用户名: 密码: 验证码:
月球车车轮驱动性能及其综合评价的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为月球车直接与月壤接触的部件,车轮不仅起到承载月球车的整体重量,产生牵引力,反馈必要的月面地形信息的作用,而且对月球车的运动能力、转向灵活性、适应月面地形的能力具有极其重要的影响。因此,深入研究轮-地接触力学特性,分析车轮的驱动性能,对于研制出高通过性的车轮,并对月球车整车动力学分析、仿真、路径规划等相关技术的研究具有重要的意义。本文主要进行月球车车轮在类月壤环境中的驱动性能理论、仿真与实验,以及车轮驱动性能综合评价的研究。
     为了给车轮驱动性能的理论研究及仿真分析提供必要的沙土参数,并为月壤参数的测量提供方法参考,建立沙土参数与沙土抗剪切性能及承压性能间的理论表达式。根据理论公式中各参变量对测试系统的要求,搭建沙土参数及车轮驱动性能综合测试系统。利用该系统进行沙土的承压及剪切实验,对实验数据进行回归统计分析,获得实验用沙土参数。
     基于地面力学理论建立车轮构型参数、沙土参数、载荷、滑转率和车轮牵引性能及转向性能间的数学模型,分析车轮构型参数对车轮牵引性能及转向性能的影响。通过实验验证该理论模型的在预测车轮挂钩牵引力、驱动转矩及转向阻力矩的正确性。该理论模型可作为车轮构型参数的优化设计及车轮驱动性能评价体系的基础。
     利用散体力学极限平衡理论分析车轮的齿片与沙土接触时,沙土的变形及受力状况,以此分析齿片同沙土相互作用的力学模型,推导带有齿片车轮的牵引性能模型。通过分析多齿片同沙土同时接触时齿片切削沙土的最佳状态,建立齿片高度与齿片个数间合理组合的关系式。利用不同车轮滑转率下齿片参数对车轮牵引性能及转向性能影响的实验研究,得出直齿片参数、斜齿片参数及互成角度齿片参数对车轮驱动性能的影响关系。同时,分析车轮驱动性能及牵引效率随车轮滑转率的变化关系,为控制车轮驱动时滑转率的选择提供实验数据参考。该项研究为分析齿片参数对车轮驱动性能的影响,建立齿片同沙土接触力学仿真及合理选择齿片的参数提供数据参考与理论依据。
     为了进一步直观有效地反映车轮在不同滑转率和齿片参数下与沙土接触时车轮对沙土的扰动特性,模拟低重力条件下齿片效应对车轮驱动特性的影响,建立基于离散元仿真的车轮运动特性仿真模型。通过仿真得到车轮与沙土颗粒接触时的应力分布关系,以及运动特性关系,并通过实验验证仿真模型的正确性。该仿真模型作为研究车轮驱动特性的一种方法,完善轮-地接触力学特性分析方法。
     最后本论文在分析车轮驱动特性的理论研究、实验与仿真分析的基础上,进行车轮驱动性能评价指标及其综合评价的研究。基于量纲分析法确定车轮-月壤接触系统参数间的无量纲关系,确定车轮驱动性能评价指标,并建立车轮驱动性能综合评价的体系。基于该评价体系,综合评价不同宽径比车轮的驱动性能,为车轮构型的设计提供理论依据。
Wheel of the lunar rover, which contacts directly on the moon, can carry the whole weight of rover, generate traction force and feedback the necessary terrain information on the moon. It also has very important influence on moving ability, steering flexibility and adaptability on terrain. Thus, research on mechanical properties of wheel-terrain contact and actuating properties of wheel deeply has important significance to develop wheel with high performance. And it also is important for dynamic analysis, simulation, path planning, and relative technology of the whole rover. The dissertation mainly research on the actuating properties theory, simulation and experiment of the rover on homologous terrain. Evaluation method on actuating properties of the wheel is also a main part in it.
     To provide necessary sand parameters for the research on actuating properties and simulation analysis of the wheel, theoretical expression between sand parameters and confined characteristics and shear properties of sand is established. According to the specification of each parameter in equation on the test system, integrated test system for actuating properties of wheel and sand parameters is put up. The system is employed for confined and shear test. Then sand parameters are obtained through regression statistics of test data.
     Based on the theory of terrain mechanics, the mathematical model between wheel configuration, sand mechanical parameters, load, slip coefficient, traction performance and steering performance of wheel are built up. And the influence of wheel configuration parameters on the traction performance and steering performance are analyzed. Validity of the theory model is verified by experiments for predicting the drawbar force, steering torque and turning resistance torque. The theoretical model will be basis for optimization design of wheel configuration parameters and the evaluation system on wheel actuating properties.
     Sand distortion and force status has been analyzed utilizing the limit equilibrium theory of granular mechanics when the grouser and sand contact. Based on it, mechanical model of interaction between grousers and sand is analyzed. And then the model for traction performance of wheel with grousers is derivation. Relation of rational combination between grouser height and number is established through analyzing best state of cutting sand while multi-tooth contacting sand simultaneously. Influence on traction performance and steering performance of wheel by grouser parameters has been studied through experiments with various slip coefficients. Then influence on the wheel actuating performance by parameters of straight grouser, oblique grouser and mutual-angle grouser is obtained. Simultaneously, to provide reference experiment data for selection of slip coefficients when control the wheel actuating, variation relationship wheel actuating performance and traction efficiency with slip coefficients is studied. The research can provide the reference data and theory basis for analyzing the influence on actuate performance of grouser parameters, establishing the contact mechanics simulation model between grousers and sand, and rational selection of grouser parameter.
     To reflect perturbation properties of wheel on sand directly when wheel contacting with the sand with various slip coefficients and grouser parameters, simulation model of wheel moving properties based on discrete element is built up through imitating the influence of grousers on wheel actuating performance under low gravity. Stress distribution and moving characteristics are obtained through simulation when the wheel contacts with sand. The validity of simulation model is verified by experiments. As a method for researching on wheel actuating performance, this model perfects the method for analyzing t mechanical properties of wheel-terrain contact.
     Finally, the research on actuating performance evaluation methods and indexes of wheel is proposed in this dissertation based on theoretical research, simulation and experiments of wheel actuating performance. Evaluation indexes of wheel actuating performance and dimensionless relation among parameters of wheel-terrain contact system are determined based on the dimensional analysis method. And the comprehensive evaluation system for actuating performance of wheel is built. Actuating performance of wheels with various width-radius ratios are evaluated comprehensively based on this evaluation system, which provides theory basis for design of wheel configuration.
引文
1栾恩杰.中国的探月工程——中国航天第三个里程碑.中国工程科学. 2006, 8(10):31~36
    2高海波,张鹏,邓宗全等.新型八轮月球车悬架的研制.机械工程学报. 2008, 44(7):85~92
    3刘方湖,马培荪,曹志奎.五轮铰接式月球机器人的运动学建模.机器人. 2001, 23(6):481~485, 492
    4陈百超.月球车悬架研究及动力学仿真.吉林大学硕士学位论文. 2006:4~13
    5宁晓琳,房建成.一种基于天体观测的月球车位置姿态确定方法.北京航空航天大学学报. 2006, 32(7):756~759,787
    6尚建忠,罗自荣,张新访等.双曲柄滑块联动月球车设计及样机研制.中国机械工程. 2007, 18(3):348~351
    7叶培建,张熇,饶炜.积极应对深空探测的技术挑战.中国空间技术研究院.中国宇航学会深空探测技术专业委员会第二届学术会议论文集.北京, 2005:1~8
    8胡明,邓宗全.月球探测车移动系统的关键技术分析.哈尔滨工业大学学报. 2003, (7):32~37
    9栾恩杰,孙家栋.首次月球探测工程中的系统工程理念.国防科技工业. 2008, (1):17~20,35
    10 D. C. Fergusona, D. M. Wilta, A. F. Heppa, et al. The Mars pathfinder wheel abrasion experiment. Materials and Design. 2001, 22(7):555~564
    11 K. Iizuka, Y. Sato, Y. Kuroda, et al. Study on wheel of exploration robot on sandy terrain. In Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, 2006:4272~4277
    12 A.L.Kemurdjian. Planet rover as an object of the engineering design work. In Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leuven, 1998:140~145
    13 W. T. Hunteress, V. I. Moroz, I. L. Shevalev. Lunar and planetary robotic exploration missions in the 20th century. Space Science Reviews. 2003, 107:541~649
    14 L. Ray, A. Price, A. Streeter, et al. The design of a mobile robot for instrument network deployment in Antarctica. In Proceeding of 2005 IEEE International Conference on Robotics and Automation, Barcelona, 2005:2111~2116
    15 D. Apostolopoulos. Analytical configuration of wheeled robotic locomotion. Pittsburgh: Carnegie Mellon University(PhD thesis), 2001:5~8
    16 D. Wettergreen, D. Bapna, M. Mainone, et al. Developing Nomad for robotic exploration of the Atacama Desert. Robotics and Autonomous Systems. 1999, 26:127~148
    17 K. Glette. Motion control for a planetary exploration rover with six steerable wheels. Trondheim: Norwegian University of Science and Technology (Master thesis), 2004:11~21
    18 Y. Kuroda, T. Teshima, Y. Sato, et al. Mobility performance evaluation of planetary rovers in consideration of different gravitational accelaeration. In Proceeding of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, 2005:2991~2996
    19 P. Berkelman, M. Chen, J. Easudes, et al. Design of a day/night lunar rover. Pittsburgh: Carnegie Mellon University (Tech Report), 1995, 38~42
    20 http://www.nasm.edu/collections/imagery/apollo/apollo.htm
    21 Lindemann, R. A. and Voorhees, C. J. Mars exploration rover mobility assembly design, test and performance. In Proceeding of IEEE Conference on Systems, Man and Cybernetics, Hawaii, 2005:1~6.
    22 D. Apostolopoulos, M. D. Wagner, C. Leger, et al. Experimental characterization of a robotic inflatable wheel. In Proceeding of 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Munich, 2005:1~7
    23 P. S. Schenker, L. F. Sword, et al. Lightweight rovers for Mars science exploration and sample return. In Proceeding of SPIE International Conference on Intelligent Robotics and Computer, Pittsburgh, 1997, 3208:24~36
    24 K. Tadakuma, M. Masatsugu, S. Hirose. Mechanical design of horizontal polyarticular expandable 3-wheeled planetary rover; "Tri-Star3". In Proceeding of 2005 IEEE International Conference on Mechatronics and Automation, Niagara Falls, 2005, 1:236~241
    25 Ch. Grand, Ph. Bidaud, N. Jarrasse. Innovative concept of unfoldable wheel with an active contact adaptation mechanism. In Proceeding of 12th IFToMM World Congress, Besancon, 2007:1~6
    26 J. Yan, S. K. Agrawal. Rimless wheel with radially expanding spokes: dynamics, impact and stable gait. In Proceeding of the 2004 IEEE International Conference on Robotics&Automation, New Orleans, 2004:3240~3244
    27 M. Mikail, M. Michel, K. Victor. Innovative Mars exploration rover using inflatable or unfolding wheels. In Proceeding of the 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation, Noordwijk,2006:1~8
    28 J. A. Jones. Inflatable robotics for planetary applications. In Proceeding of 6th International Symposium on Artificial Intelligence, Robotics & Automation in Space, Montreal, 2001:1~6
    29陶建国,邓宗全,高海波等.六圆柱-圆锥轮式月球车的设计.哈尔滨工业大学学报. 2006, 38(1):4~7
    30邓宗全,高海波,张朋等.探测车弹性可自动伸缩变直径车轮.专利受理书: 200910071829.
    31孙鹏,高峰,李雯,孙刚.深空探测车可变直径车轮牵引通过性分析.北京航空航天大学学报. 2007, 33(12):1404~1407
    32岳荣刚,王少萍,焦宗夏,康荣杰.一种新型轮爪式车轮设计与性能仿真.北京航空航天大学学报. 2007, 33(12):1408~1411
    33任露泉,佟金,李建桥,陈秉聪.松软地面机械仿生理论与技术.农业机械学报. 2000, 31(1):5~9
    34李杰,庄继德,魏东,万亦强.沙漠仿生轮胎与普通轮胎牵引性能的对比试验.吉林大学学报. 2006, 36(4):510~513
    35陈泽宇.适用于月球车的可伸缩叶片复式步行轮的研究.吉林大学硕士论文. 2007:8~16
    36 M. G. BEKKER.地面-车辆系统导论.《地面-车辆系统导论》翻译组.机械工业出版社, 1978:45~85
    37 C. W. Plackett. A review of force prediction methods for off-road wheels. J. Agric. Engng. Res.. 1985, 31:1~29
    38 N. Patel, G. P. Scott, A. Ellery. Application of Bekker theory for planetary exploration through wheeld, tracked and legged vehicle locomotion. In Space 2004 Conference and Exhibit, AIAA, Washington, 2004:1~9
    39 S. Mihcaud, L. Richter, N. Patel, et al. RCET: rover chassis evaluation tools. In Proceeding of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation, Noordwijk, 2004:1~7
    40 J. Y. Wong, A. R. Reece. Prediction of rigid wheel performance based on the analysis of soil-wheel stresses. Part I: performance of driven rigid wheel. Journal of Terramechanics. 1967, 4(1):81~98
    41 J. Y. Wong, A. R. Reece. Prediction of rigid wheel performance based on the analysis of soil-wheel stresses. Part II: performance of towed rigid wheel. Journal of Terramechanics. 1967, 4(2):7~25.
    42 O. Onafeko, A. R. Reece. Soil stresses and deformations beneath rigid wheel. Journal of Terramechanics. 1967, 4(1):59~80
    43黄祖永.地面车辆原理.李长枯,陈德兴,刘述学译.机械工业出版社, 1985:81~84
    44 J. Y. Wong.“Wheels vs. tracks”– A fundamental evaluation from the traction perspective. Journal of Terramechanics. 2006, 43(1):27~42
    45庄继德.计算汽车地面力学.机械工业出版社. 2002:20~29
    46 M. Grahn. Prediction of sinkage and rolling resistance for off-the-road vehicles considering penetration velocity. Journal of Terramechanics. 1992, 28(4):339~347
    47 T. Muro. Tractive performance of a driven rigid wheel onsoft ground based on the analysis of soil-wheel interaction. Journal of Terramechanics. 1993, 30(5):351~369
    48 S. Wanjii, T. Hiroma, Y. Ota, et al. Prediction of wheel performance by analysis of normal and tangential stress distributions under the wheel-soil interface. Journal of Terramechanics. 1997, 34(3):165~186
    49 I. Shmulevich, A. Osetinsky. Traction performance of a pushed/pulled drive wheel. Journal of Terramechanics. 2003, 40(1):33~50
    50 K. Fukami, M. Ueno, K. Hashiguchi, et al. Mathematical models for soil displacement under a rigid wheel. Journal of Terramechanics. 2006, 43(3):287~301
    51 T. Shikanai, K. Hashiguchi, Y. Nohse, et al. Precise measurement of soil deformation and fluctuation in drawbar pull for steel and rubber-coated rigid wheels. Journal of Terramechanics. 2000, 37(1):21~39
    52 H. Shibly, K. Iagnemma, S. Dubowsky. An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers. Journal of Terramechanics. 2005, 42:1-13
    53 K. Iagnemma, H. Shibly, S. Dubowsky. On-Line Terrain Parameter Estimation for Planetary Rovers. In Proceeding of 2002 IEEE International Conference on Robotics & Automation, Washington, 2002:3142~3147
    54沈杰,余群.湿软土壤压力下陷时间关系的建立.农业机械学报. 1989, 20(4):15~19
    55张克健,张相麟.履刺效应的有限元分析.兵工学报1982, (4):54~60
    56庄继德.汽车地面力学.机械工业出版社. 1980
    57王庆年,王志浩,李杰敏.车轮重复通过对沙土力学特性影响及参数预测.农业工程学报. 1995, 11(4):33~38
    58刘聚德.车辆沙地行驶理论.机械工业出版社, 1996
    59季学武,樊慧文,杨延辰.轮胎-沙土相互作用的预测模型及试验研究.农业机械学报, 2000, 31(3):8~10
    60李杰,庄继德,叶楠.确定松软地面剪切特性模型参数的新方法.农业机械学报. 2000, 31(3):5~7
    61赵旗,徐颖,李杰等.车辆行驶工况下的沙漠沙本构特性模型的建立.吉林大学学报. 2003, 33(1):42~45
    62付晓莉,邵明安.一种改进的土壤压实模型及试验研究.农业工程学报. 2007, 23(4):1~5
    63方传流,庄继德,王庆年.刚性驱动轮在沙土上滑转下陷量的计算方法.吉林工业大学学报. 1990, (1):40~48
    64陈雯,赵长利,刘建房.车轮沙地通过性的模拟计算分析.重庆大学学报, 2006, 29(6):15~20
    65陈秉聪.土壤-车辆系统力学.中国农业机械出版社. 1981
    66任露泉,贾阳,李建桥等.月球车行走性能地面模拟试验方案设想.中国宇航学会深空探测技术专业委员会第二届学术年会,北京, 2005:458~466
    67邹猛.月面探测车辆驱动轮牵引性能研究.吉林大学博士论文. 2008
    68陈斌.履刺式刚性轮在沙土上的牵引特性研究.吉林大学硕士论文. 2007
    69陈泽宇.适用于月球车的可伸缩叶片复式步行轮的研究.吉林大学硕士论文. 2007
    70马文哲.月壤-车轮土壤试验系统精度的研究.吉林大学硕士论文. 2008
    71张悦.基于离散元细观分析的土壤动态行为研究.吉林大学博士论文. 2005
    72孙刚,高峰,孙鹏.可变直径轮月球探测车及其越障能力分析.机械设计. 2008, 25(5):21~23
    73崔莹,高峰.可变直径轮月球探测车运动学建模与分析.北京航空航天大学学报. 2008, 34(3):348~352
    74李雯,高峰,贾阳,孙鹏.深空探测车单轮牵引性能的离散元仿真.北京航空航天大学学报. 2008, 34(5):524~528
    75袁勇,丁同才,胡震宇.月球车车轮驱动能力研究.中国宇航学会深空探测技术专业委员会第三届学术会议论文集,西安, 2006:371~376
    76梁维奎,柏合民,孙伟,毕贞法.月面巡视探测器移动系统的移动性能指标分析与评估方法.测试技术学报. 2007, 21(S): 44~51
    77王佐伟,吴宏鑫.月球探测车转向系统动力学建模与分析.中国空间科学技术. 2004, (3):14~20
    78谷侃峰,王洪光,赵明扬.滑转率对月球车车轮驱动力学特性的影响分析.计算机仿真. 2008, 25(6):25~29
    79王林.月球车车轮与土壤作用的力学特性分析与测试系统设计.哈尔滨工业大学硕士论文. 2006
    80陶建国,全齐全,邓宗全.月球车不等径车轮在土壤上滚动的力学分析与实验.哈尔滨工程大学学报. 2007, 28(10):1144~1149
    81陶建国,胡明,高海波,邓宗全.月球车刚性车轮与土壤相互作用的力学模型与测试.空间科学学报. 2008, (4):340~344
    82程军伟,高连华,王红岩.基于打滑条件下的履带车辆转向分析.机械工程学报. 2006, 42(S):192~195
    83尹继瑶.压路机的转向动力学与转向功率.建筑机械. 2004, (4):59~62
    84 H. Raheman, R. Singh. Steering forces on undriven tractor wheel. Journal of Terramechanics. 2004,40(3):161~178
    85 G. Ishigami, A. Miwa, K. Nagatani, et al. Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil. Journal of Field Robotics. 2007, 24(3):233~250
    86 C. Watyotha, D. Gee-clough, V. M. Salokhe. Effect of circumferential angle, lug spacing and slip on lug wheel forces. Journal of Terramechanics. 2001, 38(1):1~14
    87 C. Watyotha, V. M. Salokhe. Pull, lift and side force characteristics of cage wheels with opposing circumferential lugs. Soil Till. Res.. 2001, 60(3):123~134
    88 X. L. Wang, M. Yamazaki, T. Tanaka. Characteristics of soil reactions of an open lugged wheel under paddy soil conditions. Journal of Terramechanics. 1995, 32(3):115~125
    89 H. Wawan, O. Akira, Y. Mnoru. The characteristics of soil reaction forces on a single movable lug. Journal of Terramechanics. 1997, 34(1):23~35
    90 H. Wawan, Y. Mnoru, O. Akira. Experimental analysis of soil reaction on lug of a movable lug wheel. Journal of Terramechanics. 1998, 35(2):119~135
    91 K. A. Abd Ei-Gawwad, D. A. Crolla, A. M. A. Soliman, et al. Off-road tyre modelingⅠ: the multi-spoke tyre model modified to include the effect of straight lugs. Journal of Terramechanics. 1999, 36(1):3~24
    92 K. A. Abd Ei-Gawwad, D. A. Crolla, A. M. A. Soliman, et al. Off-road tyre modelingⅢ: effect of angled lugs on tyre performance. Journal of Terramechanics. 1999, 36(2):63~75
    93孙鹏,高峰,贾阳等.月球车车轮与月壤交互作用的离散元仿真.机械设计与制造. 2008, (10):75~77
    94 Jicheng Liu, Haibo Gao, Zongquan Deng. Effect of Straight GrousersParameters on Motion Performance of Small Rigid Wheel on Loose Sand. Information Technology Journal. 2008, 7(8):1125~1132
    95 R. Bauer, W. Leung, T. Barfoot. Experimental and Simulation Results of Wheel-Soil Interaction for Planetary Rovers. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, Edmonton:586~591
    96 R. Bauer, W. Leung, T. Barfoot. Development of a dynamic simulation tool for the EXOMARS rover. In Proceeding of 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Munich, 2005:1~8
    97 K. Iagnemma, H. Shibly. On-line terrain parameter estimation for planetary rovers. In Proceeding of IEEE International Conference on Robotics and Automation, Washington, 2002:3142~3147
    98 K. Iagnemma, C. Brooks. Visual tactile and vibration based terrain analysis for planetary rovers. In Proceeding of the 2004 IEEE Aerospace Conference, Montana, 2004:841~848
    99 B. Shamah, D. Apostolopoulos, E. Rollins, et al. Field validation of Nomad’s robotic locomotion. In Proceeding of the 1998 SPIE International Conference on Mobile Robots and Intelligent Transportation Systems, Boston, 1998: 214~222
    100 Y. Kawase, H. Makashima, A. Oida. An indoor traction measurement system for agricultural tires. Journal of Terramechanica. 2006, 43(3):317~327
    101 K. Yoshida, G. Ishigami. Steering characteristics of a rigid wheel for exploration on loose soil. In Proceeding of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, 2004:3995~4000
    102 S. Wakabayashi, H. Sato, Shin-Ichiro NISHIDA. Design and mobility evaluation of tracked lunar vehicle. Journal of Terramechanics. Online, 2008:1~10
    103 P. A. Cundall. A computer model for simulating progressive large scale movements in blocky system. In: Proceeding of Symposium of the International Society of Rock Mechanics, Rotterdam: A.A.Balkema, 1971(1):8~12
    104 Yujing Jiang, Bo Li, Yuji Yamashita. Simulation of cracking near a large underground cavern in a discontinuous rock mass using the expanded distinct element method. International Journal of Rock Mechanics and Mining Sciences. 2009, 46(1):97~106
    105 P. W. Cleary, M. Sinnott, R. Morrison. Analysis of stirred mill performance using DEM simulation: Part 2– Coherent flow structures, liner stress and wear, mixing and transport. Minerals Engineering. 2006, 19(15):1551~1572
    106 Rui Zhang, Jianqiao Li. Simulation on mechanical behavior of cohesive soil by Distinct Element Method. Journal of Terramechanics. 2006, 43(3):303~316
    107 M. Momozu, A. Oida, M. Yamazaki, et al. Simulation of a soil loosening process by means of the modified distinct element method. Journal of Terramechanics. 2003, 39(4):207-220.
    108 H. Nakashima, A. Oida. Algorithm and implementation of soil-tire contact analysis code based on dynamic FE-DE method. Journal of Terramechanics. 2004, 41(2-3):127~137
    109 L. R. Khot, V. M. Salokhe, H. P. W. Jayasuriya, et al. Experimental validation of distinct element simulation for dynamic wheel-soil interaction. Journal of Terramechanics. 2007, 44(6):429~437
    110 H. Nakashima, H. Fujii, A. Oida, et al. Parameteric analysis of lugged wheel performance for a lunar microrover by means of DEM. Journal of Terramechanics. 2007, 44(查一下):153~162
    111 N. Patel, A. Ellery, E. Allouis et al. Rover mobility performance evaluation tool(RMPET): a systematic tool for rover chassis evaluation via application of Bekker theory. In Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation, Noordwijk, 2004: 1~8
    112尚建忠,罗自荣,张新访等.基于构型的轮式空间探测机器人创新设计与优化.中国机械工程, 2007, 2(18):414~418
    113 Liu Bing, Cui PingYan, Ju Hehua. Terrain mechanical parameters online estimation for lunar rovers. In Proceedings of SPIE Conference on Space Information Technology. Wuhan, China, November 2007:67956F-1~67956F-1
    114郑永春,欧阳自远,王世杰,邹永廖.月壤的物理和机械性质.矿物山石. 2004, 24(4):14~19
    115 http://xk.cn.yahoo.com/articles/071017/1/4k66.html
    116 P. Lamon, T. Thueer, R. Jordi, et al. Modeling and optimization of wheeled rovers. In Proceedings of 8th ESA Workshop on Advanced Space Technology Robot, New Orleans, 2004. 1~8
    117 T. Keller. A model for the prediction of the contact area and the distribution of vertical stress below agricultural tyres from readily available tyre parameters. Biosystems Engineering. 2005, 92(1):85~96
    118顾慰慈.挡土墙土压力计算.中国建材工业出版社. 2001, 9~10
    119张克恭,刘松玉.土力学.中国建筑工业出版社. 2001, 172~192
    120朱焕春. PFC及其在矿山崩落开采研究中的应用.岩石力学与工程学报. 2006, 25(9):1927~1931
    121 Itasca Consulting Group, Inc. PFC2D (Particle flow code in 2 dimensions) online manual for version 3.10. Minneapolis, USA, 2006
    122 R. L. Raper, C. E. Johonso, A. C. Bailey et al. Prediction of soil stresses beneath a rigid wheel. Journal of Argriculture Engineering Research. 1995, 61:57-62
    123叶义华.系统综合评价技术与应用.治金工业出版社. 2006, 11~28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700