones. Science,1990,249:763-766.
    [98]Li, Y. G., J. E. Vidale, K. Aki, C. J. Marone, and W. H. K. Lee. Fine structure of the Landers fault zone:segmentation and the rupture process. Science,1994,265:367-370.
    [99]Li, Y. G., K. Aki, D. Adams, A. Hasemi, and W. H. K. Lee. Seismic guided waves trapped in the fault zone of the Landers, California, earthquake of 1992. J. Geophys. Res.,1994,99:11,705-11,722.
    [100]Li, Y. G., and J. E. Vidale. Low-Velocity Fault-Zone Guided Waves:Numerical Investigationsof Trapping Efficiency. Bull. Seism. Soc. Am.,1996,86(2):371-378.
    [101]Li, Y. G., F. L. Vernon, and K. Aki. San Jacinto fault-zone guided waves:a discrimination for recently active fault strands near Anza, California. J. Geophys. Res.,1997,102:11.689-11,701.
    [102]Li, Y. G., W. L. Ellsworth, C. H. Thurber, P. E. Malin, and K. Aki. Fault-Zone Guided Waves from Explosions in the San Andreas Fault at Parkfield and Cienega Valley, California. Bull. Seism. Soc. Am.,1997,87(1):210-221.
    [103]Li, Y.G., J. E. Vidale. K. Aki, F. Xu, and T. Burdette. Evidence of shallow fault zone strengthening after the 1992 M 7.5 Landers, California, earthquake. Science,1998,279: 217-219.
    [104]Li, Y.G., K. Aki, J. E. Vidale, and M. G. Alvarez. A deliniation of the Nojima fault ruptured in the M 7.2 Kobe, Japan, earthquake of 1995 using fault zone trapped waves. J. Geophys. Res.,1998,103:7247-7263.
    [105]Li, Y. G., K. Aki, J. E. Vidale, and F. Xu. Shallow structure of the Landers fault zone from explosion-generated trapped waves. J. Geophys. Res.,1999,104:20,257-20,275.
    [106]Li, Y.G., J. E. Vidale, and K. Aki. Depth-dependent structure of the Landers fault zone using fault zone trapped waves generated by aftershocks. J. Geophys. Res.,2000. 105:6237-6254.
    [107]Li, Y. G., and F. L. Vernon. Characterization of the San Jacinto fault zone near Anza. California, by fault zone trapped waves. J. Geophys. Res.,2001,106:30,671-30,688.
    [108]Li, Y. G., J. E. Vidale, S. M. Day, D. D. Oglesby, and the SCEC Field Working Team. Study of the 1999 M 7.1 Hector Mine, California, Earthquake Fault Plane by Trapped Waves. Bull. Seism. Soc. Am.,2002,92(4):1318-1332.
    [109]Marra, F., R. Azzara, F. Bellucci, A. Caserta, G. Cultrera, G. Mele, B. Palombo, A. Rovelli, and E. Boschi. Large amplification of ground motion at rock sites within a fault zone in Nocera Umbra (central Italy). J. Seismology,2000,4:543-554.
    [110]Mayer-Rosa, D.. Travel time anomalies and distribution of earthquakes along the Calaveras fault zone. Bull. Seism. Soc. Am.,1973,63:713-729.
    [111]Michael, A. J., and D. M. Eberhart-Phillips. Relations among fault behavior, subsurface geology, and three-dimensional velocity models. Science,1991,253: 651-654.
    [112]Michelini, A. and T. V. McEvilly. Seismological studies at Parkfield I. Simultaneous inversion for velocity structure and hypocentersusing cubic B-splines parameterization. Bull. Seism. Soc. Am.,1991,81:524-552.
    [113]Mizuno, T., Y. Kuwahara, H. Ito, and K. Nishigami. Spatial Variations in Fault-Zone Structure along the Nojima Fault, Central Japan, as Inferred from Borehole Observations of Fault-Zone Trapped Waves. Bull. Seism. Soc. Am.,2008,98(2): 558-570.
    [114]Mooney, W. D. and A. Ginzburg. Seismic measurements of theinternal properties of fault zones. Pure Appl. Geophys,1986,124:141-157.
    [115]Nishigami, K., and Y. Okuma. Crustal heterogeneity around the source region of the Kobe earthquake (M7.2):deep structure of the Nojima fault and the scatterer distribution in the crust. EOS,1996,10:508.
    [116]Rovelli, A., O. Bonamassa, M. Cocco, M. Di Bona, and S. Mazza. Scaling laws and spectral parameters of the ground motion in active extensional areas in Italy. Bull. Seism. Soc. Am.,1988,78:530-560.
    [117]Rovelli, A., A. Caserta, F. Marra, and V. Ruggiero. Can Seismic Waves Be Trapped inside an Inactive Fault Zone? The Case Study of Nocera Umbra, Central Italy. Bull. Seism. Soc. Am.,2002,92 (6):2217-2232.
    [118]Scholz, C. H.. The mechanics of earthquakes and faulting. Cambridge University Press, Cambridge,1990.
    [119]Sieh, K., L. Jones, E. Hauksson, K. Hudnut, D. Eberhart-Phillips, T. Heaton, S. Hough, K Hutton, H. Kanamori, A. Lilji, S. Lindvall, S. Mc-Gill, J. Mori, C. Rubin, J. Spotila, J. Stock, H. Thio, J. Treiman, B.Wernick, and J. Zachariasen. Near-field investigations of the Landers earthquake sequence, April to July 1992. Science,1993,260:171-176.
    [120]Sibson, R. H.. Fault rocks and fault mechanisms. J. Geol. Soc. London,1977,133: 191-213.
    [121]Thurber, C. H., S. Roecker, W. Ellsworth, Y. Chen, W. Lutter, and R.Sessions. Two-dimensional seismic image of the San Andreas fault in the northern Gabilan Range, central California:evidence for fluids in the fault zone. Geophys. Res. Lett., 1997,24:1591-1594.
    [122]Tucker, B. E., and J. L. King. Dependence of sediment-filled valley response on input amplitude and valley properties. Bull. Seism. Soc. Am.,1984,74:153-165.
    [123]Wang, C.. On the constitution of the San Andreas fault zone in Central California. J. Geophys. Res.,1984,89:5858-5866.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700