用户名: 密码: 验证码:
青藏铁路列车行驶多年冻土场地路基振动反应与振陷预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
迄今,关于列车行驶冻土场地路基振动反应与稳定性的研究工作在国内外均少有开展,而对于冻土层对路基振动反应的影响与列车长期行驶振陷预测的研究更罕见文献报道。我国冻土分布辽阔,现有一半以上铁路干线位于冻土区。青藏铁路通车不到两个月多年冻土区部分路段便出现路基下沉与开裂现象,从而引起铁路部门的高度重视;并且,专家也严肃指出,列车重复荷载影响青藏铁路冻土工程的问题,已成为过去研究不足而目前则显得越来越突出的一个极其重要的工程问题。鉴于上述,本论文以青藏铁路的运营维护和完善寒区铁路路基抗振设计的技术细节为应用背景,对青藏铁路轨道交通荷载作用下的冻土动力性能、振陷预测、冻土路基振动反应及其主要影响因素做了一些基础性的研究工作。具体研究内容、研究方法与相应成果如下。
     针对轨道交通荷载的振动特点,通过低温动三轴试验,系统研究了青藏铁路北麓河试验段路基冻结粘土的动力非线性本构关系、动力学参数及其主要影响因素,特别是提出了这些动力学参数与冻土的负温、围压、含水量、频率、动剪应变幅值、动应力幅值之间变化关系曲线与相应的经验表达式。
     通过低温动三轴试验,系统研究了青藏铁路北麓河试验段路基冻结粘土在轨道交通荷载作用下的动残余应变增长速率特性及其主要影响因素;通过引入动静应力比的概念,提出了采用幂函数拟合动静应力比、负温、含水率、频率与轴向动残余应变增长速率之间变化关系曲线,并给出相应的拟合公式;研究了青藏铁路北麓河试验段路基冻结粘土在长期轨道交通荷载作用下的动力累积残余变形特性及其主要影响因素,合理提出了两个振陷预测经验模型(动力残余应变累积模型),尤其是结合冻土动残余应变增长速率试验和长期动荷载试验提出的振陷预测模型二,综合考虑了单元的应力状态、荷载作用的振次和冻土的负温、含水率、频率、围压等因素的影响。
     现场监测了青藏多年冻土场地和大庆季节冻土场地铁路列车行驶引起钢轨、轨枕、路堤、场地的振动反应,据此研究了钢轨、轨枕、路堤、场地列车行驶振动反应特性,以及冻土层对路堤振动反应的影响。获得了两点极其有益的认识:⑴青藏铁路、大庆铁路不同季节条件下路堤振动加速度反应沿监测横断面的衰减规律,并给出了相应的拟合函数式;⑵冻结期的冻土层对路堤竖向和纵向振动反应有放大作用,而对横向振动反应有削弱作用,春融期路堤竖向和纵向振动反应较冻结期有所降低,而横向振动反应却被放大。
     基于大系统的统一分析理念,建立了列车-钢轨-轨枕-道床-路基动力系统的列车-轨道垂向耦合动力学模型,编研了相应的动力仿真程序ZL-TNTLM,并根据青藏铁路北麓河试验段列车行驶现场监测结果进行了可靠性验证;据此,研究了北麓河试验段路基冻融状态、列车行驶速度、轨缝宽度对路基列车行驶振动荷载的影响。建立了轨枕-道床-路基-场地动力系统的路基振动反应分析模型(非线性粘弹性模型),编研了相应的动力有限元仿真程序ZL-RNTLM;据此,进行了北麓河试验段多年冻土场地列车行驶路基振动反应分析且做了定量评价,并对比研究了季节变化、车辆类型、行车速度、路堤高度对多年冻土场地路基振动反应的影响。
     基于青藏铁路北麓河试验段的长期沉降监测记录,研究了多年冻土路基分层(路基顶面、路基底面、冻土上限)沉降变形特性及其影响因素。结果表明,路基沉降变形主要来自原天然上限以下多年冻土层的压缩变形,冻土上限的沉降量随路堤增高、富冰冻土增厚而显著增大,约占路基顶面累积沉降的57.4%~ 69.6%;目前,部分路基沉降变形仍处于匀速变化阶段且无明显衰减趋势,未来的沉降变形量也许达到可观量级,应引起高度重视
     基于上述研究成果,首次探讨了青藏铁路列车长期行驶引起多年冻土场地路基冻土上限的振陷预测途径与影响因素,并对北麓河试验段路基未来50年列车行驶引起冻土上限的振陷量进行了预测。
     本论文的研究成果,有利于加深理解含融化夹层多年冻土场地和季节冻土场地路基列车行驶振动反应与振害问题。尤其是所做的大量低温动三轴试验、青藏铁路多年冻土场地路基振动反应与长期沉降变形现场监测、大庆季节冻土场地铁路路基振动反应现场监测的数据、成果,以及分析所获得的一些认识,对于进一步深入研究冻土动力学、轨道交通动力学具有重要意义,并为逐步完善寒区铁路路基抗振设计的技术细节积累宝贵的基础资料。
Until recently little work has done on the vibration response and stability of subgrade induced by passing trains in permafrost regions at home and abroad, and specially much less on the effect of frozen layer on vibration response and long-term vibration subsidence of subgrade from trains. The frozen regions are widespread in China, and over half of the trunk railway lines are distributed in those regions. The phenomena of foundation settlement and cracking occurred in the partial sections in two months after the track release of the Qinghai-Tibet railway, which caused the high regard of railway interests. Afterwards, the specialists indicated that, due to less attention before, the permafrost engineering problem of Qinghai-Tibet railway from the repeated load of trains had been gradually becoming a prime important issue. In view of above-mentioned problems, this paper carried out the fundamental research on the dynamic performance of frozen soil, subsidence prediction, and the vibration response of frozen subgrade and its main influencing factors under traffic load in the Qinghai-Tibet railway. The pursuit is to maintain the normal operation of the Qinghai-Tibet railway and perfect the technical detail of anti-vibration design of railway subgrade in cold regions. The specific contents, methods, and results are as fellows.
     Firstly, the paper systematically investigated, in view of the characteristics of rail transit repetitive loading and the low temperature dynamic triaxial test, the dynamic nonlinear constitutive relationship and dynamic parameters of the frozen clay from the subgrade of the Beiluhe test section along the Qinghai-Tibet railway, and in addition their main influencing factors. Moreover, the paper also revealed the relation curves and corresponding empirical expressions of these dynamic parameters versus frozen temperature, confining pressure, moisture content, frequency, dynamic shearing strain amplitude, and dynamic stress amplitude.
     Secondly, the properties of dynamic residual strain increasing rate of above-mentioned frozen clay and its major influencing factors were explored based on the low temperature dynamic triaxial test. Adopting the power function fitting the dynamic and static stress ratio, temperature, moisture content, frequency versus axial dynamic residual strain increasing rate was put forward, and then the corresponding fitting expressions were given. Simultaneously, the laws of dynamic accumulated residual deformation of frozen soil mentioned above and its major influencing factors were studied, and the two empirical models of vibration subsidence prediction, i.e. dynamic accumulated residual strain of frozen soil, were brought forward according to the low temperature dynamic triaxial test. Especially the model two, put forward by combining dynamic residual strain increasing rate and long-term dynamic loading test, considers comprehensively the effects of element stress condition, vibration number, and temperature, moisture content, frequency, confining pressure etc. of frozen soil.
     Thirdly, based on the field monitoring on vibration response of rail, sleeper, embankment, and site, induced by train traffic, both on the Qinghai-Tibet permafrost site and Daqing seasonally frozen site, the characteristics of the vibration responses of those factors and the effect of the frozen layer on embankment vibration response were investigated. Then the two cognitions were acquired as follows: (1) the embankment attenuation laws and corresponding fitting expressions in different seasons in the Qinghai-Tibet railway and Daqing railway, (2) the amplifying effect of frozen layer, during freezing period, on the vertical and longitudinal vibration responses of embankment, and in the lateral direction to the contrary, relative reduction in the vertical and longitudinal directions, during spring thawing period, and, in contrast, amplifying effect in the lateral direction.
     Fourthly, the vertical dynamic coupling model of the train-track system was built, and at the same time the accompanying simulation procedure ZL-TNTLM was programmed based on the unified analytical concept of large-scale system of train, rail, sleeper, ballast and subgrade. Furthermore, the validation of the model reliability was carried out against the field monitoring data of the Beiluhe test section along the Qinghai-Tibet railway induced by train traffic. Subsequently, the effects of subgrade freeze-thaw condition, running speed and width of rail gap on the vibratory load from trains were investigated. Then the analytical model of subgrade vibration response, namely nonlinear viscoelastic model, was built, and, at the same time, the finite element simulation procedure ZL-RNTLM was compiled by the dynamic coupling concept of the sleeper-ballast-subgrade-field system. Thus, the quantitative assessment of permafrost subgrade vibration response from trains, monitored in the Beiluhe test section, was made. Consequently, the effects of seasonal variations, vehicle type, running speed, as well as embankment height on the permafrost subgrade vibration response were analyzed comparatively.
     Fifthly, the paper explored the settlement deformation characteristics of the different layers of frozen subgrade and their main influencing factors via the long-term subsidence monitoring on the road bed, embankment base, and permafrost table in the Beiluhe test section. The results indicates that the compression deformation of permafrost is prominent, about 57.4~69.6% of the accumulated settlement of road bed, and increasing with the rising of embankment height and ice-rich permafrost layer thickness. Until now, some sections are in the stage of undamped deformation rate, which should be highly emphasized as the deformation may rise to a considerable magnitude in the future.
     Lastly, based on the research findings mentioned above, the paper primarily investigated the train-induced subsidence prediction approach and its influencing factors of permafrost table. Furthermore, the settlement of the subgrade within the future fifty years, induced by train traffic, was forecasted for the Beiluhe test section. The results are favorable for further understanding the vibration response and train-induced diseases of the subgrade both on permafrost site within thawing interlayers and seasonally frozen site. Especially, the date, results, and recognition, obtained by the substantive dynamic triaxial tests of low temperature, the long-term subsidence monitoring of permafrost subgrade in the Qinghai-Tibet railway, along with the field experiments on the vibration response of the subgrade on the permafrost site along the Qinghai-Tibet railway and Daqing seasonally frozen site, have an important significance for further studying both on dynamics of frozen soil and dynamics of track and vehicle, and simultaneously provide valuable basic data for gradually developing the anti-vibratory technicality of subgrade in cold regions.
引文
1马巍,刘端,吴青柏.青藏铁路冻土路基变形监测与分析[J].岩土力学, 2008, 29(3): 571-579.
    2 Guodong Cheng, Zhizhong Sun, Fujun Niu. Application of the roadbed cooling approach in Qinghai–Tibet railway engineering. Cold Regions Science and Technology. 2008, 53: 241–258.
    3 Kondratjev V G. Strengthening railroad bass constructed on icy permafrost soil[C], Proceedings of the Eighth International Conference on Cold RegionEngineering. ASCE, Reston: [s.n.], 1996: 688-699.
    4 Kondratyev V G, Pozin V A. An introduction to monitoring system of engineering- geocryology for railway under construction[M]. Chita: Zabtrans Print Complex, 2000.
    5第三铁路勘测设计院.冻土工程[M].北京:中国铁道出版社, 1994:154.
    6 Cheng Guo-Dong. A roadbed cooling approach for the construction of Qinghai-Tibet Railway[J]. Cold Regions Science and Technology, 2005, 42: 169-176.
    7 Wu Qing-Bai, Liu Yong-Zhi, Zhang Jian-ming, et al. A review of recent frozen soil engineering in permafrost regions along Qinghai-Tibet Highway, China[J]. Permafrost and Periglacial Process, 2002, 13: 199-205.
    8 Cheng Guo-Dong. Permafrost studies in the Qinghai-Tibet plateau for road construction[J]. ASCE Journal of Cold Regions Engineering, 2005, 19(1): 19-29.
    9刘万明.高速铁路主要技术经济问题研究[M].成都:西南交通大学出版社, 2003.
    10华茂崑.中国铁路提速之路[M].北京:中国铁道出版社, 2003.
    11翟婉明,蔡成标,金学松.轨道交通工程领域动力学基础研究.建筑、环境与土木工程学科发展战略研讨会论文摘要汇编.国家自然科学基金委员会. 2004. 12, 463-465.
    12雷晓燕,圣小珍.铁路交通噪声与振动[M].北京:科学出版社, 2004.
    13翟婉明.车辆-轨道耦合动力学(第三版)[M].北京:科学出版社, 2007.
    14周幼吾,郭东信,邱国庆,程国栋,等.中国冻土[M].科学出版社.2000, 157-360.
    15王祥秋,杨林德,高文华.高速铁路路基动土压力测试信号的小波分析[J],地震工程与工程振动. 2004, 24(4): 37-40.
    16曹新文,蔡英.铁路路基动态特性的模型试验研究[J].西南交通大学学报.1996, 31(1): 36-41.
    17李德武.列车振动荷载的数值分析[J].甘肃科学学报. 2002, 21(4): 65-71.
    18李德武,高峰.隧道仰拱对列车振动衰减影响的研究[J].铁道学报. 2003, 24(1): 123-128.
    19刘维宁,夏禾,郭文军.地铁列车振动的环境响应[J].岩石力学与工程学报. 1996, 15(增刊): 586-593.
    20张玉娥,白宝鸿.地铁列车振动对隧道结构激振荷载的模拟[J].振动与冲击. 2003, 26(2): 82-89.
    21刘奉喜,刘建坤,房建宏等.多年冻土区铁路隔振沟隔振效果的数值分析[J].中国铁道科学. 2003, 21(2): 34-41.
    22 T X Wu and D J Thompson. A double timoshenko beam model for vertical vibration analysis of railway track at high frequencies.Journal of Sound and Vibration.1999, 224(2):329-348.
    23 Dr B Morys.Enlargement of out-of-round wheel profiles on high speed trains.Journal of Sound and Vibration.1999, 227(5): 965-978.
    24 Moon-Young Kim, Hee-Taek Yun, Nam-Il Kim. Exact dynamic and static element stiffness matrices of nonsymmetric thin-walled beam-columns. Computers and Structures. 2003, 81:1425-1448.
    25 C J C Jones and J R Block.Prediction of ground vibration from freight trains.Journal of Sound and Vibration.1996, 193(1):205-213.
    26 Ikuo Matsuba and Masanori Namatame.Scaling behavior in urban development process of Tokyo City and hierarchical dynamical structure.Chaos, Solitons and Fractals. 2003, 16:151-165.
    27 T X Wu and D J Thompson.The effects of local preload on the foundation stiffness and vertical vibration of railway track.Journal of Sound and Vibration.1999,219(5):881-904.
    28王丽霞,凌贤长.多年冻土场地铁路路基地震响应加速度反应谱特性研究[J].岩石力学与工程学报. 2004, 23(8): 1330-1335.
    29王丽霞,凌贤长.多年冻土场地路基地震动位移性状研究[J].世界地震工程. 2004, 20(2): 112-116.
    30王丽霞.冻土动力性能与冻土场地路基地震反应研究[D].哈尔滨工业大学:博士学位论文, 2004, 12: 26-56.
    31王继志,等.高寒地区冻土层对结构地震反应的影响[J].地震工程与工程振动, 1997, 17(1): 46-52.
    32杨柏坡.有冻土层场地上多层砖房的震害预测方法[J].地震工程与工程振动, 1999, 19(2): 87-94.
    33 Hans Vaziri, Yingcai Han. Ful-scale Filed Studies of the Dynamic Response of Piles Embedded in Partially Frozen Soil·Canadian Geotechnical Journal, 1991, 28:708-718.
    34原喜忠.大兴安岭北部多年冻土地区路基沉陷研究.冰川冻土. 1999, 21(2): 155-158.
    35俞祁浩,刘永智,童长江.青藏公路路基变形分析.冰川冻土.2002, 24(5):623-627.
    36曹国安,邱旺亮,蒋永利,等.牙林线多年冻土地区路基下沉机理及整治研究[J].路基工程. 1996, (5): 40-42.
    37伊承贵,周长义.东北铁路冻土区路基病害整治的试验研究[J].中国铁路. 2005, 10: 54-56.
    38刘建坤,刘奉喜,房建宏.青海热水煤矿多年冻土区列车引起的地面振动检测与模拟[J].冰川冻土, 2004, 26(4): 177-180.
    39 C.C.维压洛夫著,冻土流变学[M].刘建坤等,译.北京:中国铁道出版社, 2005.
    40 Vyalov, S S, Gmoshinskii, V G, Gorodetskii, S E, et al. The strength and creep of frozen soils and calculations for ice-soil retaining structures[M]. New Hampshire: Cold Regions Research and Engineering Laboratory, 1965:76.
    41 Ladanyi B. An engineering theory of creep of frozen soils[J]. Canadian Geotechnical Journal, 1972, 9(1): 63-88.
    42 Ting J M. Tertiary creep model for frozen sand[J]. ASCE Journal of Geotechnical Engineering, 1983, 109(7): 932-945.
    43 Hans Vaziri, Yingcai Han. Ful-scale filed studies of the dynamic response of piles embedded in partially frozen soil[J]. Canadian Geotechnical Journal, 1991, 28:708-718.
    44 Terzaghi K, Peck R B. Soilmechanics in engineering Practice. John Willey and Sons, New York,1968.
    45 Drucker, D C, Prager W. Quart of App. Math, 1952, 10:157-165.
    46 Vyalov S S, Zaretskii, Yu K, Gorodetskii, S E. Strength and creep analyses in ground freezing problem. Strogizdat, Leningrad. 1981, 200.
    47 Vyalov S S. Rheological fundamentals of soil mechanics. Elsevier Publ. House, Netherlands. 1986, 291-341.
    48 Lade P V, Jessberger H L, Diekan N. Proc 2nd Int. Symp on Grund Freezing. Trondheim, Norway, 1980, 48-64.
    49 Fish A M, Proc 6th Int. Symp on Ground Freezing. 1991, Vol.1, 135-145.
    50拉有玉,张鲁新.青藏铁路建设冻土工程问题的深入研究和实践.冰川冻土. 2005, 27 (1): 46-49.
    51 Zhu Yuanlin, D.L. Carbee. Creep and Strength Behavior of Frozen Silt in Uniaxial Compression. U.S.A. CRREL Report. 1987:87-100.
    52蔡中民,朱元林,张长庆.冻土的粘弹塑性本构方程以及材料参数的确定[J].冰川冻土. 1990, 12(1):31-40.
    53朱元林,张家懿,彭万巍,沈忠言,苗丽娜.冻土的单轴压缩本构关系[J].冰川冻土. 1992, 14(3): 210-217.
    54马巍,吴紫汪,张长庆.冻土的强度与屈服准则.冰川冻土. 1993, 15(1):129-133.
    55沈忠言,彭万巍,刘永智.冻结黄土抗拉强度的试验研究.冰川冻土. 1995, 17(4): 315-321.
    56彭万巍.冻结黄土抗拉强度与应变率和温度的关系.岩土工程学报.1998, 20(3):31-33.
    57刘晓洲.冻土断裂破坏准则与参数测试及其应用研究[D].大连理工大学博士学位论文, 2006.
    58谷宪明,王海波,梁士忠,等.季冻区路基土水分迁移数值模拟分析[J].公路交通科技(应用技术版), 2007, (9):51-54.
    59王铁行,李宁,谢定义.土体水热力耦合问题研究意义、现状及建议[J].岩土力学, 2005, 26(3):488-493.
    60吴亚平,朱元林,郭春香等.寒区桩基础的多场耦合分析模型及其应用[J].中国科学D辑, 2005, 35(4):378-385.
    61赖远明,吴紫汪,朱元林等.寒区隧道温度场和渗流场耦合问题的非线性分析[J].中国科学D辑, 1999, 29(增刊1):21-26.
    62李宁,徐彬,陈飞熊.冻土路基温度场、变形场和应力场的耦合分析[J].中国公路学报, 2006, 19(3):1-7.
    63冉理.青藏铁路多年冻土工程的探索与实践[J].铁道工程学报, 2007, (1):32-41.
    64曹元平.青藏铁路保护多年冻土路基结构的措施研究[J].铁道工程学报, 2008, (8):10-26.
    65马辉,刘建坤,张弥,等.青藏铁路建设中的冻土工程问题及其应对措施[J].土木工程学报, 2006, 39(2):85-106.
    66 Zhang Mingyi, Lai Yuanming, Niu Fujun, He Shusheng. A numerical model of the coupled heat transfer for duct-ventilated embankment under wind action in cold regions and its application[J]. Cold Regions Science and Technology, 2006,45:103–113.
    67 Lai Yuanming, Zhang Shujuan, Zhang Luxin, Xiao Jianzhang. Adjusting temperature distribution under the south and north slopes of embankment in permafrost regions by the ripped-rock revetment[J]. Cold Regions Science and Technology, 2004, 39:67-79.
    68 Qihao Yu, Xicai Pan, Guodong Cheng, He Naiwu. An experimental study on the cooling mechanism of a shading board in permafrost engineering[J]. Cold Regions Science and Technology, 2008, 53:298–304.
    69 Wen Zhi, Sheng Yu, Ma Wei, Qi Jilin. Evaluation of EPS application to embankment of Qinghai–Tibetan railway[J]. Cold Regions Science and Technology, 2005, 41:235–247.
    70于晖,吴青柏,刘永智.青藏铁路多年冻土区工程长期监测系统[J].冰川冻土, 2008, 30(3):475-481.
    71马巍,余邵水,吴青柏,等.青藏高原多年冻土区冷却路基技术现场实效监测研究[J].岩石力学与工程学报, 2006, 25(3):563-571.
    72吴青柏,于晖,蒋观利,等.青藏铁路块石护坡温度场及路基冷却作用机理分析[J].岩土工程学报, 2008, 30(7):1011-1016.
    73张建明,章金钊,刘永智.青藏铁路冻土路基合理路堤高度研究[J].中国铁道科学, 2006, 27(5):28-34.
    74刘建坤,韩小刚,刘争平,等.多年冻土地区路堤路堑过渡方式试验研究[J].冰川冻土, 2008, 30(1):153-156.
    75祁长青,吴青柏,施斌,等.青藏铁路高路堤下多年冻土热状态分析[J].岩石力学与工程学报, 2007, 26(S2):4518-4524.
    76 Niu Fujun, Cheng Guodong, Xia Huimin, Ma Lifeng. Field experiment study on effects of duct-ventilated railway embankment on protecting the underlying permafrost[J]. Cold Regions Science and Technology, 2006, 45: 178–192.
    77 Wei Ma, Cong-hui Shi, Qing-bai Wu, Lu-xin Zhang, Zhi-jian Wu. Monitoring study on technology of the cooling roadbed in permafrost region of Qinghai–Tibet plateau[J]. Cold Regions Science and Technology, 2006, 44: 1–11.
    78 Guoyu Li, Ning Li, Jiamei Kang. Preliminary study on cooling effect mechanisms of Qinghai–Tibet railway embankment with open crushed-stone side slope in permafrost regions[J]. Cold Regions Science and Technology, 2006, 45:193–201.
    79 Jiankun Liu, Yahu Tian. Numerical studies for the thermal regime of a roadbed with insulation on permafrost[J]. Cold Regions Science and Technology, 2002, 35:1-13.
    80左小晗,姜忠宇,黄炜.北麓河地区冻土的力学特性试验[J].试验技术与试验机, 2007, (2):32-34.
    81王丽霞,胡庆立,凌贤长,等.青藏铁路冻土未冻水含量与热参数试验[J].哈尔滨工业大学学报, 2007, 39(10):1660-1663.
    82 Da-yan Wang, Wei Ma, Yong-hong Niu, Xiao-xiao Chang, Zhi Wen. Effects of cyclic freezing and thawing on mechanical properties of Qinghai–Tibet clay[J]. Cold Regions Science and Technology, 2007, 48:34–43.
    83马小杰,张建明,郑波,等.青藏铁路路基下高温-高含冰量冻土旁压试验研究[J].岩土力学, 2008, 29(3): 764-768.
    84黄明奎,张学富,王成.多年冻土区路基填土力学参数实验研究[J].重庆交通大学学报(自然科学版), 2008, 27(3): 413-491.
    85 Yuanming Lai, Qiusheng Wang, Fujun Niu, Kehua Zhang. Three-dimensional nonlinear analysis for temperature characteristic of ventilated embankment in permafrost regions[J]. Cold Regions Science and Technology, 2004, 38:165–184.
    86 Mingyi Zhang, Yuanming Lai, Zhiqiang Liu, Zhihua Gao. Nonlinear analysis for the cooling effect of Qinghai-Tibetan railway embankment with different structures in permafrost regions[J]. Cold Regions Science and Technology, 2005, 42:237–249.
    87孙志忠,马巍,李东庆.青藏铁路北麓河试验段块石路基与普通路基的地温特征[J].岩土工程学报, 2008, 30(2): 303-308.
    88江灏,王大勇,程国栋,等.青藏铁路路基表面温度及融冻指数预测[J].冰川冻土, 2008, 30(5):855-859.
    89赵文杰,王连俊,沈宇鹏.青藏铁路安多段多年冻土斜坡路基地温特征分析与预测[J].铁道标准设计, 2007, (6): 64-66.
    90姜龙,王连俊.青藏铁路多年冻土区沼泽化斜坡路基稳定性研究[J].岩土工程学报, 2008, 30(1): 138-142.
    91 Fujun Niu, Guodong Cheng, Wankui Ni, Dewu Jin. Engineering-related slope failure in permafrost regions of the Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2005, 42:215–225.
    92许健,牛富俊,林战举.高温高含冰量冻土路基流变特性数值分析[J].中国铁道科学, 2008, 29(5): 13-19.
    93马小杰,张建明,常小晓,等.高温-高含冰量冻土蠕变试验研究[J].岩土工程学报, 2007, 29(6): 848-852.
    94张建明,刘端,齐吉琳.青藏铁路冻土路基沉降变形预测[J].中国铁道科学,2007, 28(3): 12-17.
    95 Wei Ma, Cong-hui Shi, Qing-bai Wu, Lu-xin Zhang, Zhi-jian Wu. Monitoring study on technology of the cooling roadbed in permafrost region of Qinghai–Tibet plateau[J]. Cold Regions Science and Technology, 2006, 44:1–11
    96吴志坚,张鲁新,马巍,等.青藏铁路冻土区土体冷生过程对路基变形影响[J].岩土力学, 2007, 28(7): 1309-1322.
    97温智,盛煜,马巍,等.多年冻土区铁路保温路基变形特征研究[J].岩石力学与工程学报, 2007, 26(8): 1670-1677.
    98马小杰,张建明,张明义.青藏铁路路基沉降变形的灰色预测模型研究[J].路基工程, 2006, (5): 1-3.
    99 T Chaichanavong. Dynamic Properties of Ice and Frozen Clay under Cyclic Triaxial Loading Conditions. Dep. of Civil and Sanitary Engineering. Michigan State Univ., East Lansing, 1976, Ph.D. Thesis.
    100 S. Singh, N. C. Donovan. Seismic Response of Frozen - Thawed Soil Systems. Proceedings of Sixth World Conference on Earthquake Engineering. Sarita Prakashan, Meerut, India, 1977, III:2262-2267.
    101 W. D. L. Finn, R. N.Yong. Seismic Response of Frozen Ground. Journal of the Geotechnical Engineering Division. ASCE, 104, Oct. 1978, 1225-1241.
    102 T S Vinson, T Chaichanavong, R L Czajkowski. Behavior of Frozen Clays under Cyclic Axial Loading. Journal of the Geotechnical Engineering Division. ASCE, 104, GT7, 1978, 779-800.
    103 T S Vinson, Li J C. Dynamic Properties of Frozen Sand under Simulated Earthquake Loading Conditions. Proceedings of the Seventh World Conference on Earthquake Engineering. Turkish National Committee on Earthquake Engineering. Istanbul, 1980, (3): 65-72.
    104 Li J C, G Y Baladi, O B Andersland. Cyclic Triaxial Tests on Frozen Sand. Engineering Geology. 1979, 13(4): 233-246.
    105 J M Ting, R T Martin, C C Ladd. Mechanisms of Strength for Frozen Sand. Journal of Geotechnical Engineering. 1983, 109(10): 1286-1302.
    106 Zhu Yuanlin, He Ping, Zhang Jiayi, et al. Triaxial creep model of frozen soil under dynamic loading[J]. Progress in Natural Science, 1997, 7(4): 465-468.
    107何平,朱元林,等.冻土的变形性能与泊松比[J].地下空间. 1999, 19(5): 115-118.
    108何平,朱元林,张家懿,等.饱和冻结粉土的动弹模与动强度[J].冰川冻土, 1993, 15(1): 170-174.
    109沈忠言,张家懿.冻结粉土的动强度特性及其破坏准则[J].冰川动土. 1997, 19(2): 41-148.
    110沈忠言,张家懿.围压对冻结粉土动力特性的影响[J].冰川冻土, 1997, 19(3): 245-251.
    111施烨辉,何平,卞晓琳.青藏铁路高温冻土动力学参数试验研究[J].路基工程, 2006, (5): 93-95.
    112赵淑萍,朱元林,何平等.冻土动力学参数测试研究[J].岩石力学与工程学报, 2003, 22(S2): 2677-2681.
    113赵淑萍,马巍,何平,等.不同振幅的振动荷载作用下冻结粉土的蠕变特征[A].第二届全国岩土与工程学术大会, 2006, 10: 418-424.
    114凌贤长,徐学燕,徐春华等.冻结哈尔滨粉质黏土超声波速测定试验研究.岩土工程学报. 2002, 24(4): 456-459.
    115 Ling xianzhang, Xu xueyan, Qiu mingguo et al. Ultrasonic Experiment Study on Dynamic Elastic Mechanical Indexes of Frozen Silty Clay[A]. In: Proceedings of the 5th International Symposium on Permafrost Engineering. 2002:38-42.
    116凌贤长,徐学燕,邱明国等.冻结哈尔滨粉质粘土动三轴试验CT检测研究.岩石力学与工程学报. 2003, 22(8): 1244-1249.
    117徐春华,徐学燕,沈晓东.不等幅值循环荷载下冻土残余应变研究及其CT分析[J].岩土力学, 2005, 26(4): 572-576.
    118徐学燕,朱元林,丁靖康等.循环荷载下冻土的动弹模及临界动应力.第五届全国冰川冻土学论文集(上).甘肃文化出版社, 1996, 707-711.
    119徐学燕,仲丛利,陈亚明等.冻土的动力特性研究及其参数确定.岩土工程学报. 1998, 20(5): 77-81
    120张淑娟,赖远明,李双洋,等.冻土动强度特性试验研究[J].岩土工程学报, 2008, 30(4): 595-599.
    121齐吉琳,李海鹏,等.季节冻土场地上的地脉动特征[J].冰川冻土, 2004, 26(4): 449-453.
    122吴志坚,马巍,王兰民,等.地震荷载作用下温度和围压对冻土强度影响的试验研究[J].冰川冻土, 2003, 25(6): 648-652.
    123吴志坚,王兰民,马巍,等.地震荷载作用下冻土的动力学参数试验研究[J].西北地震学报, 2003, 25(3): 210-214.
    124王兰民,张冬丽,吴志坚,等.地温对冻土动力特性及其场地地震动参数的影响[J].中国地震, 2003, 19(3): 195-205.
    125徐春华,徐学燕.循环荷载下冻土的动阻尼比试验研究.哈尔滨建筑大学学报. 2002, 35(6): 22-25.
    126 Li xiaozhi, Xu xueyan, Xu chunhua. The influence on Ground Seismic Hazard of Frozen Soil Shear-Wave Velocity. In: Proceedings of the 5th International Symposium on Permafrost Engineering. 2002: 43-47.
    127徐学燕,徐春华,李小稚.冻土场地地震加速度反应谱研究.岩土工程学报. 2003, 25(6): 680-683.
    128王丽霞,胡庆立,凌贤长,等.青藏铁路重塑冻结粉质黏土动剪切模量试验研究[J].地震工程与工程振动, 2007, 27(2): 177-180.
    129王丽霞,凌贤长.冻土路基地震破坏判别方法研究[J].岩石力学与工程学报, 2005, 24(4): 638-642.
    130 Zhang Jianmin, Zhu Yuanlin, Zhang Jiayi. Experimental study on settlement of model piles in frozen soil under dynamic loading[J]. Science in China, Ser.D, 1999, (S1).
    131李强,王奎华,谢康和.冻融作用下基桩竖向振动动力特性研究[J].岩土工程学报, 2006, 28(1): 48-55.
    132高峰,陈兴冲,严松宏.季节性冻土和多年冻土对场地地震反应的影响[J].岩石力学与工程学报, 2006, 25(8): 1639-1644.
    133 Yuanming Lai, Ziwang Wu, Yuanlin Zhu et al. Elastic Visco-Plastic Analysis for Earthquake Response of Tunnels in Cold Regions. Cold Regions Science and Technology. 2000, (31):175-188
    134刘鸿绪,孙彦福,陈亚明,等.季节冻土层对房屋地震破坏的影响[J].冰川冻土, 1998, 20(1): 46-50.
    135王兰民,孙军杰.特殊土动力学的发展战略与展望[J].西北地震学报, 2007, 29(1): 88-93.
    136边学成,胡婷,陈云敏.列车交通荷载作用下地基土单元体的应力路径[J].土木工程学报, 2008, 41(11): 86-92.
    137刘雪珠,陈国兴.轨道交通荷载下路基土的动力学行为研究进展[J].防灾减灾工程学报, 2008, 28(2): 248-255.
    138 Sheng X, Jones C J C, Petyt M. Ground vibrationgenerated by a load moving along a railway track[J]. Journal of Sound and Vibration, 1999, 228(1): 129-156.
    139 Dieterman H A, Metrikine A V. Steady-state displacements of a beam on an elastic half-space due to a uniformly moving constant load[J]. European Journal Mechanics A Solids, 1997, 16(2): 295-306.
    140 Hirokazu Takemiya, Shuehi Satonaka, Xie W P. Rain track-ground dynamics due to high speed moving source and ground vibration transmission[C]. Procedure, Proceedings of Japan Society of Civil Engineers, Nagoya:[s.n.], 2001. 299-309.
    141 Kaynia A M, Madshus C, Zackris-son P. Ground vibration from high-speed trains: prediction and countermeasures[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000,126(6): 531-537.
    142王常晶,陈云敏.列车荷载在地基中引起的应力响应分析[J].岩石力学与工程学报, 2005, 24(7): 1178-1186.
    143 Hendry M, Hughes D, Barbour L, et al. Train induced dynamic response of railway track and embankments over soft peat foundations[C]. Proceedings 59th Canadian Geotechnical Conference, Vancouver:Canadian Geotechnical Society, 2006.
    144 Hall L. Simulations and analyses of train-induced ground vibrations[D]. Stockholm, Sweden: Royal Institute of Technology, 2000.
    145 Heelis M E, Collop A C, Dawson R D, et al. The‘Bow-wave’effect in soft subgrade beneath high speed rail lines[C]. Performance Verification of Constructed Geotechnical Facilities, Geotechnical Engineering Special Publication, 2000. 338-349.
    146 H.Jenkins, J. E. Stephenson, G. A. Clayton, et al. The effect of track parameters on wheel/rail vertical dynamoical forces[J]. The Railway Engineering J., 1974:2-16.
    147潘昌实, G. N. Pande.黄土隧道列车动荷载响应有限元[J].土木工程学报, 1994, 17(4): 19-28.
    148梁波,蔡英.不平顺条件下高速铁路路基的动力分析.铁道学报. 1999, 21(2): 84-88.
    149边学成,陈云敏.列车荷载作用下轨道和地基的动响应分析[J].力学学报. 2005, 37(4): 477-484.
    150李军世,李克训.高速铁路路基动力响应的有限元分析[J].铁道学报, 1995, 17(1): 66-75
    151 Hall L. Simulations and analyses of train-induced ground vibrations in finite element models[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(5): 403-413.
    152 O’Brien J, Rizos D C. A 3D BEM-FEM methodology for simulation of high speed train induced vibrations[J]. Soil Dynamics and Earthquake Engineering,2005, 25(2): 285-301.
    153陈斌,陈国兴,苏晓梅.城市轨道交通振动作用下地表响应分析[J].南通大学学报, 2006, 5(增): 51-54.
    154 Li D Q, Selig E T. Wheel/track dynamic interaction: track substructure perspective [J]. Vehicle System Dynamics, 1995, 24(S): 183-196.
    155 Yoshihiko SATO. Theoretical analysis on vibration of ballasted track[J]. QR&RTRI, 1988, 29(1).
    156雷晓燕.高速列车对道碴的动力响应[J].铁道学报, 1997, 19 (1): 114-121.
    157马学宁,梁波.高速铁路路基结构时变系统耦合动力分析[J].铁道学报, 2006, 28(5): 65-70.
    158刘宏扬.冻土场地路基列车高速行驶振动反应研究[D].哈尔滨工业大学:硕士学位论文, 2006.
    159于洋.冻土路基列车行驶振动反应研究[D].哈尔滨工业大学:硕士学位论文,2006.
    160李涛.青藏铁路多年冻土区路基结构的动力分析[J].铁道工程学报, 2007, (3): 29-32.
    161李双洋,张明义,张淑娟,等.列车荷载下青藏铁路冻土路基动力响应分析[J].冰川冻土, 2008, 30(5): 860-867.
    162 Madshus C, Bessason B, Harvik L. Prediction model for low frequency vibration from high speed railways on soft ground[J]. Journal of Sound and Vibration, 1996, 193 (1): 195-203.
    163 Madshus C, Kaynia A M. High-speed railway lines on soft ground: dynamic behavior at critical train speed[J]. Journal of Sound and Vibration, 2000, 231(3): 689-701.
    164 Takemiya H. Substructure simulation of inhomogeneous track and layered ground dynamic interaction under train passage[J]. Journal of Engineering Mechanics, 2005, 131(7): 699-711.
    165陈斌,陈国兴,朱定华,等.城市轨道交通引起的场地振动试验研究[J].防灾减灾工程学报, 2007,27(3): 312-317.
    166潘昌实,谢正光.地铁区间隧道列车振动测试与分析[J].土木工程学报, 1990, 23(02): 21-28.
    167王祥秋,杨林德,高文华.铁路隧道提速列车振动测试与荷载模拟[J].振动与冲击, 2005, 24(3): 99-102.
    168李德武,高峰.金家岩隧道列车振动现场测试与分析[J].兰州铁道学院学报, 1997, 16(03): 7-11.
    169谢城养,曹跃华,宋瑞刚.地铁列车运营引起的既有线结构振动衰减规律分析[J].铁道建筑技术, 2006, (03): 44-47.
    170高广运,李志毅,冯世进,等.秦-沈铁路列车运行引起的地面振动实测与分析[J].岩土力学, 2007, 28(9): 1817-1823.
    171 H. Xia, N. Zhang, Y. M. Cao. Experimental study of train-induced vibrations of environments and buildings [J]. Journal of Sound and Vibration, 2005:280,1017-1029.
    172 Lomaert G, Degrande G. Experimental validation of a numerical prediction model for free field traffic induced vibrations by in-situ experiments [J]. Soil Dynamics and Earthquake Engineering, 2001, 21(6): 485-497.
    173 E.Celebi, G. Schmid. Investigation of ground vibrations induced by moving loads. Engineering Structures.2005,27:1981-1998.
    174 Shen-Haw Ju, Hung-Ta Lin, Tsung-Kuo Chen. Studying characteristics of train-induced ground vibrations adjacent to an elevated railway by field experiments [J]. Journal of Geotechnical and Geoenvironmental Engineering. 2007,133(10):1302-1307.
    175 K. Okada, G. S. Ghataora. Use of cycli penetrateion test to estimate the stiffenss of railway subgrade[J]. NDT&E International, 2002(35): 65-74.
    176 Yoo T S, Selig E T. Field observation of ballast and subgrade deformation on track[J]. Transp Res Board Rec 1979, 733: 6-12.
    177王炳龙,余绍锋,周顺华,等.提速状态下路基动应力测试分析[J].铁道学报, 2000, 22(增1): 79-81.
    178周神根.铁路路基设计动荷载研究[J].路基工程, 1996, (5): 6-11.
    179杨灿文,龚亚丽.列车通过时路基动应力和振动[J].土木工程学报, 1963, 9(2): 9-57.
    180聂志红,李亮,刘宝琛,等.秦沈客运专线路基振动测试分析[J].岩石力学与工程学报, 2005, 24(6): 1067-1071.
    181周先才.高速铁路路基结构的动态有限元分析[D].成都:西南交通大学, 1999.
    182杨广庆.路基工程[M].北京:中国铁道出版社, 2003.
    183 Seed H B, MeNeill R L, Guenin J de. A soil deformation in normal compression and repeated loading tests[R]. HRB Bulletin 141, 1956.
    184 Brown. Repeated load triaxial testing of silty clay[J]. Geotechnique, 1975, 2:95-114.
    185 Heath D L, Shenton M J, Sparrow R W, Waters J M. Design of conventional rail track foundations[J]. Proc Civ Engr 1972, 51: 251-267.
    186 Monismith C L, Ogawa N, Freeme C R. Permanent deformation characteristics of subgrade soils due to repeated loading [J]. Transporation Research Record, 1975, 537:1-17.
    187 Li Dingqing, Selig E T. Cumulative plastic deformation forfine-grained subgradesoils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1996, 122(12): 1006-1013.
    188 Li Dingqing, Selig E T. Method for railroad track foundation design. II: Applications[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124 (4): 323-329.
    189 Gidel G, Hornych P, Chauvin J, et al. A New approach for investigating the permanent deformation behavior of unbound granular material using the repeated load triaxial apparatus[J]. Bulletin Des Laboratories des Ponts et Chaussees, 2001, 6(8): 5-21.
    190 Chai J C, Miura N. Traffic-load-induced permanent deformation of road on soft subsoil[J]. Journal of Geotechnical Engineering Division, American Society of Civil Engineering, 2002, 128(11): 907-916.
    191 Khogali W E I, Mohamed E HH. Novel approach for characterization of unbound material[C]. 83rd Annual TRB Meeting of the Transportation Meeting Board,Washington, D. C.: National Research Council, 2004. 210-223.
    192谢伟平,王国波,于艳丽.移动荷载引起的土变形计算[J].岩土工程学报, 2004, 26(3): 318-322.
    193李进军,黄茂松,王育德.交通荷载作用下软土地基累积塑性变形分析[J].中国公路学报, 2006, 19(1): 1-5.
    194陈云敏,边学成.高速交通引起的振动和沉降[C].第七届全国土动力学术会议论文集.北京:清华大学出版社, 2006.1-13.
    195凌建明,王伟,邬洪波.行车荷载作用下湿软路基残余变形的研究.同济大学学报. 2002, 30(11): 1315-1320.
    196蔡英,曹新文.重复加载下路基填土的临界动应力和永久变形初探[J].西南交通大学学报, 1996, 31(1): 1-5.
    197钟辉虹,汤康民,黄茂松.铁路粘土路基动力特性试验研究[J].西南交通大学学报, 2002, 37(5): 488-490.
    198唐益群,黄雨,叶为民,等.地铁列车荷载作用下隧道周围土体的临界动应力比和动应变分析[J].岩石力学与工程学报, 2003, 22(9): 1566-1570.
    199陈颖平,黄博,陈云敏.循环荷载作用下结构性软粘土的变形和强度特性[J].岩土工程学报, 2005, 27(9): 1065-1071.
    200王常晶.列车移动荷载作用下地基的动应力及饱和软粘土特性研究[D].杭州:浙江大学博士论文, 2006.
    201曾二贤.交通动荷载引起的软土地基长期沉降[D].杭州:浙江大学硕士论文,2008.
    202李子春.轨道结构垂向荷载传递与路基附加动应力特性的研究[D].北京:铁道部科学研究院博士论文, 2000.
    203赵学思.高速铁路路基体计算中的列车荷载模拟问题研究[J].铁道勘察, 2007, (3): 55-56.
    204尚守平,刘方成,杜运兴等.应变累积对黏土动剪切模量和阻尼比影响的试验研究.岩土力学[J], 2006, 27(5): 683-688.
    205张克绪,谢君斐.土动力学[M].北京:地震出版社, 1989: 25-28.
    206 Hardin B O, Drnevich V E. Shear modulus and dam ping in soils design equations and curves[J], Journal of Soil Mechanics and Foundation, ASCE, 1972, 98(SM7): 603-642.
    207 Martin P P, Seed H B. One dimensional dynamic gmund response analysis[J]. Journal of Geotechnical Engineering, ASCE, 1982, 108(7): 935-954.
    208 Thiers, G. R., and Seed, H. B., Strength and Stress-Strain Characteristics of Clays Subjected to Seismic Loads[C], Symposium on Vibration Effects of Earthquakes on Soils and Foundations, ASTM STP 450, American Society for Testing Materials, Philadelphia, 1969: 3-56.
    209 LEE, K.L. Seismic permanent deformations in earth dams[A], Report No. UCLA-ENG-7497, School of Engineering and Applied Science, University of California at Los Angeles, California, 1974.
    210朱祖亭,周健,胡晓燕.长期动力荷载作用下饱和软粘土振陷分析[J].港口工程. 1998, (3): 1-5.
    211王昆耀,常亚屏,陈宁.往返荷载下粗粒土的残余变形特性[J].土木工程学报.2002, 33(3): 48-53
    212牛富俊,张建明,张钊.青藏铁路北麓河试验段冻土工程地质特征及评价[J].冰川冻土, 2002, 24(3): 264-269.
    213 Satoh Y. Dynamic effect of a flat wheel on track deformation. Bulletin of International Railway Congress Association, 1965, 42(8/9): 547-553.
    214黄强.青藏铁路(格拉段)机车车辆总体技术条件的研究[J].中国铁路, 2002, (3): 41-47.
    215李瑞淳,朱彦.青藏铁路客车研制方案的探讨[J].中国铁路, 2002, (12): 57-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700