用户名: 密码: 验证码:
汶川地震地面运动场估计及地震烈度与地震动参数相关性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汶川地震是新中国成立以来所遭受的破坏性极强、涉及范围极广、抗震救灾难度极高的一次地震,这次地震在造成了极其严重的人员及财产损失的同时也留下了大量宝贵的震害调查资料,这为我们总结工程结构破坏规律、进行相关震害分析提供了坚实的基础。然而震害分析离不开地震动参数的输入,汶川地震中捕获的近断层强震观测记录很少且不同烈度区数量上分布很不均匀,这一情况给震害资料的分析及相关经验的总结带来了不少困难。如何充分利用汶川地震中有限的强震观测记录和烈度调查资料来对汶川地震地面运动场进行较合理的估计,继而为汶川地震中缺乏强震记录的地区的震害分析提供较合理的地震动参数输入是本文工作的重点,有鉴于此,本文以汶川地震地面运动场估计为核心,以各种地震动参数与地震烈度相关性分析为基础开展了以下4个方面的工作:
     (1)汶川地震中,许多地区具有丰富的震害调查资料,但这些地区缺乏强震观测记录,如何合理的估计这些地区震害分析时所需的地震动参数输入是一个亟待解决的问题也是本文工作的核心。为此本文对汶川地震中具有明确烈度调查资料而缺乏强震观测记录的地区视为地震动参数估计点,鉴于上/下盘地震动的差异,将汶川地震地面运动场估计分为两个区域分别进行,在通过等效地震动参数衰减关系等方法的基础上,对汶川地震主要城市及地区的PGA、PGV及其0.3s、1s、3s的加速度反应谱谱值进行了估计,给汶川地震中缺乏强震观测记录的主要城市及地区提供了震害资料分析时所需的地震动参数输入,并绘制了PGA及PGV等值线。
     (2)以发生在中国和美国的9次破坏性地震中捕获的部分加速度记录及其对应的烈度资料为数据源(共计226组三分量加速度记录),通过最小二乘法建立了16种地震动参数与烈度的一元回归关系式,并对比分析了16种地震动参数与烈度间的相关性。统计结果表明,16种地震动参数中,标准累计绝对速度与实际烈度的相关性较好。然而,即使采用与烈度相关性较好的标准累积绝对速度来计算仪器烈度,仍与实际烈度有着不小的差异,为此本文尝试了C2/16=240种不同地震动参数组合与烈度的多元回归模型来进行仪器烈度的判别,较大程度上提高了用地震动参数确定的仪器烈度与实际烈度相一致的比率,烈度识别正确率较好的参数组合是谱烈度和标准累计绝对速度。
     (3)从本文的统计结果看,各种地震动参数的一元回归模型计算的仪器烈度与实际烈度的吻合程度不佳,而本文的核心工作需要利用地震动参数的衰减关系来估计汶川地震地面运动场,若直接用这样的参数进行地震动参数衰减规律的统计与分析,则很难得到理想的结果,为此,本文对参与统计的我国记录以其加速度反应谱特征周期为统计分组标准,继而统计了不同特征周期区间用一元回归模型计算仪器烈度时与实际烈度的累积误差,并对这种误差进行了相应的修正,修正过程中引入了等效地震动参数这一定义,用各种等效地震动参数确定的仪器烈度与实际烈度相一致的比率要高于对应的各种未经等效处理的地震动参数。
     (4)考虑到利用等效地震动参数进行烈度识别时,仪器烈度与实际烈度相一致的比率较高,为此本文以汶川地震、汶川地震几次强余震中捕获的部分加速度时程记录为数据源,统计分析了16种等效地震动参数、16种地震动参数及35个周期点的加速度反应谱的衰减规律。统计结果表明,各种等效地震动参数衰减关系的拟合标准差比对应的未经等效处理的各种地震动参数要小。
The Wenchuan Ms8.0 earthquake-one of the greatest earthquakes which have occurred ever since the foundation of new China-covering wide area, caused large destructibility and brought high difficulty to emergency relief. Although the earthquake caused large loss of staff and property, it gave us valuable seismic damage research data of structures, baseing on which our structures seismic damage analysis is established. Because the analysis of structures seismic damage demands strong earthquake ground motion parameters, so the non-uniform distribution of ground motion stations in Wenchuan earthquake turns into a pity. How to estimate the value of ground motion parameters during the analysis of structures seismic damage data, which were collected in Wenchuan earthquake, by using the limited ground motion stations and relative rich seismic intensity materials is the emphasis of this paper. The research in this paper was carried out from four aspects, some conclusions can be drawn.
     (1) After Wenchuan earthquake, many areas rich in earthquake investigation data came up, yet these regions are lack of strong earthquake observation records. How to reasonably estimate the value of ground motion parameters so as to deal with the analysis of these disaster areas becomes the core of this paper work, which also needs to be done urgently. This paper took these areas which is rich in earthquake investigation data but lack of strong earthquake observation records as the ground motion parameters estimation areas. In consideration of the differences of ground motion between the two sides of a fault, we divided the estimation region as two parts and analyzed them separately. Based on the attenuation relationship of equivalent ground motion parameter, we estimated the PGA、PGV and 0.3s、1s、3s spectral accelerations in Wenchuan earthquake areas. so that the value of ground motion parameters for the earthquake data analysis was provided. Besides, the PGA and PGV isolines were also shown in this paper.
     (2) By collecting 226 three-component records from 9 earthquakes which occured in China and America as data resources and using the least square method, the correlation relationships between sixteen strong ground motion parameters and seismic intensity were presented. The results indicated that among the sixteen strong ground motion parameters analyzed in this study, cumulative absolute velocity and spectrum intensity were the best two parameters with the largest recognition rate, which could be used to predicate the instrumental intensity. According to the statistic results, the instrumental intensity determined by the model of univariate regression may sometimes have significant differences from the actual intensity, so the model of multiple linear regression between magnitude and different ground motion parameters combinations is established. The statistic result shows that the model of multiple linear regression has higher recognition correct rate in identification seismic intensity than the model of univariate regression. The combination of spectral intensity(SI0.2) and standard cumulative absolute velocity(CAVs) is the best ground motion parameter combination with the largest recognition rate, which could be used to predicate the instrumental intensity.
     (3) In this article, most Chinese accelerograms come from the Wenchuan earthquake. The next main part work is to use these accelerograms to develop the attenuation relationship of different ground parameters in this area, but the instrumental intensity determined by these ground parameters is not in line with the actual intensity, so these accelerograms are divided into several groups by their characteristic period of response spectrum. The difference between instrumental intensity and actual intensity are calculated, and then the error was modified. In the process of the modification of the model of univariate regression, sixteen equivalent ground motion parameters are introduced. The instrumental intensity determined by the equivalent ground motion parameters have higher recognition correct rate in identification seismic intensity than the other ground motion parameters which have no equivalent processing.
     (4) In consideration of higher recognition correct rate in identification seismic intensity determined by the equivalent ground motion parameters, attenuation relationships for 16 equivalent ground motion parameters,16 ground motion parameters and 35 spectral accelerations in Wenchuan region of China were determined by statistical analyses of acceleration records obtained in several destructive earthquakes and after shocks of Wenchuan Ms8.0 earthquake. The results indicate that the fitting results determined by the equivalent ground motion parameters have smaller standard deviation than the other ground motion parameters which have no equivalent processing.
引文
[1]崔建文,李世成,高东.云南分区地震动衰减关系[J].地震研究,2006,129(14):386-391.
    [2]崔建文,李正光,赵云旭.2007年宁洱6.4级地震强震动观测记录[J].地震研究,2007,30(4):384-388.
    [3]陈希儒.数理统计引论.北京:科学出版社,1981.
    [4]陈运泰,许力生,张勇,杜海林,冯万鹏,刘超,李春来.2008年5月12日汶川特大地震震源特性分析报告[R].http://www.eqqh.gov.cn/download/chenyuntai.pdf,2008.
    [5]杜春清,热甫克提·阿不力孜.2008年10月5日新疆乌恰6.8级地震强震动特征简析[J].内陆地震,2008,22(4):378-384.
    [6]董娣,周锡元,徐国栋.纪金豹.集集地震中场地条件对地震动特性的影响[J].地震地质,2006,28(1):22-36.
    [7]高光伊,于海英,李山有.中国大陆强震观测[J].世界地震工程,2001,17(4):13-18.
    [8]高玉峰,谢康和,曾国熙.中强地震区地震烈度和峰值加速度的衰减规律[J].浙江大学学报(工学版),2000,34(4):404-408.
    [9]国家重大科学工程“中国地壳运动观测网络”项目组.GPS测定的2008年汶川Ms8.0级地震的同震位移场[J].中国科学D辑:地球科学.2008,38(10):1195-1206.
    [10]何宏林,孙昭民,王世元,王纪强,董绍鹏.汶川Ms8.0地震地表破裂带[J].地震地质,2008,30(2):359-362.
    [11]胡隶贤.地震工程学[M].北京:地震出版社.1988.
    [12]胡聿贤,张敏政.缺乏强震观测资料地区地震动参数的估算方法[J].地震工程与工程振动,1984,4(1):1-11.
    [13]郝敏.地震烈度物理标准及地震动破坏势研究[D].哈尔滨:哈尔滨工业大学,2006.
    [14]黄蓓.基于集集地震记录的近断层地震动特性分析[D].北京:中国地震局地球物理研究所,2003.
    [15]霍俊荣.近场强地面运动衰减规律的研究.哈尔滨:国家地震局工程力学研究所.1989.
    [16]金星,康兰池,欧益萍.福建地区中小地震加速度反应谱衰减规律[J].地震工程与工程振动,2009,29(5):52-58.
    [17]刘浪.汶川地震地震动衰减特性分析.哈尔滨:中国地震局工程力学研究所.2010.
    [18]卢寿德,李小军等.汶川8.0级地震动加速度峰值衰减规律的研究[J].地震工程与工程振动,2005,25(4):18-23.
    [19]卢永坤,曾应青,周光全,非明伦,陈坤华.2007年宁洱6.4级地震震害综述[J].地震研究,2007,30(4):364-372.
    [20]吕坚,俞言祥,汤兰荣,高建华,卢福水.江西省及邻区地震动参数衰减关系[J].地震地质,2009,31(1):122.131.
    [21]李小军,周正华,于海英,温瑞智.汶川8.0级地震强震动观测及记录初步分析[R].汶川地震建筑震害调查与灾后重建分析报告,北京:中国建筑工业出版社.,2008.
    [22]李小军,阎秀杰,潘华.中小震近场地震动估计中地震动衰减关系的适用性分析[J].地震工程与工程振动,2005,25(1):1.7.
    [23]李小军.汶川8.0级地震余震固定台未校正加速度记录[M].北京:地震出版社,2009.
    [24]李小军.汶川8.0级地震流动台站未校正加速度记录[M].北京:地震出版社.2009.
    [25]李敏.地震动加速度反应谱与与烈度关系研究[D].哈尔滨:中国地震局工程力学研究所,2010.
    [26]李静萍等.多元统计分析:方法与应用[M].北京:中国人民大学出版社.,2008.
    [27]刘恢先.关于地震烈度及其工程应用问题[J].地球物理学报,1978.,21(4).
    [28]林淋,孙景江.不同地震动参数与地震烈度相关性对比研究[J].地震工程与工程震动,2011,31(1):6-10.
    [29]雷建成,高孟潭,俞言祥.四川及邻区地震动衰减关系[J].地震学报,2007,29(5):500-511.
    [30]聂永安,姚兰予.欧洲98版本地震烈度表简介[J].国际地震动态,2003,293:23-28.
    [31]邵广彪,冯启民.近断层地震动加速度峰值衰减规律的研究[J].地震工程与工程振动,2004.,24(3):30-37.
    [32]石树中.沈建文.上海及邻近地区地震动衰减关系研究[J].中国地震,2003,19(4):315.323.
    [33]阮桂海.数据统计与分析SPSS应用教程[M].北京:北京大学出版社,.2005.
    [34]王玉石.地震动强度及其特征分析[D].哈尔滨:中国地震局工程力学研究所.2010.
    [35]王国权.921台湾集集地震的近断层地面运动特征[D].北京:中国地震局地质研究所,2001.
    [36]王虎栓.论地震烈度的定量尺寸[D].哈尔滨中国地震局工程力学研究所,1991.
    [37]王国新.强地震动衰减研究[D].哈尔滨:中国地震局工程力学研究所,2001.
    [38]王国权,周锡元等.921台湾地震近断层强地面运动的周期和幅值特征[J].工程抗震,2001,130-136.
    [39]王国权,周锡元.921台湾集集地震近断层强震记录的基线校正[J].地震地质,2004,26(1),23-28.
    [40]王卫民,赵连峰,李娟,姚振兴.四川汶川8.0级地震震源过程[J].地球物理学报,2008, 51(5):1403-1410.
    [41]温瑞智,周正华,李小军等.汶川Ms8.0地震的强余震流动观测[J].地震学报,2009,31(2):221.225.
    [42]汶川地震灾害评估工作组.汶川8.0级地震烈度分布图[N].北京:中国地震局通知公告,2008.
    [43]吴群英,林亮.应用数理统计[M].天津:天津大学出版社,2004.
    [44]徐锡伟.5·12汶川8.0级地震地表破裂图集[M].北京:地震出版社,2009.
    [45]徐锡伟,闻学泽,叶建青等.汶川Ms8.0地震地表破裂带及其发震构造[J].地震地质,2008,30(3):597-629.
    [46]袁一凡.由地震动三要素确定地震动强度(烈度)的研究[M].哈尔滨:国家地震局工程力学研究所,1998.
    [47]俞言祥.长周期地震动衰减关系研究.北京:中国地震局地球物理研究所,2002.
    [48]俞言祥,汪素云.中国东部和西部地区水平向基岩加速度反应谱衰减关系[J].震灾防御技术,2006,1(3):206-217.
    [49]俞言祥,汪素云.青藏高原东北地区水平向基岩加速度峰值与反应谱衰减关系[J].地震学报,2004,26(6):591.600.
    [50]盈江“8.20”地震现场联合指挥部.“8.20”盈江地震现场工作简报.9[N].http://www.e qdh.cn/index.php3?file=detail.php3&kdir=3797172&nowdir=3797172&id=1260173 &detail=1,2008.
    [51]赵凤新,王海江,张郁山.用于核工程地震安全性评价的中小地震水平向加速度反应谱衰减关系研究[J].中国地震,2009,25(3):274-281.
    [52]周雍年.中国大陆的强震动观测[J].国际地震动态,2006,11:1-6.
    [53]周雍年.强震观测的发震趋势和任务[J].世界地震工程,2001,17(4),19-26.
    [54]朱建钢,黎大虎,赖敏,周朝晖,孙玮,余桦.代宽洪,颜晓晔.强震记录与地震烈度的仪器测定实例[J].四川地震,2006,6:28-47.
    [55]GB17741.2005工程场地地震安全性评价[S].北京:中国标准出版社,2005.
    [56]GB/T17742-2008中国地震烈度表[S].北京:中国标准出版社,2009.
    [57]GB 50011-2001建筑抗震设计规范(2008年版)[S].北京:中国建筑工业出版社,2008.
    [58]中国地震局震灾应急救援司.云南姚安地震灾害损失及地震烈度分布图[N].http:// www.cea.gov.cn/manage/html/8a8587881632fa5c0116674a018300cf/_content/09_07/ 22/1248250059887.html,2009.
    [59]中国地震局震灾应急救援司.云南盈江地震灾害损失及地震烈度分布图[N].http:// www.gov.cn/gzdt/2008-09/19/content_1100084.htm,2008.
    [60]中国地震局震灾应急救援司,汶川8.0级地震烈度分布图[N].http://www.cea.gov. cn/manage/html/8a8587881632fa5c0116674a018300cf/_content/09_05/07/12416831 69822.html,2008.
    [61]中国地震局震灾应急救援司.新疆乌恰6.8级地震灾害损失及地震烈度分布图[N]. http://www.cea.gov.cn/manage/html/8a8587881632fa5c0116674a018300cf/_content/0 8_12/04/1228371123210.html,2008.
    [62]中国地震局震灾应急救援司.攀枝花6.1级地震烈度分布图[N].http://www.cea.gov. cn/manage/html/8a8587881632fa5c0116674a018300cf/_content/08_09/19/1221808841541.html,2008.
    [63]中国地震局震害防御司.汶川8.0级地震未校正加速度记录[M].北京:地震出版社,2008.
    [64]Alan V.Oppenheim, Ronald W.Schafer, John R. Buck. Discrete-Time Signal Processing[M],Second Edition. Pre(?)tice-Hall Int.,USA:New Jersey,1999.
    [65]Abrahamson NA and WJ Silva(1997).Empirical response spectral attenuation r elations for shallow crust earthquakes[J].Seismological Research Letters,1997,6 8(1):94-127.
    [66]Abrahamson NA,Somerville PG(1996). Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake[J]. Bull Seism Soc Amer,1996,86(1B):S93-S99.
    [67]Abrahamson, N. A., and P. G. Somerville (1993). Estimationofhangingwall and footwall effects on peak acceleration, in Proc. Of International Workshop on Strong Motion Data[J].Menlo Park.Califomi(?),1993,12:13-17.
    [68]Aki,K.Scaling law of seismic spectrum[J].J.Geophys.Res,1967,72:1217-1231.
    [69]Aki,K.Seismic displacement near a fault[J].J.Geophys.Res,1968,73:5359-5376.
    [70]Aki,K.,andP.GRichards(1980),QuantitativeSeismology:TheoryandMethods[M],W.H. Freeman and Company, San Francisco,CA.
    [71]Allen,C.R.,J.H. Brune,L.S.Cluff, andA.GBarrows(1998). Evidence for unusually strong near-field ground motion on the hanging wall of the San Fernando fault during the 1971 earthquake[J].Seism. Res. Lett,1998,69:524-531.
    [72]Ambraseys,N.N., and Bommer,J.J.The attenuation of ground accelerations in Europe[J]. Earthquake Engineering and Structural Dynamics,1991,20(12):1179-1202.
    [73]Abrahamson,N.N. and W.Silva.Surnmary of the Abrahamson & Silva NGA Ground-Motion Relations[J].Earthquakc Spectra.,2008,24(1):67-97.
    [74]Atkinson, G. M. and Silva, W., Stochastic Modeling of California Ground Motions[J]. Bull. Seism. Soc.Am.2000,90:255-274.
    [75]Atkinson,G. and D. Boore.Ground-Motion Relations for Eastern North America[J]. Bull. Seism. Soc. Am.,1995,85:17-30.
    [76]Atkinson, G. M.. Attenuation and source parameters of earthquakes in the Cascadia region[J].Bull. Seism. Soc. Am,1995,85:1327-1342.
    [77]Atkinson, G. M. and Boore, D.M.. Recent trends in ground motion and spectral response relations for North America[J]. Earthquake Spectra,1990,6(1):15-35.
    [78]Atkinson, G. M.. Empirical ground motion relations for earthquakes in the Cascadia region [J]. Canadian Journal of Civil Engineering,1997,24:64-77.
    [79]Atkinson, G. M. and Boore, D.M.. Ground-Motion Relations for Eastern North America[J]. Bull. Seism. Soc. Am.,1995,85(1):17-30.
    [80]Boatwright, J., K. Thywissen, L. Seekins. Northridge, California earthquake[J].B ulletin of the Seismological Society of America,2001,91:739-752.
    [81]Boore D M,Atkinson G M.Ground-motion prediction equations for the averageh orizontal component of PGA, PGV, and 5%-damped PSA at spectral periods be tween 0.01s and 10.0s[J]. Earthquake Spectra,2008,24(1):99-138.
    [82]B.S.J.Chiou and R.R. Youngs,An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra[J].Earthquake Spectra, 2008.24(1):173-215.
    [83]Boore Dm. and GM. Atkinson. Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5%-Damped PSA at Spectral Periods between 0.01s and 10.0s [J]. Earthquake Spectra,2008,24(1):99-138.
    [84]Bolt, B. A. and Abrahamson.N. A.. New attenuation relations for peak and e xpected accelerations of strong ground motion [J]. Bull. Seism. Soc. Am.1982,7 2(6):2307-2321.
    [85]Brune JN.. Precariously Balanced Rocks and Ground-Motion Maps for Southern California [J]. Bull Seism Soc Am,1996,86(1A):43-54.
    [86]C. Chandre, (?). Wiggins, T. Uzer. Time-Frequency Analysis of Chaotic Systems[J]. Physica D,2003,181:171-196.
    [87]Campbell K W,Bozorgnia Y. NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV,PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10s..2008,24 (1):139-171.
    [88]Campbell KW.. Empirical Near-SourceAttenuationRelationshipsforHorizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and Pseudo-Absolute Acceleration Response Spectra [J], Seismological Research Letters,1997,68(1):154-179.
    [89]Carlos I Huerta-Lopez, YongJune Shin,Edward J Poweis, et al.Time-Frequency Analysis of Earthquake Records[C].2000,12 WCEE.
    [90]Chang T.Y.,Cotton, F. and Angelier,J. Seismic Attenuation and Peak Ground Acceleration in Taiwan [J]. Bull. Seism. Soc. Am.,2001,91(5):1229-1246.
    [91]Chenyang Xu,Farzad Kamalabadi,Stephen A.Boppart.Comparative Performance Analysis of Time-Frequency Distributions for Spectroscopic OpticalCoherence Tomography [J], Applied Optics.2005,44(10):1813-1822.
    [92]Chia-Sheng Hsieh and Tian-Yuan Shih. Coseismic Deformation of Chi-Chi Earthquake as Detected by Differential Synthetic Aperture Radar Interferometry and GPS Data[J]. Terr. Atmos. Ocean. Sci,2006,17(3):517-532.
    [93]Chiou B S J, R R Youngs, Chiou-Youngs. NGA ground motion relations for the geometric mean horizontal component of peak and spectral groundmotion parameters, Earthquake Spectra.2008,24(1):173-215.
    [94]D.Boutana, B. Barkat, F. Marir. A Proposed High-Resolution Time-Frequency Distribution for the Analysis of Multicomponent and Speech Signals. Transactions on Engineering[J], Computing and Technology.2004,2:126-129.
    [95]David J. Wald, Bruce C. Worden, Vincent Quitoriano, Kris L. Pankow. ShakeMap Manual[EB].http://pubs.usgs.gov/tm/2005/12A01/,2006.
    [96]David J.Wald, Vincent Quitoriano, Thomas H. Heaton, Hiroo Kanamori. Relationship between Peak Ground Acceleration,Peak Ground Velocity, and Mo difiedMercalli Intensity in Califorornia[J].Earthquake Spectra,1999,15(3),557-564.
    [97]David M. Boore. Analog-to-Digital Conversion as a Source of Drifts in Displacements Derived from Digital Recordings of Ground Acceleration[J]. Bulletin of the Seismological Society of America,2003,93(5):2017-2024.
    [98]David M. Boore,Christopher D. Stephens,William B. Joyner. Comments on Bas eline Correction of Digital Strong-Motion Data:Examples from the 1999 Hecto r Mine, California, Earthquake[J]. Bulletin of the SeismologicalSocietyof Ameri ca,2002,92(4):1543-1560.
    [99]David M.Boore.Effect of Baseline Corrections on Displacements and Response Spectra for Several Recordings of the 1999 Chi-Chi,Taiwan.Earthquake[J].Bulletin of the Seismological Society of America,2001,91(5):1199-1211.
    [100]David M. Boore,Julian J.Bommer.Processing of strong-motion accelerograms:nee ds, options and consequences[J].Soil Dynamics and Earthquake Engineering.20 05,25:93.115
    [101]Donald L. Wells, Kevin J. Coppersmith. New Empirical Relationships amongM agnitude,Rupture Length,Rupture Width, Rupture Area,and SurfaceDisplacment [J].Bulletin of the Seismological Society of America,1994,84(4):974-1002.
    [102]Dowrick, D J. The modified Mercalli earthquake intensity scale; revisions arisi ng from recent studies of New Zealand earthquakes[J].Bulletin of theNewZeala nd National Society for Earthquake Engineering,1996,29(2):92-106.
    [103]Hall,J.F.,T.H. Heaton,M. W. Halling, and D. J. Wald. Near-source ground- motions and its effects on flexible buildings[J].Earthquake Spectra.1995,11:569-606.
    [104]Haralambos N.Kritikos,Joseph G.Teti, Jr. A Time-Frequency Analysis Methodfor Radar Scattering[J], IEEE Transactions on Microwave Theory and Techniques,1998,46(3):257-260.
    [105]Horng-Yue Chen,Long-Chen Kuo, Shui-Beih Yu. Coseismic Movement and Sei smic Ground Motion Associated with the 31 March 2002 off Hualien, Taiwa n. Earthquake[J].TAO,2004,15(4):683-695.
    [106]Hu YX, Zhang MZ. Attenuation of ground motion for regions with no gro und motion data[C].Proceeding of4th Canadian Conference on EarthquakeEngin eering.Vancouver,Canada,1983,485-494.
    [107]I. M. Idriss. An NGA Empirical Model for Estimating the Horizontal Spectral Values Generated By Shallow Crustal Earthquakes [J], Earthquake Spectra, 2008,24(1):217-242.
    [108]Japan Meteorological Agency. Explanatory Table on Japan Meteorological Age ncy (JMA)Seismic Intensity Scale[EB],http://www.jma.go.jp/jma/en/Activities/intt able,1996.
    [109]Kazi R. Karim, Fumio Yamazaki. Correlation of JMA Instrumental Seismic Intensity with Strong Motion Parameters[J]. Earthquake Engineering and Structural Dynamics.2002,31:1191-1212.
    [110]Kenneth W. Campbell.Analysis of Cumulative Absolute Velocity (CAV) AndJM A Instrumental Seismic Intensity (IJMA) Using the PEER-NGA Strong Motion Database[M]. USA:Pacific Earthquake Engineering ResearchCenter, 2010:1-7.
    [111]Khosrow T.Shabestari, Fumio Yamazaki. A Proposal of Instrumental SeismicInt ensity Scale Compatible with MMI Evaluated from Three-Component Acceleration Records[J] Earthquake Spectra,2001,17(4):711-723.
    [112]Khosrow T. Shabestaria, Fumio Yamazakib, Jun Saitaa, Masashi Matsuokaa.Esti mation of the spatial distribution of ground motion parameters for two recent earthquakes in Japan[J]. Tectonophysics,2004,390:193-204.
    [113]KW. Campbell and Y. Bozorgnia. NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10s[J]. Eart hquake Spectra,2008,24(1):139-171.
    [114]Li Xiaojun, Zhou Zhenghua,Yu Haiying, Wen Ruizhi,Lu Dawei,Huang Moh,Zh ou Yongnian and Cu Jianwen. Strong Motion Observation and Recording from the Great Wenchuan Earthquake [J]. Earthquake Engineering and Engineering Vibration,2008,7:235-246.
    [115]M. D. Trifunac. A Note on Correction of Strong-Motion Accelergrams for Instrument Response[J]. Bulletin of the Seismological Society of America. 1972,62(1):401-409
    [116]M.Erdik, Y.Fahjan,O.Ozel, H.Alcik,A.Mert and M. Gul. Istanbul Earthquake Ra pid Response and the Early Warning System[J]. Bulletin of Earthquake Engin eering,2003,1(1):303-312.
    [117]M.D.Trifunac.Zero Baseline Correction of Strong-Motion Accelerograms[J]. Bulletin of the Seismological Society of America,1971,61(5):1201-1211.
    [118]Mustafa Erdik.Urban Earthquake Rapid Response and Early Warning Systems[C]. First European Conference on Earthquake Engineering and Seismology. Paper No.K4,2006.
    [119]Marin Kostov Kostov. Site Specific Estimation of Cumulative Absolute Velocity [C]//18th International Conference on Structural Mechanics in Reactor Technology. Beijing:SMiRT18,2005.3041-3050.
    [120]P.N Davenport. Instrumental measures of earthquake intensity in New Zealand. Pacific Conference on Earthquake Engineering. Paper No.071,2003.
    [121]P.N. Davenport.Seismic intensities derived from strong motion instrumentsinNe w Zealand[C]. NZSEE 2001 Conference. Paper,2001,No.4.03.01.
    [122]Power M,Chiou B, Abrahamson N, Roblee C. An Overview of the NGA Project[J]. Earthquake Spectra,2008,24(1):3-21.
    [123]R. G. Stockwell,L.Mansinha,R.P.Lowe.Localization of the Complex Spectrum:Th e S Transform[J].IEEE Transactions on Signal Processing,1996,44(4):998-1001.
    [124]Richter,C.F. Elementary Seismology[M].,San Francisco,USA:W.H. Freeman and Company,1958.
    [125]Shen-Ming Chen, Chin-Hsiung Loh. Estimating Permanent Ground Displacement from Near-Fault Strong-Motion Accelerograms[J]. Bulletin of the Seismological Society of America,2007,97(1B):63-75.
    [126]Shui-Beih Yu et.al. Preseismic Deformation and Coseismic Displacements Asso ciated with the 1999 Chi-Chi, Taiwan, Earthquake[J]. Bulletin of the Seismological Society of America,2001,91(5):995-1012.
    [127]Sinan Akkar, David M. Boore. On Baseline Corrections and Uncertainty inRes ponse Spectra for Baseline Variations Commonly Encountered in Digital Accel erograph Records[J]. Bulletin of the Seismological Society of America.2009,99 (3),1671-1690.
    [128]Sokolov, V. Y., Y. K. Chernov. On the correlation of SeismicIntensity with Fourier Amplitude Spectra[J]. Earthquake Spectra,1998,14:679-694.
    [129]Sokolov, V. Y. Seismic intensity and Fourier acceleration spectra:revised relationship[J]. Earthquake Spectra,2002,18(1):161-187.
    [130]Strong-Motion Record Processing Working Group. Guidelines and Recommendationsfor Strong-Motion Record Processing and Commentary[M]. COSMOS Publication, 2005.
    [131]T. Kijewski-Correa,A.Kareem.Efficacy of Hilbert and Wavelet Transformsfor Time-Frequency Analysis[J]. Journal of Engineer Mechanics,ASCE.2006,1037-1049.
    [132]Trifunac, M. D. Low frequency digitization errors and a new method for zero baseline correction of strong-motion accelerograms [J]. Earthquake Engineering Research Laboratory.1970, California Institute of Technology, Pasadena, USA.
    [133]Vladimir M. Graizer.Effect of Tilt on Strong Motion Data Processing. Soil[J],D ynamics and Earthquake Engineering.2005,25:197-204.
    [134]Vladimir Yu.Sokolov. Spectral Parameters of the Ground Motions in Caucasian Seismogenic Zones[J].Bulletin of the Seismological Society of America, 1998,88(6):1438-1444.
    [135]Wald, D.J.V. Quitoriano, L.Dengler, J. W. Dewey. Utilization of the Internetfor Rapid Community Intensity Maps[J].Seism. Res. Letters,1999,70(6):680-697.
    [136]Wald,D. J., V. Quitoriano, T. H. Heaton, H. Kanamori, C. W. Scrivner, C.B.W orden. TriNet "ShakeMaps":Rapid Generation of Peak Ground-motion and Inte nsity Maps for Earthquakes in Southern California[J]. Earthquake Spectra,1999,15(3):537-556.
    [137]Wu,Y. M., T. L. Teng, N. C. Hsiao, T. C. Shin, W. H. K. Lee, Y. B.Tsai. Progress on Earthquake Rapid Reporting and Early Warning Systems in Taiwa n. Chen Y. T. (Ed.):Earthquake hazard, risk, and strong ground motion[M].Beiji ng:Seismological Press,2004,351-360.
    [138]Yasuko Kuwata,Shiro Takada. Instantaneous Instrumental Seismic Intensity and Evacuation[J]. Journal of Natural Disaster Science,2002,24(1):35-42.
    [139]Yih-Min Wu, Chien-Fu Wu. Approximate recovery of coseismic deformationfro m Taiwan strong-motion records[J].J Seismol,2007,11:159-170.
    [140]Yih-Min Wu,Ta-liang Teng,Tzay-Chyn Shin, Nai-Chi Hsiao. Relationship between Peak Ground Acceleration,Peak Ground Velocity, and Intensity in Taiwan[J].Bulletin of the Seismological Society of America,2003,93(1):386-396.
    [141]Yih-Min Wu,Tzay-Chyn Shin, Chien-Hsin Chang. NearReal-Time Mapping Peak Ground Acceleration and Peak Ground Velocity Following aStrong Earthquake[J].Bulletin of the Seismological Society of America,2001,91(5): 1218-1228.
    [142]Yih-Min Wu,Tzay-Chyn Shin, Chen-Chun Chen,Yi-Ben Tsai,William H.K.Le Liang Teng. Taiwan Rapid Earthquake Information Release System[J], Seismological Research Letter,1997,68(6):931-943.
    [143]Yutaka Nakamura. On a Rational Strong Motion Index Compared With er Various Indices[M].Canada:Vancouver, B.C.,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700