用户名: 密码: 验证码:
女性盆底在体生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究拟自主设计研制操作性强、精确度高的数字化女性盆底生物力学在体拉伸测量系统,并建立实用可行的女性盆底支持结构在体生物力学性能的测量方法;进行盆底重建手术所涉及的盆底支持结构及骶前纵韧带的在体生物力学性能测定,为各种盆底重建手术的有效性提供生物力学依据;完成TVT-0及TVT-S在体生物力学性能的测定,为其术后短期有效性提供生物力学依据。
     方法:在10具新鲜女性尸体上按照各种盆底重建手术操作方式缝合所涉及的宫骶韧带、宫颈周围环、盆筋膜腱弓、坐骨棘筋膜、骶棘韧带、骶前纵韧带,利用在体拉伸测量系统完成连续加载并同步记录载荷和位移参数,根据所得的载荷-变形曲线分析比较各组织结构的生物力学性能;运用随机数字表确定尸体标本的手术方式(TVT-05例和TVT-Secur H型5例),利用在体拉伸测量系统测量并比较两者的在体生物力学性能。
     结果:
     1.宫骶韧带、宫颈周围环、盆筋膜腱弓、坐骨棘筋膜、骶棘韧带的极限载荷分别为37.3±23.5N、49.3±28.4N、46.8±18.7N、42.2±19.8N、39.4±25.6N,各组韧带间无显著差异(P=0.462);同时发现各组韧带的极限载荷个体差异大,但盆筋膜腱弓及坐骨棘筋膜极限载荷的变异系数分别为40.02%、46.99%,均明显小于其余三组的,说明前两者的极限载荷的变化范围相对较小
     2.宫骶韧带、宫颈周围环、盆筋膜腱弓、坐骨棘筋膜、骶棘韧带的刚度分别为1.26±1.22 N/mm.1.45±0.92 N/mm.1.28±O.44 N/mm.1.47±O.40 N/mm、1.47±0.62 N/mm,各组间亦无显著差异(P=0.832),同样发现ATFP及坐骨棘筋膜刚度的变化范围明显小于其余三组的,前两者刚度的变异系数分别为34.12%、27.30%。
     3.10具尸体中各水平骶前纵韧带的极限载荷由上到下依次递减,分别为129.55±64.07N.69.46±15.52N.18.90±7.52N,差异有统计学意义(P<0.01)。
     4.骶岬、骶1、骶2水平前纵韧带的刚度依次为4.24±2.14N/mm.2.9l±1.54N/mm、2.14±0.79N/mm,亦呈现递减趋势,差异有统计学意义(P<0.01)。各水平骶前纵韧带两两相比,骶岬水平的刚度明显大于骶1(P=0.011)及骶2水平(P<0.01)的刚度,而骶1和骶2水平间无显著差异(P=0.117)。
     5.TVT-O吊带置入尸体体内后的机械阻力为18.71±2.68N,大于TVT-SecurH型的12.30±9.70N,但差异无统计学意义(P=0.192)。
     结论:
     1.本研究自主设计了操作性强、精确度高的数字化女性盆底生物力学在体拉伸测量系统,能连续可调节地加载并同步提供载荷和位移参数,并可在水平面及矢状面调整加载方向,为后续的女性盆底支持结构在体生物力学性能测量方法的建立及盆底重建手术有效性的研究提供了有效的研究工具。
     2.建立了实用可行的女性盆底支持结构及骶前纵韧带在体生物力学性能的测量方法;从缝线选择、加载速度、拉伸方向、缝合位点等方面优化试验方法,增加了试验的稳定性和可重复性。首次在在体生物力学性能测定中引入刚度这一力学参数,利用刚度变化准确判断极限载荷,从而获得更为全面准确的生物力学数据。
     3.首次完成中国女性新鲜尸体标本盆底重要支持结构和骶前纵韧带的在体生物力学性能测定,为各种盆底重建手术的有效性提供生物力学数据。
     4.本研究测量了宫颈周围环的生物力学性能,在国内尚属首次,发现其极限载荷明显大于阴道壁的,提出在中盆腔缺陷的重建手术中,要确保缝合阴道及阴道外的筋膜即宫颈周围环以提供足够的强度。
     5.本研究首次测量了中国女性盆筋膜腱弓的极限载荷,缝合位点模拟协和式改良全盆底重建术前路深带的穿刺点,结果显示其可提供与Prolift前路深带悬吊点同样有力的支持,从而为协和式改良全盆底重建术手术的有效性提供了生物力学依据。
     6.坐骨棘筋膜为坐骨棘盆面的肌肉筋膜组织,本研究测得的极限载荷与骶棘韧带相似,而刚度大于常用的聚丙烯网片,且其力学性能的个体差异小,稳定性好,结合应用解剖学,提出坐骨棘筋膜可以成为新的治疗阴道脱垂的安全有效且经济的悬吊点。
     7.骶棘韧带是公认的强壮有力的韧带,本研究通过测量骶棘韧带的在体生物力学性能,指出离体生物力学研究难以真实反映其在体内的力学状态,同时发现其极限载荷和刚度的个体差异大。
     8.骶前纵韧带的极限载荷及刚度均沿骶骨由上向下呈递减趋势。本研究首次同时从极限载荷和刚度两方面提供生物力学依据,建议骶骨阴道固定术应首选骶岬水平(即腰5骶1椎间盘水平)的前纵韧带作为缝合位点。
     9.本研究首次对TVT-0和TVT-Secur两种吊带在新鲜尸体体内生物力学性能进行了深入研究,为今后优化网片在体生物力学性能的研究方法提出了建议。同时提出TVT-Secur-H型在术后短期的在体生物力学性能可与TVT-0相媲美,理论上在术后早期可达到与TVT-0相似的临床效果,为新术式的广泛开展提供生物力学依据。
Objects:To devise a special in vivo puller measuring instrument for female pelvic floor.To establish a reliable experimental protocol to characterize the in vivo biomechanical properties of female pelvic floor supporting structure. To mesure the in vivo biomechanical properties of several important supporting structure, the anterior longitudinal ligament(ALL) and the tensile free vaginal tape. Accordingly, to provide biomechanical evidence for the efficiency of reconstructive pelvic surgery.
     Materials and Methods:Ten fresh cadavers were dissected to expose uterosacral Ligament(USL),the ring around cervix, arcus tendineus fascia pelvis(ATFP), fascia on the ischial spine, sacrospinous ligament(SSL) and ALL. After the fascia and ligaments were sewed according to the surgical technique, they were stretched at a steady rate until breakage while allowing constant electronic registration of load and displacement. Then to compare the in vivo biomechanical properties by analyzing the load-displacement curve.Ten fresh cadavers were randomized to (tension free vaginal tape—obturator)TVT-0 or the TVT-Secur group, each group had five bodies. After the surgical procedures was finished, tension tests were performed by the purpose-built puller system to prove the surgical efficiency.
     Results:
     1. The ultimate load of USL, the ring around cervix, ATFP, fascia on the ischinal spine and SSL was 37.3±23.5N,49.3±28.4N、46.8±18.7N、42.2±19.8N and 39.4±25.6N, respectively, and there was no significant difference among groups(P>0.05). The coefficient of variation(CV) of ATFP and fascia on the ischial spine were less than the others. That is to say, the individual differences of ultimate load among the first two groups were small.
     2. The stiffness of USL, the ring around cervix, ATFP, fascia on the ischinal spine and SSL was 1.26±1.22 N/mm,1.45±0.92 N/mm,1.28±0.44 N/mm, 1.47±0.40 N/mm and 1.47±0.62 N/mm, respectively. There was also no significant difference among groups (P>0.05). There was a considerable variability for each value, but the CV of ATFP and fascia on the ischial spine were less than the other three groups.
     3. The ultimate load of ALL at the sacral promontory, the first sacral vertebra and the second sacral vertebra were 129.55±64.07N、69.46±15.52N and 18.90±7.52N, respectively. It progressively decreased distally along the sacral vertebra, the differences between levels were significant(P<0.01).
     4. The stiffness of ALL was 4.24±2.14N/mm at the sacral promontory,2.91±1.54N/mmat the first sacral vertebra and 2.14±0.79N/mm at the second sacral vertebra, which was declining(P<0.05). The stiffness of ALL at the sacral promontory was greater than the stiffness of other levels (P<0.01), but there was no significant difference between the lower two levels (P>0.05).
     5. The mechanical resistance of TVT-0 was 18.71±2.68N, which was stronger than TVT-Secur, but no significant difference could be found(P>0.05).
     Conclusions:
     1. We devised a digital in vivo puller measuring instrument for female pelvic floor biomechanical study with high fidelity. The instrument can stretch samples at a continuous and adjustable rate until breakage while allowing constant electronic registration of load and displacement. It can enable orientation in a vertical and horizontal surface plane in order to guide traction.
     2. We established a reliable experimental protocol to characterize the in vivo biomechanical properties of female pelvic floor supporting structure and ALL. We also optimize the protocol in details to guarantee good test repeatability. For the first time we introduce "stiffness" into the in vivo biomechanics,so as to get comprehensive and accurate biomechanical data.
     3. This is the first report of the in vivo biomechanical properties of pelvic floor important support structure and ALL in fresh cadavers of Chinese women. We provided biomechanical evidence for the efficiency of reconstructive pelvis surgery.
     4. This study measured the in vivo biomechanical properties of ring around cervix firstly at home and suggested to sew ring around cervix to provide sufficient strength in reconstructive pelvic surgery.
     5. As we know, it was the first time that we survey the ultimate load of ATFP in fresh cadavers of Chinese women by simulating the Peking^Union-modified pelvic floor reconstruction surgery. The results showed that the Peking-Union-modified surgery could provide equal strength to the total pelvic floor reconstruction surgery(Prolift).
     6. The fascia on the ischial spine had similar ultimate load value with SSL and greater stiffness than mesh, which is safe, strong and economical to be used as a new site for suspension in vaginal prolapse.
     7. There was a considerable variability for the ultimate load value and stiffness index of SSL, which is recognized as a strong ligament.
     8. The ultimate load and stiffness of ALL both decreased along the sacrum. It was the first time to recommend ALL at the sacral promontory as the best suture point of sacrocolpopexy from these two mechanical parameter.
     9. It was the first time to compare the in vivo biomechanical properties of TVT-0 and TVT-Secur, furthermore making recommendations for optimizing the experimental protocol of mesh.The mechanical resistance of TVT-Secur-H-type was found to be comparable with that of TVT-0. Therefore, TVT-Secur-H-type could acquire similar clinical effect to TVT-0 in theory.
引文
[1]Zhu L, Lang JH, WangH, et al. The prevalence of and potential risk factors for female urinary incontinence in Beijing, China[J]. The Journal of The North American Menopause Society,2008,15 (3):566-9.
    [2]DeLancey JOL. Anatomic aspects of vaginal eversion after hysterectomy [J]. Am J Obstet Gynecol,1992,166(6 Pt 1):1717-24.
    [3]Goh J. T. W. Biomechanical Properties of Prolapsed Vaginal Tissue in Pre-and Postmenopausal Women[J]. Int Urogynecol J,2002,13:76-9.
    [4]FeolaA, Abromowitch S, Jones K, et al. Parity negatively impacts vaginal mechanical properties and collagen structure in rhesus macaques[J]. Am J Obstet Gynecol,2010,203:595. e1-8.
    [5]周围,丁祖泉,童晓文.女性压力性尿失禁尿道下吊带术后尿道壁的力学分析[J].第三军大大学学报,2009,31(19):1843-6.
    [6]RubodC, BoukerrouM, BrieuM, et al. Biomechanical properties of vaginal tissue.Part 1:new experimental protocol[J]. J Urol,2007,178:320-5.
    [7]Zimmern PE, Eberhart RC, Bhatt A. Methodology for biomechanical testing of fresh anterior wall vaginal samples from postmenopausal women undergoing cystocele repair[J]. Neurourol Urodyn,2009,28:325-9.
    [8]Cosson M, Boukerrou M, Lacaze S, et al. A study of pelvic ligament strength [J]. Eur J Obstet Gynecol Reprod Biol,2003,109:80-7.
    [9]Lazarou G, Scotti RJ, Mikhail MS, et al. Pullout Strengths of Sacral and Vaginal Attachment Sites in Cadavers. Journal of PELVIC MEDICINE& SURGERY,2004:10(4):209-12.
    [l]LiuX, ZhaoY, Pawlyk B, et al. Failure of elastic fiber homeostasis leads to pelvic floor disorders[J]. Am J Pathol,2006,168:519-528.
    [2]Mao(?) PA, Shand SH, Zyczynski HM, et al. Remodeling of vaginal connective tissue in patients with prolapse [J]. Obstet Gynecol,2005,106:953-963.
    [3]Cosson M', Boukerrou M, Lacaze S, et al. A study of pelvic ligament strength[J]. Eur J Obstet Gynecol Reprod Biol,2003,109:80-7.
    [4]Lazarou G, Scotti RJ, Mikhail MS, etal. Pullout Strengths of Sacral and Vaginal Attachment Sites in Cadavers[J]. Journal of Pelvic Medicine &Surgery,2004,10(4):209-12.
    [5]Buckwalter JA, Einhorn TA, Simon SR主编.陈启明,梁国德,秦岭,等主译.骨科基础科学:骨关节肌肉系统生物学和生物力学[M].北京:人民卫生出版社,2001:511.
    [6]Boukerrou M, Lambaudie E, Collinet P, et al. Objective analysis of mechanical resistance of tension-free devices[J]. European Journal of Obstetrics& Gynecology and Reproductive Biology,2006,124:240-5.
    [7]张庆霞.盆底障碍性疾病的临床解剖学及生物力学研究[D].北京:中国协和医科大学北京协和医学院,2008:59.
    [8]Klutke JJ, Bullock A, Klutke CG. Comparison of anchors used in anti-incontinence surgery[J]. Urology,1998,52:979-981.
    [9]邝适存,郭霞主译.肌肉骨骼系统基础生物力学[M].北京:人民卫生出版社,2008:74.
    [10]Kennedy JC, Hawkins RJ, Willis RB, et al. Tension studies of human knee ligaments. Yield point, ultimate failure,and disruption of the cruciate and tibial collateral ligaments[J].J Bone Joint Surg,1976, 58:350.
    [11]Rubod C, Boukerrou M, Brieu M, et al. Biomechanical properties of vaginal tissue. Part 1:new experimental protocol[J]. J Urol,2007, 178:320-5.
    [12]Woo SL, Hollis JM, Adams DJ, et al. Tensile properties of the human femur-anterior cruciate ligament-tibia complex:The effects of specimen age and orientation [J]. Am U Sports Med,1991,19:217-225.
    [1]王文艳.女性盆底功能障碍性疾病全盆底重建手术的解剖学、影像学及临床治疗研究[D].北京:中国协和医科大学北京协和医学院,2009:38.
    [2]张庆霞,郎景和,朱兰.坐骨棘筋膜固定术的临床解剖学研究[J].中华妇产科杂志,2009,44(5):350-3.
    [3]Buckwalter JA, Einhorn TA, Simon SR主编.陈启明,梁国德,秦岭,等主译.骨科基础科学:骨关节肌肉系统生物学和生物力学[M].北京:人民卫生出版社,2001:511.
    [4]Petros PE, Ulmsten UI. An integral theory of female urinary incontinence. Experimental and clinical considerations[J].Acta Obstet Gynecol Scand Suppl,1990,153:7-31
    [5]王巍.女性盆底功能障碍性疾病及微创重建手术的临床解剖学研究[D].北京:中国协和医科大学北京协和医学院,2006:38.
    [6]Cosson M, Boukerrou M, Lacaze S, et al. A study of pelvic ligament strength [J]. Eur J Obstet Gynecol Reprod Biol,2003,109:80-7.
    [7]Lazarou G, Scotti RJ, Mikhail MS, et al. Pullout Strengths of Sacral and Vaginal Attachment Sites in Cadavers[J]. Journal of Pelvic Medicine &Surgery,2004,10(4):209-12.
    [8]Klutke JJ, Bullock A, Klutke CG. Comparison of anchors used in anti-incontinence surgery[J]. Urology,1998,52:979-981.
    [9]Buller JL, Thompson JR, Cundiff GW, et al. Uterosacral ligament: Description of anatomic relationships to optimize surgical safety[J]. Obstet Gynecol,2001,97:873-9.
    [10]Choe JM, Kothandapani R, James L. Autologous, cadaveric, and synthetic materials used in sling surgery:comparative biomechanical analysisLJ]. Urology.2001,58(3):482-6.
    [11]邝适存,郭霞主译.肌肉骨骼系统基础生物力学[M].北京:人民卫生出版社,2008:74.
    [12]Kennedy JC, Hawkins RJ, Willis RB, et al. Tension studies of human knee ligaments. Yield point, ultimate failure, and disruption of the cruciate and tibial collateral ligaments[J]. J Bone Joint Surg,1976, 58:350.
    [13]Rubod C, Boukerrou M, Brieu M, et al. Biomechanical properties of vaginal tissue. Part 1:new experimental protocol[J]. J Urol,2007, 178:320-5.
    [14]Bazi TM, Hamade RF, Abdallah Hajj Hussein 1, et al. Polypropylene midurethral tapes do not have similar biologic and biomechanical performance in the rat[J]. Eur Urol,2007,51 (5):1364-73.
    [15]Zimmern PE, Eberhart RC, Bhatt A. Methodology for biomechanical testing of fresh anterior wall vaginal samples from postmenopausal women undergoing cystocele repair[J]. Neurourol Urodyn,2009,28:325-9.
    [16]Vu D, Haylen B. T, Tse K. Surgical anatomy of the uterosacral ligament[J]. Int Urogynecol J,2010,21:1123-8.
    [17]Culligan PJ, Miklos JR, Murphy M. The Tensile Strength of Uterosacral Ligament Sutures:A Comparison of Vaginal and Laparoscopic Techniques [J]. Obstet Gynecol,2003,101 (3):500-3.
    [18]Lemer ML, Chaikin DC, Blaivas JG. Tissue strength analysis of autologous and cadaveric allografts for the pubovaginal sling[J]. Neurourol Urodyn.1999,18(5):497-503.
    [19]Han B, Bischol JC. Review:Engineering challenges in tissue preservation [J]. Cell Preserv Technol,2004,2:91-112.
    [20]Reisenauer C, Kirschniak A, Drews U, et al. Anatomical conditions for pelvic floor reconstruction with polypropylene implant and its application for the treatment of vaginal prolapse[J]. Eur J Obstet Gynecol Reprod Biol.2007,131(2):214-225.
    [21]Seotti RJ, GarelyAD, Greston WM, etal. Paravaginal repair of lateral vaginal wall defects by fixation to the ischial periosteum and obturator membrane [J]. Am J Obstet Gynecol,1998,179:1436-1445.
    [22]徐松,贾蕾,江超,等.骶结节韧带和骶棘韧带的解剖学测量及其意义[J].中国临床解剖学杂志,2011,29(1):39-41.
    [23]Woo SL, Hollis JM, Adams DJ, et al. Tensile properties of the human femur-anterior cruciate ligament-tibia complex:The effects of specimen age and orientation[J]. Am U Sports Med,1991,19:217-225.
    [24]Beera M, Kuhnb A. Surgical techniques for vault prolapse:a review of the literature[J]. Eur J Obstet Gynecol Reprod Biol,2005,119(2): 144-155.
    [25]Dietz HP, Vancaillie P, Svehla M, et al. Mechanical properties of urogynecologic implant materials[J]. Int Urogynecol J,2003,14:239-43.
    [26]Jones KA, FeolaA, Meyn L, et al. Tensi le propert ies of commonly used prolapse meshes[J]. Int Urogynecol J,2009,20:847-53.
    [27]Moalli PA, Talarico LC, Sung VW. Impact of menopause on collagen subtypes in the arcus tendineous fasciae pelvis[J]. Am J Obste Gynecol, 2004,190 (3):620-8.
    [1]柏树令主编.系统解剖学.第五版[M].北京:人民卫生出版社,2001:108.
    [2]Nichols DH. Massive eversion of the vagina[A]. In:Nichols DH, editor. Gynecologic and obstetric surgery[M]. StLouis:Mosby,1993:431-464.
    [3]Marana HR, Andrade JM, Marana RR, et al. Vaginal hysterectomy for correcting genital prolapse[J]. J Reprod Med,1999,44 (6):529-534.
    [4]Arthure HE, Savage D. Uterine prolapse and prolapse of vaginal vault treated by sacral hysteropexy[J]. J Obstet Gynecol Br Emp,1957,64 (3):335-360.
    [5]Nezhat CH, Nlzhat F, Nezhat C. Laparascopic sacralcolpopexy for vaginal vault prolapse[J]. Obstet Gynaecol.1994,84:885.
    [6]Marcickiewicz J, Kjollesdal M, Ellstromengh M, et al. Vaginal sacrospinous colpopexy and laparoscopic sacral colpopexy for vaginal vault prolapse[J]. Acta Obstetricia et Gynecologica.2007,86:733-738.
    [7]Hannah G Krause, Judith TWGoh, Kate Sloane, etal. Laparoscopic sacral suture hysteropexy for uterine prolapse[J]. Int Urogynecol.2006,17: 378-381.
    [8]Rozet F, Mandron E, Arroyo C, et al. Laparoscopic sacral colpopexy approach for gen i to-urinary prolapse:experience with 363 cases [J]. Eur Urol.2005, 47(2):230-6.
    [9]Addison WA, Livengood CH, Sutton GP, et al. Abdominal sacralcolpopexy with Mersilene mesh in the retroperitoneal position in the management of posthysterectomy vaginal vault prolapse and enterocele[J]. Am J Obstet Gynecol,1985,153:140-146.
    [10]Kenton K, Mueller E. Surgical repair of the middle compartment[J]. Clin Obstet Gynecol,2005,48:691-703.
    [11]Cespedes RD. Diagnosis and treatment of vaginal vault prolapse conditions[J]. Urology,2002,60:8-15.
    [12]徐达传主编.骨科临床解剖学图谱(钟世镇临床解剖学图谱全集)[M].第1版.济南:山东科学技术出版社,2005:50-51,270-271.
    [13]韩永坚,刘牧之主编.临床解剖学丛书(腹、盆部分分册)[M].第1版.北京:人民卫生出版社,1992:416,478-479.
    [14]张朝佑主编.人体解剖学[M].第2版.北京:人民卫生出版社,1998:855,912,916,1576-1578.
    [15]Myklebust JB, Pintar F, Yoganandan N, et al. Tensi le strength of spinal ligaments[J]. Spine,1988,13(5):526-31.
    [16]孙树东,陈丽娟,马洪顺,等.人胸椎前后纵忍带拉伸生物力学性质实验研究[J].试验技术与试验机,2003,43:63-4.
    [17]舒先涛.胸腰椎压缩性骨折患者过伸复位过程中前纵韧带动态力学的有限元分析[J].中国组织工程研究与临床康复,2009,13(48):9567-9.
    [18]冯元桢,主编.生物力学[M].北京:科学出版社,1983:138.
    [19]武雷,罗艳芬,王青,等.骶岬周围血管的应用解剖学研究[J].中华普通外科杂志,2005,20(6):356-8.
    [20]Tnbus CB, Belanger T. The vascular anatomy anterior to the L5-S 1 disk space[J]. Spine,2001,26:1205-8.
    [21]张庆霞.盆底障碍性疾病的临床解剖学及生物力学研究[D].北京:中国协和医科大学北京协和医学院,2008:17.
    [22]Cosson M, Boukerrou M, Lacaze S, et al. A study of pelvic ligament strength[J]. Eur J Obstet Gynecol Reprod Biol,2003,109:80-7.
    [23]Choe JM, Kothandapani R, James L. Autologous, cadaveric, and synthetic materials used in sling surgery:comparative biomechanical analysis[J]. Urology.2001,58(3):482-6.
    [24]Lazarou G, Scotti RJ, Mikhail MS, et al. Pullout Strengths of Sacral and Vaginal Attachment Sites in Cadavers[J]. Journal of Pelvic Medicine &Surgery,2004,10(4):209-12.
    [25]Vicor H Frankee, Margarera Nordin主编.戴魁戎,王以进,周健男,等译.骨骼系统的生物力学基础[M].上海:学林出版社,1985:117.
    [26]Myklebust JB, Pintar F, Yoganandan N, et al. Tensile strength of spinal ligaments[J]. Spine.1988,13 (5):526-31.
    [27]Buckwalter JA, Einhorn TA, Simon SR主编.陈启明,梁国德,秦岭,等主译.骨科基础科学:骨关节肌肉系统生物学和生物力学[M].北京:人民卫生出版社,2001:511.
    [28]陈礼全,张晓薇.骶前纵韧带生物力学实验研究[J].中国实用妇科与产科杂志,2011,1:27-30.
    [29]刘正津,陈尔瑜主编.临床解剖学丛书(胸部和脊柱分册)[M].北京:人民卫生出版社,1989:284,317.
    [30]Yildirim A, Basok EK, Gutpinar T, et al. Tissue reactions of 5 sling materials and tissue material detachment strength of 4 synthetic mesh materials in a rabbit model[J]. J Urol,2005,174:2037-40.
    [31]Dietz HP, Vancaillie P, Svehla M, et al. Mechanical properties of urogynecologic implant materials[J]. Int UrogynecoJ J,2003,14:239-43.
    [32]Waiters MD, Karranl MM. Urogynecology&reconstructive pelvic surgery. Third Edition[M]. St.Louis:Mosby,2007.
    [33]Ostrzcnsld A. Treating total vaginal prolapse[J]. J Reprod Med, 2004,49:943-4.
    [1]De Leval J. New surgical technique for the treatment of female stress urinary incontinence:transobturator vaginal tape inside-out [J]. Eur Urol,2003,44:724-730.
    [2]Sola Dalenz V, Ricci Arriola P., Pardo Schanz. J. Stress urinary incontinence correction with third generation sub-mid-urethra sling: TVT-Secur[J]. Actas Urol Esp,2008,32 (5):522-529
    [3]DeLancey JOL. Structural support of the urethra as it relates to stress urinary incontinence:the hammock hypothesis [J]. Am J Obstet Gynecol, 1994,170(6):1713-20; discussion 1720-3.
    [4]Ulmsten U, Henriksson L, Johnson P, et al. An ambulatory surgical procedure under local anesthesia for treatment of female urinary incontinence [J]. Int Urogynecol J Pelvic Floor Dysfunct,1996,7 (2):81-5.
    [5]Ulmsten U, Johnson P, Rezapour M. A three year follow up of tension-free vaginal tape for surgical treatment of female stress urinary incontinence [J]. Br J Obstet Gynaecol,1999,106:345-50.
    [6]Benlelmans BLH, Chapple CR. Are slings now the gold standard treatment for the management of female urinary stress incontinence and if so which technique[J]. Curr Opin Urol,2003,13:301-7.
    [7]DeLome E. Transobturator urethral suspension:a minimally invasive procedure to treat female stress urinary incontinence[J]. Prog Urol, 2001,11:1306-13.
    [8]De Leval J. New surgical technique for the treatment of female stress urinary incontinence:transobturator vaginal tape inside-out[J]. Eur Urol,2003,44:724-30.
    [9]Waltregny D. TVT-0 for the Treatment of Female Stress Urinary Incontinence:Results of a Prospective Study after a 3-Year Minimum Follow-Up[J]. E Urol,2008,53(2):401-10.
    [10]Kane AR, Nager CW. Midurethral slings for stress urinary incontinence[J]. Clin Obstet Gynecol,2008,51(1):124-35.
    [11]Khandwala S, Lucente V, Kalbfleisch R, et al. Preliminary results of peri-operative and 3-month outcomes from a world-wide observational registry of tension-free vaginal tapes in women with stress urinary incontinence[J]. Int Urogynecol J,2008,19 (Suppl 1):S24-5.
    [12]Martan A, Masataj, SvabikK. TVT SECUR System--tension-free support of the urethra in women suffering from stress urinary incontinence--technique and initial experience [J]. Ceska Gunekol,2007, 72(1):42-9.
    [13]Meschia M, Barbacini P, Pifarotti P, et al. Multicenter prospective trial of TVT secur for the treatment of primary stress urinary incontinence[J]. Int Urogynecol J,2008,19 (Suppl 1):.S53.
    [14]Debodinance P, Lagrange E, Amblard J, et al. TVT Secur:more and more minimally invasive. Preliminary prospective study of 110 cases[J]. J Gynecol Obstet Biol Reprod (Paris),2008,37(3):229-36.
    [15]Gagnon LO, Tu LM. Better Short-term Outcomes With the (?)-Method Compared With the Hammock Technique for the Implantation of the TVT-SECUR Under Local Anesthesia[J]. Urology,2010,75 (5):1060-4.
    [16]YildirimA, Basok EK, Gutpinar T, et al. Tissue reactions of 5 sling materials and tissue material detachment strength of 4 synthetic mesh materials in a rabbit model[J]. J Urol,2005,174:2037-40.
    [17]Boukerrou M, Lambaudie E, Collinet P, et al. Objective analysis of mechanical resistance of tension-free devices[J]. European journal of Obstetrics& Gynecology and Reproductive Biology,2006,124:240-5.
    [18]Jones KA, FeolaA, Meyn L, et al. Tensile properties of commonly used prolapse meshes[J]. Int Urogynecol J,2009,20:847-53.
    [19]Rezapour M, Novara G, Meier PA, et al. A 3-month preclinical trial to assess the performance of a new TVT-like mesh (TVTx) in a sheep model [J]. Int Urogynecol J,2007,18:183-7.
    [20]姜宗来,樊瑜波.生物力学——从基础到前沿[M].北京:科学出版社,2010:19.
    [21]Lin AT, Wang SJ, Chen KK, et al. In vivo tension sustained by fascial sling in pubovaginal sling surgery for female stress urinary incontinence[J]. J Urol,2005,174 (4 Ptl):1503-1504.
    [22]Vervest H. TVT-Secur:The Learning Curve [J]. Int Urogynecol J,2008, 19 (Suppl 1):S3-4.
    [13]冯元桢.生物力学.北京:科学出版社[M],1983.97-138.
    [14]姜宗来,樊瑜波.生物力学——从基础到前沿[M].北京:科学出版社,2010.61-62.
    [15]Zhu L, Lang J, Liu C, et al. The epidemiological study of women with urinary incontinence and risk factors for stress urinary incontinence in China[J]. Menopause,2009,16 (4):831-836.
    [16]Goh JTW. Biomechanical properties of prolapsed vaginal tissue in pre and postmenopausal women[J]. Int Urogynecol J,2002,13:76-79.
    [17]Lei L, Song Y, Chen R. Biomechanical properties of prolapsed vaginal tissue in pre-and postmenopausal women[J]. Int Urogynecol J,2007, 18:603-607.
    [18]周围,丁祖泉,童晓文.女性压力性尿失禁尿道下吊带术后尿道壁的力学分析[J].第三军医大学学报,2009,31(19):1843-1846.
    [19]Gilchrist AS, Gupta Amit, Eberhart RC, et al. Do Biomechanical Properties of Anterior Vaginal Wall Prolapse Tissue Predict Outcome of Surgical Repair[J]? J Urol,2010,183:1069-1073.
    [20]Rubod C, Boukerrou M, Brieu M, et al. Biomechanical properties of vaginal tissue. Part 1:new experimental protocol[J]. J Urol,2007, 178:320-325.
    [21]Zimmern PE, Eberhart RC, Bhatt A. Methodology for biomechanical testing of fresh anterior wall vaginal samples from postmenopausal women undergoing cystocele repair[J]. Neurourol Urodyn,2009,28:325-329.
    [22]Liu X, Zhao Y, Pawlyk B, et al. Failure of elastic fiber homeostasis leads to pelvic floor disorders[J]. Am J Pathol,2006,168:519-528.
    [23]Maolli PA, Shand SH, Zyczynski HM, et al. Remodeling of vaginal connective tissue in patients with prolapse[J]. Obstet Gynecol,2005, 106:953-963.
    [24]Klutke JJ, Bullock A, Klutke CG. Comparison of anchors used in anti-incontinence surgery[J]. Urology,1998,52:979-981.
    [25]Lazarou G, Scotti RJ, Mikhail MS, et al. Pullout Strengths of Sacral and Vaginal Attachment Sites in Cadavers[J]. Journal of Pelvic Medicine & Surgery,2004,10(4):209-212.
    [26]Cosson M, Boukerrou M, Lacaze S, et al. A study of pelvic ligament strength[J]. Eur J Obstet Gynecol Reprod Biol,2003,109:80-87.
    [27]Boukerrou M, Rubod C, Dedet B, et al. Tissue resistance of the tension-free procedure:What about healing[J]? Int Urogynecol J,2008, 19:397-400.
    [28]Epstein LB, Graham CA, Heit MH. Systemic and vaginal biomechanical properties of women with normal vaginal support and pelvic organ prolapse[J]. Am.J Obstet Gynecol,2007,197:165. e1-6.
    [29]Epstein LB, Graham CA, Heit MH. Impact of sacral colpopexy on in vivo vaginal biomechanical properties[J]. Am J Obstet Gynecol,2008,199: 664. el-6.
    [30]Turner MJ, Clough RW, Martin HC, et al. Stifiness and deflection analysis of complex structure[J]. Aero Sci,1956,23:805-823.
    [31]Janda S, van der Helm FC, de Blok SB. Measuring morphological parameters of the pelvic floor for finite element modelling purposes[J]. J Biomech,2003,36 (6):749-757.
    [32]Lien KC, Mooney B, Delancey JO, et al. Levator ani muscle stretch induced by simulated vaginal birth[J]. Obstet Gynecol,2004,103 (1): 31-40.
    [33]Parente MP, Jorge RM, Mascarenhas T, et al. The influence of an occipito-posterior malposition on the biomechanical behavior of the pelvic floor[J]. Eur J Obstet Gynecol Reprod Biol,2009,144:S166-169.
    [34]Chen L, Ashton-Miller JA, DeLancey JO. A 3D finite element model of anterior vaginal wall support to evaluate mechanisms underlying cystocele formation[J]. J Biomech,2009,42 (10):1371-1377.
    [35]曾机灿,齐伟力.股骨生物力学的有限元研究[J].医学综述,2008,14(20):3101-3103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700