用户名: 密码: 验证码:
铝基复合材料在高速粒子撞击作用下的损伤行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以舱外航天服等微型航天器空间碎片防护为背景,设计并制备了2D-fibers/5A06和TiB2/2024复合材料及其复合结构。利用二级轻气炮、分离式霍普金森压杆(SHPB)、光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)和高分辨电镜(HREM)等多种手段系统地研究了复合材料薄靶在2.5km/s速度下,粒子直径为0.8~2.0mm撞击时的抗高速撞击能力、靶板宏观损伤特征及其微观组织演变规律,并提出了复合结构材料的设计思路。
     在高速撞击作用下,2D-fibers/5A06复合材料薄靶的宏观损伤由粒子侵彻穿深和背面崩落构成。(2D-Tif)/5A06复合材料靶板破坏以侵彻穿深为主,背面产生了带裂纹的鼓包或发生略微崩落;(2D-M40f)/5A06复合材料以背面崩落损伤为主,且随着粒子直径的增加崩落损伤区的直径不断增大。
     (2D-Tif)/5A06复合材料在绝热温升影响作用下弹坑区域组织发生了相变,复合材料界面的TiAl扩散层形成TiAl非晶层及非晶-微晶-多晶-β-Ti的过渡带。高强韧Ti纤维的加入起到了承载和吸能作用,有效减缓了基体合金的变形,抑制了绝热剪切带的形成。(2D-M40f)/5A06复合材料在高速粒子撞击作用下在M40纤维内部形成了大量裂纹,其片层状结构受到损伤。因M40纤维和基体合金二者之间的变形失配和低的层间结合强度,在压缩波和反射拉伸波的作用下,复合材料表现出分层损伤和崩落破坏。两种复合材料的基体合金在高速粒子撞击下被严重挤压变形,形成高密度的位错以及非晶和微晶。在远离弹坑部位,基体合金变形减小,缺陷以微裂纹和微孔洞为主。
     TiB2/2024复合材料薄靶的主要损伤特征为背面崩落。随着增强相含量的增加,TiB2/2024复合材料抗粒子侵彻穿深能力提高,使得靶板正面坑宽和坑深尺寸不断减小;同时也导致了复合材料抗崩落能力的下降,使得背面崩落损伤区直径不断增加。
     在分离式Hopkinson压杆压缩时(应变率:1×103~2×103s-1),TiB2/2024复合材料的流变应力随着应变率的增加呈现先增大后减小的趋势。在高应变率压缩过程中,复合材料剪切面上形成绝热剪切带,表现为熔融铝相变带,其形成机理与塑性变形局域化有关。铝基复合材料中绝热剪切带的演变规律为:随着增强相含量和应变率敏感性增加,逐渐由形变带向相变带转变。TiB2/2024复合材料表现出混合断裂特征,包括颗粒的断裂和铝合金基体软化/熔化。随着应变率的增加,复合材料逐渐由脆性断裂失稳破坏发展为流变应力软化诱发的动态失稳破坏。
     复合材料的抗撞击能力与纤维的强塑性相关,同时还与增强相的连续性相关。高强韧Ti纤维的加入有助于提高基体合金的抗撞击能力,而高模量M40纤维的加入却降低了基体合金的抗撞击能力。本文提出采用平均吸能性能来评价不同破坏特征的复合材料的抗高速撞击能力,在2.5km/s条件下,几种复合材料的抗高速撞击能力高低顺序为: (2D-Tif)/5A06、TiB2/2024、5A06、(2D-M40f)/5A06。本文提出了复合结构的设计思路,即高低阻抗材料层叠排布且低阻抗材料置于靶板后部的结构,并进行了初步的实验验证。结果表明几种复合结构的抗高速撞击能力优于相应的复合材料,其防护性能高低顺序依次为(TiB2/2024+Al)结构、((2D-M40f)/5A06+Al)结构、((2D-M40f+2D-Tif)/5A06)结构。
Based on the backgroud of the debris protection materials used for mini-aircraft as space suit, two types of composites as 2D-fibers/5A06 and TiB2/2024 were designed and fabricated by pressure infiltration method. Among these, continuous fibers as Ti fibers and M40 graphite fibers are contained in 2D meshes(fabric), respectively. The impact resistance ability, macro-damage characteristic and microstructure evolution principle of the two types of composites were researched by two-stage light gas gun (at a velocity of 2.5km/s), split Hopkinson pressure bar (SHPB), optical microscope (OM), scanning electron microscope(SEM), transmission electron microscope (TEM) and high-resolution electron microscopy (HREM). Finally, the design idea as novel composite structure was proposed.
     Results showed that the failure characteristics of 2D-fibers/5A06 composite targets were comprised of the penetration and the spalling on the back surfaces. With the projectile diameter increasing, bulge with cross-cracks or spalling were found on the (2D-Tif)/5A06 composite target. The (2D-M40f)/5A06 composite targets were damaged by delaminating predominantly.
     Due to the local high temperature generated by high speed projectiles, phase transition happened in the bottom of the crater of (2D-Tif)/5A06 composite target. The TiAl diffusion layer on the interfaces of the composites changed as the TiAl amorphous layer. Moreover, a transition band containing amorphous, micro-crystal, crystal andβ-Ti were found. Analysis showed that adiabatic shear band inner the alloy matrix was restrained obviously by the addition of Ti fibers.Under the impact of high speed projectiles, micro-cracks were formed on the M40 graphite fibers inner the (2D-M40f)/5A06 composites targets. Due to the deformation dismatch between M40 fibers and matrix alloy as well as low layer bonding strength, delamination and spalling occurred on the back of the target caused by compressive waves and tensile waves. The aluminum alloy matrix within the 2D-fibers/5A06 composites were squeezed and deformed seriously near the crater. Dislocations and micro-crystal as well as amorphous were also formed in aluminum alloy matrix under impact. The deformation degree of aluminum alloy matrix reduced far away from the crater, and the defects as micro-cracks and holes were dominated in the matrix.
     The TiB2/2024 composites showed good penetration resistance and significant spalling damage. With TiB2 particle content increasing, the penetration depth decreased and the diameter of spalling area on the back surface increased.
     With the content of TiB2 increasing, the flow stress of the composites exhibited rise/fall tendency, which was similar to the values calculated by Johnson-Cook model. And the specimens failed from 45oshearing to split as the TiB2 content over 60%.Adiabatic shear bands as melted aluminum bands were found on TiB2/2024 composite, which was ascribed to the plastic deformation localization. Dislocations as well as the micro-cracks were formed inner TiB2 particls under high speed impact. Aluminum alloy matrix was softened and melted caused by local adiabatic thermal temperature. The TiB2/2024 composites acted as a hybrid fracture mode including the particle cracking and the softening of alloy matrix. With the strain rate increasing, the dynamic failure mechanism was changed from brittle fracture to thermal softening instability.
     The impact resistance ability of composites was related to the strength/ ductility of fiber reinforcement, also with the continuity of the reinforcement. The addition of Ti fibers with high strength/toughness can improve the impact resistance ability of the alloy matrix, while the addition of M40 fibers with high modulus can not get a goog value. In present work, the mean energy absorption ability was adopted to evaluating the protection capacity for different composites targets. The order of protection capacity against high speed impact for these composites was (2D-Tif)/5A06, TiB2/2024, 5A06 and (2D-M40f)/5A06. Based on the analysis of several composites, we proposed a new design idea about composite structure containing high and low impact resistance materials. Results showed that the propection capacity of the composite structures was better than those of the composites. The propection capacity order for composites structures was (TiB2/2024+Al), ((2D-M40f)/5A06+Al) and ((2D-M40f+2D-Tif)/5A06).
引文
1钱伟长.穿甲力学.国防工业出版社, 1984:78~131
    2杨秀敏.空间站面临空间垃圾撞击的危险.国外空间动态, 1991, (1): 25~28
    3丁强.空间碎片及其对策.国外空间动态, 1993, (4): 23~29
    4席如青,曲广吉.空间碎片的形状、危害及防护.强度与环境, 1993, (3): 10~16
    5夏德顺,谢佐蔚,李建奉.抗高速碰撞复合材料的结构研究与分析.导弹与航天运载技术. 1998, (1): 35~42
    6 Y. I. Oka, K. Nagahashi, Y. Ishii, Y. Kokayashi, T. Tsumura. Int. J. Impact Engineering. 2005, 258: 100~110
    7 National Aeronautics and Space Administration. Go for EVA-video resource guide. NASA Education Division, 1997,6(7):3~9
    8 S. M. Zhuang, G. Ravichandran, D. E. Grady. An experimental investigation of shock wave propagation in periodically layered composites. Journal of the Mechanics And Physics of Solids. 2003, 51:245~265
    9 T. Behner, D. L. Orphal, V. Hohler, C. E. Anderson, R.L. Masonc, D. W. Templeton. Hypervelocity penetration of gold rods into SiC-N for impact velocities from 2.0 to 6.2 km/s. International Journal Of Impact Engineering. 2006, 33:68~79
    10 S. Sanchez-Saez, E. Barbero, R. Zaera, C. Navarro. Compression after impact of thin composite laminates. Composites Science and Technology. 2005, 65:1911~1919
    11 E. L. Christiansen, J. H. Kerr. Mesh Double-Bumper Shield. Int. J. Impact Engineering, 1993, 14:169~180
    12 G. D. Olsen, A. M. Nolen. Advanced Shield Design for Space Station Freedom. Int. J. Impact Engineering, 1993, 14:541~550
    13徐德馨.微流星环境及其模拟实验.环模技术, 1986, (4): 6~11
    14罗格.叩开太空之门.北京:宇航出版社, 2000:264-285
    15江燕.减少太空垃圾,保护太空环境.航空知识, 1997, (7):20~21
    16膝育英编译.美国航天服的研制与发展.载人航天信息, 1996, (11):25~34
    17吴国兴.奇妙的微重力.太空探索. 2001, (10):18~20
    18都亨.刘静.载人航天和空间碎片.中国航天,2002, (2):18~23
    19潘厚任.太空遭遇垃圾.国际科技动态. 2002, (9):36~39
    20 K. Shiraki, F. Terada. Space Station JEM Design Implementation and Testing for Orbital Debris Protection. Int. J. Impact Engineering, 1997, 20: 723~732
    21 E. L. Christiansen. Enhanced Meteoroid and Orbital Debris Shield. Int.J. Impact Engineering, 1995, 17:217~228
    22 T. D. Maclay. Topographically Modified Bumper Concepts for Spacecraft Shielding. Int. J. Impact Engineering, 1993, 14:479~489
    23 K. Dahl, B. Cour-Palais. Standardization of Impact Damage Classification and Measurements for Metallic Targets. MDSSC-SSD, Houston, Texas, 1992
    24 N. C. Elfer. Structural Damage Prediction and Analysis for Hypervelocity Impact-Handbook. NASA Contractor Report 4706, 1996
    25 E. L. Christiansen, J. L. Crew, J. H. Kerr. Hypervelocity Impact Testing above 10km/s of Advanced Orbital Debris Shields. Shock Compression of Condensed Matter-1995, AIP Conference Proceedings 1995:1183~1186
    26 ESA Contract 9354. Damage Assessment Standardization Multi Bumpers with Kevlar Multi Bumpers all Aluminum Multi Bumpers with Glare NASA Multi Bumpers. FhC-EMI-7800 FR, 1993
    27张伟,庞宝君,张泽华.航天器微流星体及空间碎片防护结构性能分析.哈尔滨工业大学学报. 2002, 34(5): 603~606
    28 A. J. Sunwoo, R. Becker, D. M. Goto, T. J. Orzechowski, H. K. Springer, C. K. Syn, J. Zhou. Adiabatic Shear Band Formation in Explosively Driven Fe–Ni–Co Alloy Cylinders. Scripta Materialia. 2006, 55:247~250
    29 Z. Rosenberg, Y. Partom. Lateral Stress Measurement in Shock-loaded Target With Transverse Piezoresistance Aages. Journal of Applied Physics, 1985, 58:3072
    30 B. McGill, A. R.Mount. Effectiveness of Metal Matrix and Ceramic Matrix Composites as Orbital Debris Shield Materials. 1992, AIAA92: 1461
    31 V. V. Silvestrov, A. V. Plastinin, V. V. Pai, I. V. Yakovlen, An Investigation of Ceramic/Aluminum Composites as Shileds for Hypervelocity Impacts. Int. J. Impact Engng. 1998, 23: 859~867
    32 J. H. Robinson, M.A.Nolen. An inverstigation of metal matrix composites as shields for hypervelocity orbital debris impacts. Int. J. Impact Engng. 1995, 17:685~690
    33 J. S. Zhou, L. Zhen, D. Z.Yang, H. T. Li, Macro- and Mircrodamage Behaviors of the 30CrMnSiA Steel Impacted by Hypervelocity Projectiles. Mater. Sci. Eng. A 2000, 282: 177~182.
    34 Y. Li, Y. M. Gupta. Determination of Llateral Stresses in Shock Solids: Simplified Analysis of Piezoresistance Gauge Data, Journal of Applied Physics,1998, 83:747~751
    35 J. Li. A model for stress-wave propagation, Journal of Computer-Aided Materials Design, 1971, 5: 140
    36 Z. Rosenberg, N. S. Brar, S. J. Bless. Dynamic High-pressure Properties of AIN Ceramic as Determined by Flyer Plate Impact. Journal of Applied Physics, 1991, 70:167~177
    37 G. L. Kanel, M. F. Ivanov, A. N. Parshikov. Computer Simulation of the Heterogeneous Materials Response to the Impact Loading. Int. J. Impact Engng. 1995, 17: 455~460
    38 J. Mescall, V. Weiss. Material Behavior under High Stress and Ultrahigh Loading Rates. New York, 1983
    39金志明,袁亚雄.内弹道气动力原理.国防工业出版社, 1983: 326~331
    40 B. G. Cour-Palais, J. L. Crew. A Multi-Shock Concept for Spacecraft Shielding. Int. J. Impact Engineering, 1990, 10: 134~140
    41 S. Sanchez-Saez, E. Barbero, Compressive Residual Strength at Low Temperatures of Composite Laminates Subjected to low-velocity Impacts. Composite Structures. 2007,33: 1-5
    42 F. Zhou, T.W. Wright, K.T. Ramesh. A Numerical Methodology for Investigating the Formation of Adiabatic Shear Bands. Journal of The Mechanics And Physics of Solids. 2006, 54: 904~926
    43 G. Caprino, V. Lopresto, P. Iaccarino. A Simple Mechanistic Model to Predict the Macroscopic Response of Fibreglass–aluminium Laminates under Low-velocity Impact. Composites. 2007, 38: 290~300
    44 V. E. Fortov, S. A. Medin, Railgun Experiment and Computer Simulation of Hypervelocity Impact of Lexan Projectile on Aluminum Target. Int. J. Impact Engineering. 2006, 33: 253~262
    45 G. Caprino, V. Lopresto, D. Santoro. Ballistic Impact Behaviour of Stitched Graphite/epoxy Laminates. Compistes Science and Technology. 2007, 67: 325~335
    46 V. Lopresto, V. Melito, C. Leone, G. Caprino. Effect of Stitches on the Impact Behaviour of Graphite/epoxy Composites. Composites Science and Technology. 2006, 66:206~214
    47 G. Caprino, V. Lopresto, C. Scarponi, G. Briotti. Influence of Material Thickness on the Response of Carbon-fabric/epoxy Panels to Low Velocity Impact. Composites Science and Technology. 1999, 59:2279~2286
    48 G. Caprino, G. Spataro, S. Del Luongo. Low-velocity Impact Behaviour of Fibre Glass–aluminium Laminates. Composites. 2004, 35:605~616
    49 F. Iannace, S. Iannace, G. Caprino, L. Nicolais. Prediction of Impact Properties of Polyolefin Foams. Polymer Testing. 2001, 20:643~647
    50 V. Guttmann, F. Hukelmann, D. Griffin, A. Daadbin, S. Datta, Studies of the Influence of Surface Pre-treatment on the Integrity of Alumina Scales on MA 956. Surface&Coatings Technology. 2003, 166:72~83
    51刘龙飞,戴兰宏,凌中,杨国伟.冲击剪切载荷下SiCP/6151Al复合材料变形局部化及增强颗粒尺寸效应.复合材料学报. 2002, 19(4):51~55
    52蔺绍江,李金山,胡锐.无压浸渗高含量SiCp/Al复合材料的组织及压缩力学性能.铸造. 2007, 56(3): 275~278
    53曹法和,田时雨等. Al/Al2O3p金属基复合材料的静动态压缩性能及损伤分析.兵器材料科学与工程. 2003, 26(5):23~27
    54 L. H. Dai, Z. Ling, Y. L. Bai. A Strain Gradient StrengtheningLaw for Metal Matrix Composites. Script Material, 1999, 41(3): 245~251
    55胡锐,袁秦鲁,李金山. SiCP/Al复合材料高应变率压缩变及损伤机理.稀有金属材料与工程. 2005, 34(4):653~656
    56于敬宇,李玉龙,周宏霞.颗粒尺寸对颗粒增强型金属基复合材料动态特性的影响.复合材料学报. 2005, 22(5):31~38
    57凌中. 2124 Al/SiCp复合材料的动态变形行为及微结构效应.力学学报. 1998, 30(4) :442~447
    58钱立和,王中光,小林俊郎. SiC颗粒增强6061Al基复合材料的动态拉伸性能.材料研究学报. 2002, 16(3) :285~288
    59 D. Griffin, A. Daadbin, S. Datta. The Development of a Three-dimensional Finite Element Model for Solid Particle Erosion on an Alumina Scale/MA956 Substrate. Wear. 2004, 256: 900~906
    60 Y. Sato, M. Komori, W. Kikuchi. Application of the Unsteady Wave Sensing System to the Plate Impact Experiment. Journal Materials Processing Technology. 1999, 85:43~47
    61 Z. He, J. Ma, H.Wang, G. E. B. Tan, D.Shu, J. Zheng. Dynamic Fracture Behavior of Layered Alumina Ceramics Characterized by a Split Hopkinson Bar. Materrial Letter. 2005, 59:901~904
    62宫能平,周元鑫,夏源明.应变率对SiC颗粒增强铝基复合材料拉伸性能的影响.力学季刊, 2000, 21 (4): 415~420.
    63王莺,周元鑫,夏源明. SiC颗粒增强铝基复合材料冲击拉伸力学性能的试验研究.材料科学与工艺. 1998, 6(3):1~6
    64马宗义,吕毓雄,毕敬. Al2O3和TiB2粒子增强铝基复合材料的动态压缩性能和高温蠕变性能.金属学报,1999, 35(1): 93~97
    65 J. E. Field, S. M. Walley, W. G. Proud, H. T. Goldrein, C. R. Siviour. Review of experimental techniques for high rate deformation and shock studies. International Journal of Impact Engineering. 2004, 30:725~775
    66 J. C. F. Millett, N. K. Bourne, M. R. Edwards. The effect of heat treatment on the shock induced mechanical properties of the aluminium alloy, 7017. SCripata Materialia. 2004, 51:967~971
    67 X. Chen, N. Chandra. The effect of heterogeneity on plane wave propagation through layered composites. Composites Science And Technology. 2004, 64:1477~1493
    68 S. Ryan, F. Schaefer, R. Destefanis, M. Lambert. A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures. Advances in Space Research. 2007, 152:1967~1971
    69张江涛,刘立胜,周安.颗粒增强复合材料的动态压缩力学性能研究.华中科技大学学报(城市科学版).2006, 23(s2):11~13.
    70 C.S.Marchi. F.H. Cao, M. Kouzeli, A. Mortensen. Quasistatic and Dynamic Compression of Aluminum-oxide Particle Reinforceed Pure Aluminum. Mater. Sci. Eng. A. 2002,337: 202~211
    71 Y. Li, K.T. Ramesh, E.S.C.Chin. Comparison of the Plastic Deformation and Failure of A359/SiC and 6061-T6/Al2O3 Metal Matrix Composites under Dynamic Tension. Materials Science and Engineering A.2004,371(1-2):359~370
    72 Y. Li, K.T. Ramesh, E.S.C. Chin. The Mechanical Response of an A359/SiCp MMC and the A359 Aluminum Matrix to Dynamic Shearing Deformations. Materials Science and Engineering A. 2004, 382:162~170
    73 H.C.Rogers, Adiabatic Shearing-General Nature and Material Aspects in Material Behavior under High Stress and Ultrahigh Loading Rates (Edited by J.Mascull and U.Weiss), 1983,101~118
    74 S.P.Timothy, The Structure of Adiabatic Shear Band in Materials: a Critical Review, Acta Metall., 1987,35: 301~306
    75 J.D.Cambell and A.R.Dowling, The Behavior of Materials Subjected to Dynamic Incremental Shear Loading, J.Mech.Phys.Solid, 1970,18: 43~63
    76 Y.L.Bai, B.Dodd, Adibatic Shear Localization, Pergamon Press, New York, 1992.50
    77 Z. Ling, L. Luo, B. Dood, Experimental Study on the Formation of Shear Band and Effect of Microstructure in 2124Al/SiCp Composite under Dynamic Compression, J.de Phy. 1994, C3, 453~458
    78王礼立.应力波基础.国防工业出版社, 1985:18~23
    79 X. Teng, T. Wierzbicki, H. Couque. On the Transition from Adiabatic Shear Banding to Fracture. Mechanics of Materials. 2007, 39:107~125
    80 S. R. Beissel, C. A. Gerlach, G. R. Johnson. Hypervelocity Impact Computations with Finite Elements and Mesh Free Particles. International Journal of Impact Engineering. 2006, 33:80~90
    81 M. M. Grady, A. Sexton, I. P. Wright. Morphology and chemical analysis of residues from impacts into MLI-blankets on EURECA.Lunar and Planetary Science. 1995, 4:485~486
    82 J. C. F. Millett, N. K. Bourne, Y. J. E. Meziere, R. Vignjevic, A. Lukyanov. The Effect of Orientation on the Shock Response of a Carbon Fibre–epoxy Composite. Composites Science and Technology. 2007, 67:3253~3260
    83 F. Zhou, T. W. Wright, K. T. Ramesh. The Formation of Multiple Adiabatic Shear Bands. Jounal of The Mechanics And Physics of Solids. 2006, 54:1376~1400
    84阎晓军,张玉珠.超高速碰撞下Whipple防护结构的数值模拟.宇航学报, 2002, 23(5): 81~84
    85谭柱华.高体积分数金属基复合材料SiCp/2024动态力学性能研究.哈尔滨工业大学博士论文. 2007: 55~56
    86 S.Adanur, S.W.Sears. Handbook of Industrial Textiles. Lancaster: Tochnomie Publishing Co, 1995:359~377
    87 National Aeronautics and Space Administration. Suited for Spacewalking an Activitu Guide for Technology Education. Mathematics and Science,1998, 3: 2
    88 Albany International Research Co. Winged fabrics. Industrial Fabric Product Review, 2002 , 87 (10) :106~108
    89 G. Bao, Z. Lin. High Strain Rate Deformation in Particle Reinforced Metal Matrix Composites. Acta Metallurgical Materialia. 1996,44(3):1011~1019
    90 G D. Shook, Reinforced Plastics for Commercial Composites. United States: Asm Intl Publication, 1986: 258~279
    91 J. Smith. Fabrics for protective garment or cover. USP, 5082721, 1992-01-21
    92 R. L. Barker, G. C. Coletta. Performance of Protective Clothing. Philadelphia: American Society for Testing and Materials (ASTM) Special Technical Publication, 1986: 580~590
    93 F. J. Humphreys. Mechanical and Physical Behaviour of Metallic and Ceramic Composites, edited by S. I. Anderson, Ris National Laboratory, Denmark, 1988:25~32
    94 R. Pandorf, C. Broeckmann. Numerical Simulation of Matrix Damage inAluminium Based Metal Matrix Composites. Computational Materials Science. 1998,13:103~107
    95 J. W. Leggoe, A.A.Mammoli, M.B.Bush. X.Z.Hu. Finite Element Modelling of Deformation in Particulate Reinforced Metal Matrix Composites with Random Local Microstructure Variation. Acta Materialia. 1998,46(17):6075-6088
    96 D. R. Lesuer. Experimental Investigations of Material Models for Ti-6Al-4V Titanium and 2024-T3 Aluminum. International Journal of Impact Engineering. 2000, 24(10): 521~530
    97苏晓风,陈浩然,王利民.金属基复合材料细观损伤机制与宏观性质关系的研究.复合材料学报, 1999, 16(2):88~93.
    98张婷,毕延,赵敏光.静高压加载下LY12铝的超声测量与等温状态方程.高压物理学报. 2005,19(1):35~41
    99 S. Seo, O. Min, H. Yang. Constitutive Equation for Ti–6Al–4V at High Temperatures Measured Using the SHPB Technique. International Journal of Impact Engineering. 2005, 31(6):735~754
    100 H. Kolsky. An Investigation of the Mechanical Properties of Materials Very High Rates of Loading. Proc Phys Soc(London). 1994,21(3):676~700
    101 Lindholm. Techniques in Metals Research. Bunshan R.T. New York Inter science.1971,1(5):52
    102 J. D. Campbell, J. D. Ferguson. High Strain Rate Effects on the Strain of Alloy Steels. Journal of Materials Processing Technology. 1970, 12(11): 210~212
    103 H. Meng, Q. M. Li. Correlation between the Accuracy of A SHPB Test and the Stress Uniformity Based on Numerical Experiments. International Journal of Impact Engineering. 2003, 20(22):537~543
    104赵亚溥.裂纹动态起始问题的研究进展.力学进展. 1996, 26(3):362~376
    105 Q. Li, Y. B. Xue, M. N. Bassim. Dynamic Mechanical Behavior of Pure Titanium. Journal of Materials Processing Technology. 2004, 26 (15) :1889 ~1892
    106 P. S. Follansbee. The Hopkinson Bar ASM Handbook. Materials Park ASM International. 1985, 8(9):199~200
    107 R. G. Johnson, H.W. Cook. A Constitutive Model and Data for Metals Subjected to Large Strain, High Strain Rates and High Temperatures. International Journal of Impact Engineering. 2003, 20(23):602 ~605
    108 R. Liang. Elastic-plastic Constitutive Modeling of Tantalum and AerMet 100 Steel Due to Quasi-static and Dynamic Loading. University of Maryland.USA. Doctoral Dissertation. 1999: 97~99
    109 A. G. Odeshi, S. Al-ameeri, M. N. Bassim. Effect of High Strain Rate onPlastic Deformation of A Low Alloy Steel Subjected to Ballistic Impact. Journal of Materials Processing Technology. 2005, (12):385~391
    110 J. Lankford. Temperature-strain Rate Dependence of Compressive Strength and Damage Mechanisms in Aluminum Oxide. J. Mat. Sci. 1981,16(5): 67~78
    111 L. D. Oosterkamp, A. Ivankovic, G. Venizelos. High Strain Rate Properties of Selected Aluminium Alloys. Materials Science and Engineering. 2000, 278(5): 225~235
    112 Z. Wei, J. Yu, S. Hu, Y. Li. Influence of Microstructure on Adiabatic Shear Localization of Pre-twisted Tungsten Heavy Alloys. International Journal of Impact Engineering. 2000, 24(6~7):747~758
    113 C. R. Trautmann, S. M.Siviour, Walley, J. E. Field. Lubrication of Polycarbonate at Cryogenic Temperatures in the Split Hopkinson Pressure Bar. International Journal of Impact Engineering. 2005, 31(5):523~544
    114 H. Yang, O. Min, K. Park. Temperature Dependence of Dynamic Behavior of Titanium by the High Strain-rate Compression Test. Proceeding of the Fourth International Symposium on Impact Engineering. Japan. Kumamoto. 2001,572(1): 656~657
    115 H. Zhao. Material Behaviour Characterisation Using SHPB Techniques, Tests and Simulations. Computers and Structures. 2003, 88 (1):1301~1310
    116宋文绪,杨帆.传感器与检测技术.高等教育出版社, 2004: 40~47
    117赛尔吉欧.佛朗哥.基于运算放大器和模拟集成电路的电路设计.西安交通大学出版社, 2004: 209
    118尹协振,续伯钦,张寒虹.实验力学.中国科学技术大学力学与机械工程系讲义, 1999: 22~25
    119邢国军,徐小荷.撞击杆中应变波激发的磁流.爆炸与冲击. 1999, 19(1): 90~95
    120徐小荷,邢国军,王标.岩石中应变波激发的电磁效应.地震学报. 1998, 20(1): 96~100
    121 S. Lee, M. S. Kimb. Dynamic Material Property Characterization by Using Split Hopkinson Pressure Bar Technique. Nuclear Engineering and Design. 2003, 22(6):120~121
    122 W. Hubert, J. R. Meyer, David S. Kleponis. Modeling the High Strain Rate Behavior of Titanium Undergoing Ballistic Impact and Penetration, International Journal of Impact Engineering. 2001, 26(1~10): 509~521
    123 H. Zhao, G. Gary. The Testing and Behavior Modeling of Sheet Metals at Strain Rates from 10-4 to 104 s-1. Materials Science and Engineering. 1996, 7:46~50
    124 A. Gilat, C. Cheng, Modeling Torsional Split Hopkinson Bar Tests at Strain Rates above 104/s1. International Journal of Plasticity. 2002,18: 26~30
    125 W. E. Baker, C. H. Yew, Strain-rate Effects in the Propagation of Torsional Plastic Wave. 1966, 33: 917~925
    126 Z. Ling, Deformation Behavior and Microstructure Effect of 2124Al/SiCp Composite, J. Comp. Mater., 2000,34:101~105
    127 M. Zhou, Effects of Microstructure on Resistance to Shear Location for a Class of Metal Matrix Composites, Int. J. Plasticity, 1998,14:733~739
    128 A. J. Bedford, A. J. Wingrove, K. R. L. Thompson, Phenomena of Adiabatic Shear Localization, J. Aust. Inst. Met., 1974, 19: 61~72
    129 T.H. See, M.K. Allbrooks, D.R. Atkinson, C.R. Simon, M.E.Zolensky, Meteoroid and Debris Impact Features Documented on the Long Duration Exposure Facility, NASA-JSC Report c24608,1990: 561
    130 R. L. Donald. Experimental Investigations of Material Models for Ti-6Al-4V Titanium and 2024-T3 Aluminum. Int. J. Impact Engin. 2000, 24(10): 521~528
    131 M. A. Meyers. Dynamic Behavior of Materials, John Wiley& Sons, New York, 1994: 262
    132 M. Tanaka, Y. Moritaka, Single Bumper Shields Based on Vectran Fibers. Adv. Space Res. 2004, 34: 1076~1081
    133胡时胜.霍普金森压杆技术.兵器材料科学与工程. 1991, (11): 40~47
    134王礼立,董新龙,孙紫建.高应变率下计及损伤演化的材料动态本构行为.爆炸与冲击. 2006, 26(3): 193~198
    135 D. J. Lloyd. Particle Reinforced Aluminum and Magnesium Matrix Composites. Int. Mater. Rev. 1994, 39: 1~23
    136 C. C. Perng, J.R. Hwang. The Effects of Strain-rate on the Tensile Properties of an Al2O3/6061 T6 Aluminum Metal Matrix Composite at Low Temperatures. Scripta Mater. 1993, 29:311~316
    137 Y. Li, K.T. Ramesh, Viscoplastic Deformations and Compressive Damage in an A359/SiCp Metal Matrix Composite. Acta Mater. 2000, 48:1563~1573
    138 H. Zhang, K.T.Ramesh, E.S.C. Chin. High Strain Rate Response of Aluminum 6092/B4C Composites. Mater. Sci. Eng. A. 2004, 384: 26~34
    139 D. R. Chichili, K.T. Ramesh. Dynamic Failure Mechanisms in a 6061-T6 Al/Al2O3 Metal-matrix Composite. Int. J. Solids Struct. 1995, 32: 2609~2626
    140李春雷.LY12铝合金的本构方程.哈尔滨工业大学硕士论文.2006: 33~34
    141 G. M. Ronald. Material Properties of Titanium Diboride. J. Res. Natl. Inst.Stand. Technol. 2000, 105: 709~720
    142 M. Zhao, G. Wu, Z. Dou, L. Jiang. TiB2/Al Composite Fabricated by Squeeze Casting Technology. Mater. Sci. Eng. A. 2004, 374: 303~306
    143 T. Christman, A. Needleman, S. Suresh. An Experimental and Numerial Study of Deformation in MMCs. Acta Metall. 1989, 37: 3029~3050
    144 Q. Wei, L.Kecskes, T. Jiao, K.T. Hartwig, K.T. Ramesh, E. Ma. Adiabatic Shear Banding in Ultrafine-grained Fe Processed by Severe Plastic Deformation. Acta Mater. 2004, 52: 1859~1869
    145 M.A. Irfan, V. Prakash. Dynamic Deformation and Fracture Behavior of Novel Damage Tolerant Discontinuously Reinforeced Aluminum Composites. Int. J. Solids. Struct. 2000, 37: 4477-4507
    146 S.I. Hong, G.T. Gray III, J.J. Lewandowski. Dynamic Deformation Behavior of Al-Zn-Mg-Cu Alloy Matix Composites Reinforced with 20vol.% SiC. Acta Mater. 1993, 41: 2337~2351
    147 M. Guden, I.W. Hall. Dynamic Properties of Metal Matrix Composites: a Comparative Study. Mater. Sci. Eng. A. 1998, 242: 141~152
    148 L.H. Dai, Z. Ling, Y.L. Bai. Size-dependent Inelastic Behavior of Particle Reinforced Metal Matrix Composites. Compos. Sci. Technol. 2001, 61: 1057~1063
    149 A. Marchand, J. Duffy, T.A. Christman, S. Suresh. An experimental Study of the Dynamic Mechanical Properties of an Al-SiCw Composite. Engng. Fract. Mech. 1988, 30:295~315
    150 M. Guden, I.W. Hall. High Strain-rate Compression Testing of a Short-fiber Reinforced Aluminum Composite. Mater. Sci. Eng. A. 1997, 232: 1~10
    151 Z. Ling, L. Luo, B. Dodd. Experimental Study on the Formation of Shear Bands and Effect of Microstructure in 2124/Al SiCp Composite Under Dynamic Compression. J de Physique. 1994, C3: 453~456
    152 L.H. Dai, L.F. Liu, Y.L. Bai. Effect of Particle Size on the Formation of Adiabatic Shear Band in Particle Metal Matrix Composites. Mater. Lett. 2004, 58: 1773~1776
    153 Y. Li, K.T. Ramesh. Influence of Particle Volume Fraction, Shape and Aspect Ratio on the Behavior of Particle-reinforced Metal-matrix Composites at High Rates of Strain. Acta Mater. 1998, 46: 5633~5646
    154 X. F.Wang, G.H. Wu, D. L. Sun, C. J. Qin, Y. L. Tian. Micro-yield Property of Sub-micro Al2O3 Particle Reinforced 2024 Aluminum Matrix Composite. Mater. Lett. 2004, 58: 333~336
    155 F. Cao, S.Tian, J. Wang. Damage Anlysis and Compression Properties ofAluminum Oxide Particle Reinforced Pure Aluminum at High Rate of Deformation. Journal of Ningbo University. 2003, 16(4):454~461
    156 D. R. Chichili, K. T. Ramesh. Dynamic Failure Mechanisms in a 6061-T6 Al/Al2O3 Metal Matrix Composite. International Journal of Solids and Structures. 1995, 32(17/18): 2609~2626
    157 L H. Dai, Z. Ling, Y. L. Bai. Size Dependent Inelastic Behavior of Particle Reinforced Metal Matrix Composites. Composite Science and Technology, 2001, 61:1057~1063
    158戴兰宏,凌中,白以龙.颗粒增强金属基复合材料变形强化中的应变梯度效应.高压物理学报, 2001, 15(1): 5~11.
    159杨桂通,宋育兆. L4纯铝高速变形时应变率效应的实验研究.固体力学学报.1986, (2): 130~136.
    160 S. Yadav, D. R. Chichili, K. T. Ramesh. The Mechanical Response of a 6061-T6 Al/Al2O3 Metal Matrix Composite at High Rates of Deformation. Acta Metall Mater. 1995, 43(12): 4453~4464.
    161 Q. Zhang, G. Q. Chen, G. H. Wu, Z.Y. Xiu, B.F. Luan. Properties of a AlNp/Al Composite Fabricated by Squeeze Casting Technology. Mater. Lett. 2003, 57: 1453~1458.
    162李国爱.高速撞击条件下几种金属材料的变形及组织演变行为.哈尔滨工业大学博士论文. 2006: 43~47
    163 M. T. Kiser, F. W. Zok, D. S. Wilkinson. Plastic Flow and Fracture of Particulate Metal Matrix Composite. Acta Mater. 1996, 44(9): 3465~3476.
    164 D. J. Lloyd. Aspects of Particle Fracture in Particulate Reinforced MMCs. Acta Metal Mater. 1991, 39: 59~72
    165 Q. Wei, Y.M. Wang, K. T. Ramesh, E. Ma. Effects of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity of fcc and bcc metals. Materials Science and Engineering A. 2004, 381 (1-2):71~79
    166 A. M. Lennon, K. T. Ramesh, The Influence of Crystal Structure on the Dynamic Behavior of Materials at High Temperatures. International Journal of Plasticity. 2004, 20: 269~290
    167 Q. Wei, L. Kecskes, T. Jiao, K. T. Hartwig, K. T. Ramesh, E. Ma. Adiabatic Shear Banding in Ultrafine-grained Fe Processed by Severe Plastic Deformation. Acta Materialia. 2004, 52(7):1859~1869
    168 H. Zhang, K.T. Ramesh, E. S.C. Chin. High Strain Rate Response of Aluminum 6092/ B4C Composites. Materials Science and Engineering A. 2004, 384(1-2): 26~34
    169管公顺,庞宝君,哈跃,张伟.铝合金Whipple防护结构高速撞击实验研究.爆炸与冲击. 2005. 25(5): 461~466
    170周劲松.在高速粒子撞击作用下几种金属的宏观和微观损伤行为.哈尔滨工业大学博士论文. 1997: 41~43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700