用户名: 密码: 验证码:
城轨交通引起的环境振动研究及轨道谱参数虚拟反演
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展城市轨道交通是解决城市交通问题的有效措施,所产生的振动和噪声形成环境问题,成为发展的“瓶颈”。为了研究发展各种减小环境振动的工程措施,本文围绕振动波在地表土体中传播与衰减的问题,完成了现场测试数据处理与分析、理论分析及数值计算,包括描述列车动荷载的轨道谱及其空间-频率域转换,车辆-轨道路基-大地系统整体模型建立及分析计算,轨道竖向不平顺谱参数的反演等研究,主要取得了以下进展:
     首先,处理北京城轨13号线的现场实测数据,通过垂直于轨道的直线形和平行于轨道的矩形两个台阵50组共813条记录的时、频域分析研究城市轨道交通引起的环境振动及其衰减规律。结果表明,城轨交通引起的环境振动竖向振动强度远大于水平向的,评价环境振动应以竖向振动为依据。振动高频成分的衰减快,低频振动衰减相对慢些,近轨道处的振动主要受列车产生的高频振动成分控制,远轨道处则主要受地基的自振特征影响。本文提出了新的地面振动级的衰减公式,可供城市轨道交通沿线的地表环境振动评价和减振措施的设计筛选参考使用。
     然后,研究轮轨接触动力荷载,指出需要分析车辆系统在自重和由轮轨接触面不平顺作用下的振动响应。从随机振动分析的角度入手,在综述激励模型的基础上选用适当的轨道谱作为轮轨接触面不平顺的描述。经空间域-频域转换得到轨道不平顺谱密度函数作为输入,分析了列车-轨道系统的振动问题。
     再后,采用具有二系悬挂的车辆模型与简单轨道、地基模型组成的车辆-轨道系统模型,采用赫兹非线性弹性接触理论确定轮轨竖向接触力。采用Newmark-β直接积分法,计算了在轨道动力不平顺的时程激励下整个系统的动力响应,得到列车通过时所引起的每个道床块下地基反力。
     再后,将车辆运行对地面产生的振动作用通过与大地直接接触的道床块下的地基反力时程来表达,把作用于轨道上的列车移动荷载转化成位置固定的竖向振动荷载,形成空间离散分布的系列点振源列阵。采用时、空解耦的显式波动有限元方法,计算了顺序展开的每个道床块下地基反力点振源列阵激励下的地表的竖向振动。算例的结果表明,随着轨道不平顺幅值的增加,响应值也随之增加;列车行使的速度对列车-轨道系统的影响明显,速度增加会加大轮轨接触力,使整个系统的动力响应频率提高;地表环境振动加速度时程波形与实测记录大体上相似,峰值大小接近。经低通滤波后计算的地表振动功率谱的优势频率与观测得到的很接近。
     最后,将本文发展的轨道谱时程样本生成和详细的车辆-轨道模型动力分析方法结合起来,进一步研究了反演轨道不平顺谱参数的可行性。借助虚拟反演的思路,以计算得到的轨道竖向不平顺谱的功率谱密度函数激励产生的道床块下地基反力时程及其功率谱为目标,采用遗传算法,反演输入的轨道谱的参数。结果表明,可以反演得出相当准确的轨道谱参数值。进一步根据地表振动响应反演轨道谱参数亦应该可行。
Developing rail traffic is an effective countermeasure to solve traffic problems in China, but the environmental problem by the vibration and noise from the traffic turns into a bottleneck impediment to the development in urban areas. In order to deal with the engineering measures to reduce the environmental vibration, the mechanism of vibration caused by urban rail traffic and the propagation and attenuation of wave in the ground soil layers are studied in this dissertation. Field measurement data process and analysis, analytical and numerical calculations are carried out, including the studies on railway irregularity spectra to describe the dynamic load by train,the spatial domain to frequency domain transform of the spectra, modeling of vehicle-railway-ground system, the analytical and numerical calculations, and inversion of the spectral parameters. The main progresses in this dissertation can be summarized as follows.
     Firstly, the data observed along the 13 line of Beijing urban rail traffic is processed, the main characteristics of the environment vibration and its attenuation law are deal with by means of time domain and frequency domain analysis on 813 records in 50 sets on a linear array perpendicular to the railway and a rectangle array parallel to the rail. The results show that vertical components of the vibrations are much stronger than those of horizontal ones; the former can be adopted as the criterion for environmental vibration evaluation. The high frequency vibration decreases fast and the low frequency one decreases relatively slower, so that the vibration near the way is predominated by high frequency component from the source, one in far field is then predominated by low frequency component from the soil dynamic feature. For purpose of the evaluation of environmental vibration and selection of engineering countermeasure, a new ground vibration level attenuation law is presented in this paper.
     Secondly, dynamic contact load between the vehicle wheel and rail is studied, and the requirement of analysis on vibration response of the vehicle system under the deadweight and excitation of irregularity of the wheel-rail contact surface. From the random vibration point of view, railway spectrum is adopted to describe the irregularity, on the basis of a comprehensive review on excitation models. The railway irregularity spectrum transformed from spatial domain to frequency domain is taken as input. For nonlinear analysis of vehicle-railway-ground system, the statistical characteristics in the time histories are validated.
     Thirdly, the vehicle model with two hanging systems is combined with simple models of railway and groundwork. Vertical contact force between wheel and rail is determined by Hertz nonlinear elastic contact theory. By means of Newmark-βdirect integral method, the dynamic responses of the total system from the time history excitations of railway irregularity are calculated, the subgrade reactions under ballast blocks are obtained.
     Fourthly, the vibration action on the ground caused by train running is described as the subgrade reactions under ballast blocks, the moving load on the railway is transformed as vertical vibration load on a set of given points, to make up of a series of point vibration sources spatially on a linear array. The ground vertical vibration responses under excitations of the subgrade reactions under the ballast blocks spreading one by one are calculated by an explicit finite element method. The results of an example showed that the responses increase slightly with the increasing of the amplitude railway irregularity; the contact force between wheel and rail increases with speed, and also amplitude increases in some degree. Envelop of the obtained acceleration waveform is similar with the observed ones, so is the peak value. It is shown that the procedure developed in this paper is credible at low frequency range.
     Finally, the feasibility to inverse the parameters of railway irregularity spectra is deal with by integrating the generation of time histories from the spectra and the detail model of the vehicle-railway system. By means of the idea of virtual inversion, the subgrade reactions under the ballast blocks and its power spectrum from the input excitation of railway spectrum are taken as the object functions; the parameters are inversed by means of the Generic Algorithm. The results showed that the values of parameters can be inversed from the response of the railway system quite well. Thus further railway spectrum parameter inversion from the ground vibration response must be feasible.
引文
1. Japanese Institute of Noise Control: Regional Vibration of Environments. Tokyo: Jibaotang Press, 2001, 8-9.
    2.王梦恕.我国城市交通的发展方向.铁道工程学报, 2003, 3(1): 43-47.
    3.马沂文.有关城市轨道交通的名词.科技术语研究, 2003, 5(4): 40-42.
    4.何海健.地铁列车运营引起的环境问题.交通环保, 2003, 24(3): 46-49.
    5.夏禾,曹艳梅.轨道交通引起的环境振动问题.铁道科学与工程, 2004, 1(1): 44-51.
    6. ISO2631-1, Mechanical Vibration and Shock Evaluation of Human Exposure to Whole-body Vibration. 1997.
    7.城市区域环境振动标准GB10070-88. 1988.
    8.王传明.交通荷载影响人体健康.汽车运用, 2005, (7): 6-7.
    9. German Standards Organization. DIN 4150 , Vibrations in Building Construction,Berlin, Germany, 1984.
    10. British Standard Institution. Guide To Evaluation of Human Exposure to Vibration in Buildings (1Hz-80Hz): BS6472, 1992.
    11. Swiss Association of Standards. Effects of Vibration on Construction: SN 640 312,Seefedstrasse 9, CH8008, Zurich, Switzerland, 1978.
    12. Office of Surface Mining. Surface Mining Reclamation and Enforcement Provisions, Public Law 95-87, Federal Register, 1977, Vol.42, No. 289.
    13. Yang Y B, Hung H A. Parametric Study of Wave Barriers for Reduction of Train-induced Vibrations. International Journal for Numerical Methods in Engineering, 1997, 40: 3729-3747.
    14. H. H. Hung, Y. B. Yang. Elastic Waves in Visco-Elastic Half-space Generated by Various Vehicle Loads. Soil Dynamics and Earthquake Engineering, 2001, 21 (1): 1-17.
    15. Yang Y B. Ground Vibration Induced by High-speed Trains over Viaducts. Proc. ISEV’2003, Hangzhou, 2003: 147-157.
    16. Y. B. Yang, H. H. Hung, D. W. Chang. Train-induced Wave Propagation in Layered Soils Using Finite/Infinite Element Simulation. Soil Dynamics and Earthquake Engineering, 2003, 23 (4): 263-278.
    17. Bata M. Effect on Buildings of Vibrations Caused by Traffic. Building Science, 1985, 99(1): 1-2.
    18. J. Melke. Noise and Vibration form Underground Railway Lines: Proposals for a Prediction Procedure. J.S.V, 1988.120(2): 391-406.
    19. Jorgen J. Ground Vibration from Rail Traffic. Journal of low Frequency Noise and Vibration, 1987, 5 (3):356-361.
    20. Jorgen J .Transmission of Ground-Borne Vibration in Building. Journal of low Frequency Noise and Vibration, 1989, 7(3): 412-417.
    21. Jones C J C. Reduction of Noise and Ground Vibration from Freight Trains. International Conference on Better Journey Times, Better Business. Birmingham, 1996, 87-97.
    22.城市区域环境振动测量方法GB10071-88. 1988.
    23. H. Grundmann, M. Lieb, E. Trommer. The Response of a Layered Half-space to Traffic Loads Moving alongs Its Surface. Archive of Applied Mechanics 1999, 69(1): 55-67.
    24.李德武,高峰.隧道基底结构列车振动现场测试与分析.甘肃科学学报.1999, 11(1): 52-54.
    25.王逢朝,夏禾,吴萱.列车振动对环境及建筑物的影响分析.北方交通大学学报, 1999, 23(4): 13-17.
    26. Kurze U J. Tools for Measuring Prediction and Reducing the Environmental Impact from Railway Noise and Vibration. Journal of Sound and Vibration, 1996, 193(1): 237-251.
    27. Kurzweil L. Ground-borne Noise and Vibration from Underground System. Journal of Sound and Vibration, 1979, 66(3): 450-452.
    28. G Volberg. Propagation of Ground Vibration near Railway Tracks. Journal of Sound and Vibration, 1983, 87(2): 371-376.
    29. Yoshioka G. Basic Characteristics of Shinkansen-induced Ground Vibration and Its Reduction Measures. Proc. Wave 2000, 2000, 219-239.
    30. V V Krylov. Spectra of Low-Frequency Ground Vibrations Generated by High-Speed Trains on Layered Ground. Journal of low Frequency Noise, Vibration and Active Control, 1997, 16(4): 286-290.
    31. V V Krylov. Ground Vibration Born from High-Speed Trains. Journal of low Frequency Noise, Vibration and Active Control, 1999, 18(4): 63-70.
    32.罗林,张格明,吴旺青,柴雪松.轮轨系统轨道平顺状态的控制.北京:中国铁道出版社, 2006: 202-204.
    33.罗林.轨道随机干扰函数.中国铁道科学, 1982, 3(1): 74-112.
    34.长沙铁道学院随机振动研究室.关于机车车辆/轨道系统随机激励函数的研究.长沙铁道学院学报, 1985, (2): 1-36.
    35.翟婉明.车辆-轨道耦合动力学(第二版).北京:中国铁道出版社.2002: 10-106.
    36.竹宫宏和,里中修平,谢伟平.移动加振源によゐ轨道-地磐系の动的应答て周边地磐への振动传播.日本土木学会论文集, 2001, 299-309.
    37. Timoshenko S P. Method of Analysis of Statical and Dynamical Stress in Rail. Proc. Of the 2th Inter. Con. for Appl. Mech., Zurich, 1926: 407-418.
    38. L. Fryba. Vibration of Solids and Structures under Moving Loads. Noordhoff International Publishing, 1971, 214-233.
    39. C. R. Steele. The Finite Beam with a Moving Load, J. Appl. Mech., 1967, 35(4): 111-119.
    40. Zheng Xiao-ping, Wang Shang-wen, Chen Bai-ping. General Solution forDynamical Problem of Infinite Beam on an Elastic Foundation, Applied Mathematics and Mechanics, 1991, 12(7): 633-637.
    41. Hardy M A, Cebon D. Response of Continuous Pavements to Moving Dynamic Loads. ASCE Journal of Engineering Mechanics, 1993, 119(9): 1762-1780.
    42. Bogaez R. On Dynamics and Stability of Continuous Systems subjected to a Distributed Moving Load. Ingenieur-Archiv, 1983, 53: 243-255.
    43. Chen Y H, Huang Y H. Dynamic Stiffness of Infinite Timoshenko Beam on Visco-elastic Foundation in Moving Co-ordinate. International Journal for Numerical Methods in Engineering, 2000, 48: 1-18.
    44. Chen Y H, Huang Y H, Shih C T. Response of an Infinite Timoshenko Beam on a Viseo-elastic Foundation to a Harmonic Moving Load. Journal of Sound and Vibration, 2001, 241(5): 809-824.
    45. Coskun I, Engin H. Non-linear Vibrations of a Beam on an Elastic foundation. Journal of Sound and Vibration, 1999, 223(3): 335-354.
    46. Coskun I. Non-linear Vibrations of a Beam Resting on a Tensionless Winkler Foundation. Journal of Sound and Vibration, 2000, 236(3): 401-411.
    47. Sun L, Deng X J. Dynamic Analysis to Infinite Beam under a Moving Line Load with Uniform velocity. Applied Mathematics and Mechanics (English Edition), 1998, 19(4): 367-373.
    48.边学成.高速列车运动荷载作用下地基和隧道的动力响应分析.杭州:浙江大学工学博士学位论文,2005: 2-12.
    49.李志毅.分层及饱和分层地基列车运行引起的地面振动特性分析.上海:同济大学工学博士学位论文,2006: 3-15.
    50. Dieterman H A, Metrikine A. The Equivalent Stiffness of a Half-space Interacting with a Beam Critical Velocities of a Moving Load along the Beam. European Journal of Mechanies, 1996, 15(1): 67-90.
    51. Metrikine A, Dieterman H A. Three-dimensional Vibrations of a Beam on Elastic Half-space: Resonance Interaction of Vertical-longitudinal and Lateral Beam Waves. ASME Journal of Applied Mechanics, 1997, 64: 951-956.
    52. Metrikine A, Dieterman H A. Lateral Vibrations of an Axially Compressed Beam on an Elastic Half-space Due to a Moving Lateral Load. European Journal of Mechanics, 1999, 18: 147-158.
    53. Metrikine A, Popp K. Steady-state Vibrations of an Elastic Beam on a Visco-elastic Layer under a Moving Load. Achieve of Applied Mechanics,2000, 70: 399-408.
    54. Jones C J C, Bloek J R. Prediction of Ground Vibration from Freight Trains. Journal of Sound and Vibration, 1996, 193(l): 205-213.
    55. Jones D V, Petyt M. Ground Vibration in the Vicinity of a Strip Load: an Elastic Layer on a Rigid Foundation. Journal of Sound and Vibration,1992,152(3): 501-515.
    56. Jones D V, Petyt M. Ground Vibration in the Vicinity of a Strip Load: an Elastic Layer on Elastic Half-space. Journal of Sound and Vibration, 1993, 161(1): 1-18.
    57. Jones D V, Petyt M. Ground Vibration in the Vicinity of a Rectangular Load on a Half-space. Journal of Sound and Vibration, 1993, 166(1): 141-159.
    58. Jones D V, Laghrouche O, Le Houedec D, et al. Ground Vibration in the Vicinity of a Rectangular Load Acting on a Viscoelastic Layer over a Rigid Foundation. Journal of Sound and Vibration, 1997, 202(2): 307-319.
    59. Jones D V, Le Houedec D, Peplow A T, et al. Ground Vibration in the Vicinity of a Moving Harmonic Rectangular Load on a Half-space. European Journal of Mechanics, 1998, 17: 153-166.
    60. Jones D V, Le Houedec D, Petyt M. Ground Vibrations due to a Rectangular Harmonic Load. Journal of Sound and Vibration, 1998, 212(1): 61-74.
    61. Sheng X, Jones C J C, Petyt M. Ground Vibration Generated by a Harmonic Load Acting on a Railway Track. Journal of Sound and Vibration, 1999, 225(1): 3-28.
    62. Sheng X, Jones C J C, Petyt M. Ground Vibration Generated by a Load Moving along a Railway Track. Journal of Sound and Vibration, 1999, 228(1): 129-156.
    63. Jones C J C, Thompson D J, Petyt M. Studies Using a Combined Finite Element and Boundary Element Model for Vibration Propagation from Railway Tunnels. In Proceedings the Seventh International Congress on Sound and Vibration, Garmish-Partenkirchen, 2000, 2703-2710.
    64. Kausel E, Roesset J M. Semi Analytic Hyper Element of Layered Strata. Journal of the Engineering Mechanics Division, 1977, (4): 569-588.
    65. Kausel E. The Thin-layer Method in Seismology and Earthquake Engineering. Wave Motion in earthquake Engineering, In: E. Kausel and G.D. Manolis Editors, International series advances in earthquake engineering, WIT, Boston, 1999: 193-213.
    66. Lysmer J. Lumped Mass Method for Rayleigh Waves, Bulletin of the seismological Society of America, 1970, vol.60: 89-104.
    67. Waas G. Linear Two-Dimensional Analysis of Soil Dynamics Problems in Semi-Infinite Layered Media, Doctor Dissertation, Berkeley: The University of California, 1972.
    68. Waas G. Displacement Solutions for Dynamic Loads in transversely Isotropic Stratified Media. Soil Dynamics and Earthquake Engineering, 1985, 13: 173-193.
    69. Tajimi H.A. Contribution to Theoretical Prediction on Dynamic Stiffness Surface Foundations, Presented at Proceeding 7th World Conference on Earthquake Engineering, Istanbul, 1980.
    70. Kausel E. An Explicit Solution for the Green Functions for Dynamic Loads in Layered Media, in Department of Civil Engineering, PhD. Cambridge:MIT, 1981.
    71. Seal S H. Dynamic loads in layered half-spaces, in Department of Civil Engineering, PhD. Cambridge: MIT, 1985.
    72. Kausel E. Thin-Layer Method Formulation in the Time Domain, International Journal for Numerical Methods in Engineering, 1994, vol. 37: 927-929.
    73. Bougacha S, Tassoulas J L. Seismic Analysis of Gravity Dams, I: Modeling of Sediments. ASCE Journal of Engineering Mechanics, 1991, vol. 117: 1826-1837.
    74. Bougacha S, Tassoulas J L. Analysis of Foundations on Fluid-filed Poroelastic Stratum, ASCE Journal of Engineering Mechanics, 1993, vol. 119: 1632-1648.
    75. Nogami T, Kazama M. Dynamic Response Analysis of Submerged Soil by Thin Layer Element Method, Dynamics and Earthquake Engineering, 1992, vol. 11: 17-26.
    76. Nogami T. Thin Layer Element Method for Dynamic Soil-structure Interaction Analysis of Axi-symmetric Structure in Submerged Soil, Soil Dynamics and Earthquake Engineering, 1997, vol. 16: 337-351.
    77.高广运,李伟.二维地基波阻板隔振分析.地震工程与工程振动, 2005, 25(2): 130-135.
    78.高广运,彭争光,李伟等.三维层状地基空沟主动隔振分析.西北地震学报,2006, 28(3): 210-215.
    79.高广运,冯世进,李伟等.二维层状地基波阻板隔振分析.振动工程学报,2007,20(2): 174-179.
    80.高广运,冯世进,李伟等.三维层状地基竖向激振波阻板主动隔振分析.岩土工程学报, 2007, 29(4): 471-476.
    81.李伟.层状地基WBI主动隔振分析.上海:同济大学博士学位论文, 2005.
    82.邱畅,高广运,岳中琦等.屏障隔振系统失效机理的探讨.西北地震学报, 2003, 25(3): 198-203.
    83.杨正文,卢文达.分析土壤半无限域的一种有限层方法(Ι)-一般理论.应用数学和力学, 1992, 551-590.
    84.卢文达,杨正文.分析土壤半无限域的一种有限层方法(ΙΙ)一几种特殊情形及算例.应用数学和力学, 1992, 945-950.
    85.王海东,费模杰,尚守平等.考虑径向非匀质性的层状地基中摩擦桩动力阻抗研究.湖南大学学报(自然科学版), 2006, 33(4): 6-11.
    86.王海东,尚守平.瑞利波作用下考虑桩土相互作用的单桩竖向动力响应计算研究.工程力学, 2006, 23(8): 74-78.
    87.王海东,尚守平.瑞利波作用下径向非匀质地基中的单桩竖向响应研究.振动工程学报, 2006, 19(2): 258-264.
    88.王海东,尚守平,童桦.层状地基端承桩扭转动力阻抗研究.地震工程与工程振动,2007, 27(1): 171-175.
    89.尚守平,余俊,王海东等.饱和土中桩水平振动分析.岩土工程学报, 2007, 29(11): 1696-1702.
    90.林智勇,戴自航,苏美选.复杂条件下挡土墙主动土压力解析解.岩土工程学报, 2008, 30(4): 555-559.
    91.陈镕,唐和生,王远功等.层状地基中的单桩沉降分析.上海力学, 1999, 20(3): 276-282.
    92.谢伟平.移动荷载作用下基于薄层单元法的土动力分析,华中科技大学学报, 2004, 21: 8-11.
    93.蒋通,程昌熟.用二次形函数薄层法分析弹性层状地基中的动力问题.力学季刊, 2006, 27(3): 495-504.
    94.蒋通,程昌熟.用薄层法分析高架轨道交通引发的环境振动.振动工程学报, 2007, 20(6): 623-628.
    95.蒋通,程昌熟.用薄层法分析层状地基中各种基础的阻抗函数.力学季刊, 2007, 28(2): 180-186.
    96. Kausel E, Tassoulas L. Transmitting Boundaries: a Closed-form Comparison. Bulletin of the Seismological Society of America, 1981, 71(1): 143-159.
    97. Jones C J C, Wang A, Dawn T M. Modeling the Propagation of Vibration from Railway Tunnels. In Computational Acoustics and its Environmental Applications, Southampton, 1995, 285-292.
    98. Becker A, Schenkengel K U. Conforming Infinite Elements for EF Calculations in Soil Dynamics. In Proceedings of the seventh International Conference on Soil Dynamics and Earthquake Engineering, 1995, 35-44.
    99. Muravskii G B. Green Functions for an Incompressible Linearly Non-homogeneous Half-space. Achieve of Applied Mechanics. 1996, 67: 81-95.
    100. Sáez A, Domínguez J. BEM Analysis of Wave Scattering in Transversely Isotropic Solids. International Journal for Numerical Methods in Engineering, 1999, 44: 1283-1300.
    101. Sáez A, Domínguez J. Far Field Dynamic Green’s Functions for BEM in Transversely Isotropic Solids. Wave Motion, 2000, 32: 113-123.
    102. Pka R Y S, Guzina, B B. Seismic Soil-structure Interaction Analysis by Direct Boundary Element Methods. International Journal of Solids and Structures, 1999, 36: 4743-4766.
    103. Domínguez J, Meise T. On the Use of the BEM for Wave Propagation in Infinite Media. Engineering Analysis with Boundary Elements, 1991, 8(3): 133-138.
    104. Banerjee P K, Mamoon S M. A Fundamental Solution due to a Periodic Point Force in the Interior of Elastic Half-space. Earthquake Engineering and Structural Dynamics, 1990, 19: 91-105.
    105. Gallego R, Domínguez J A. United Formulation of Two Existing Time-domain Boundary Element Approaches. Communications in Applied Numerical Methods, 1990, 6: 17-25.
    106. Achenbach J D. Wave Propagation in Elastic Solids. Amsterdam: North-Holl and Publishing Company. 1973.
    107. Alarcon E, Cano J J, Domínguez J. Boundary Element Approach to the Dynamic Stiffness Functions of Circular Foundations. International Journal for Numerical and Analytical Methods in Geomechanics, 1989, 13: 645-664.
    108. Antes H, von Estorff O. Dynamic Response Analysis of Rigid Foundations and of Elastic Structures by Boundary Element Procedures. Soil Dynamics and Earthquake Engineering, 1989, 8(2): 68-74.
    109. Lombaert G, Degrande G, Clouteau D. Numerical Modeling of Free Field Traffic-induced Vibrations. Soil Dynamics and Earthquake Engineering, 2000, 19: 473-488.
    110. Tanrikulu A H, Yerli H R, Tanrikulu A K. Application of the Multi-region Boundary Element Method to Dynamic Soil-structure Interaction Analysis. Computers and Geotechnics, 2001, 28: 289-307.
    111. Gavric L. Computation of Propagative Waves in Free Rail Using a Finite Element. Journal of Sound and Vibration, 1995, 185: 531-543.
    112. Gavric L. Finite Element Computation of Dispersion Properties of Thin-Walled Waveguides. Journal of Sound and Vibration, 1994, 173: 113-124.
    113. Papageorgiou A S, Pei D. A Discrete Wavenumber Boundary Element Method for Study of the 3-D Response of 2-D Scatterers. Earthquake Engineering and Structural Dynamics, 1998, 27: 619-638.
    114. Tadeu A J B, Kausel E. Green’s Functions for Two-and-a-half Dimensional Elastodynamic Problems. Journal of Engineering Mechanics, 2000, 126(10): 1093-1097.
    115. Tadeu A J B, António J, Godinho L. Green’s Function for Two-and-a-half Dimensional Elastodynamic Problems in Half-space. Computation Mechanics, 2001, 27: 484-491.
    116. Hirose S. Boundary Element Modeling and Analysis of Moving Loads in Time and Frequency Domains. In Chouw N and Shcmid G (Eds.), Wave2000, Bochum,Germany, Rotterdam: A. A. Balkema. 2000, 251-268.
    117. Sheng X., Jones C J C, Thompson D J. Modeling Ground Vibration from Railways Using Wavenumber Finite and Boundary Element Methods. Proceedings of the Royal Society A.2005, 461: 2043-2070.
    118. Madshus C, Kaynia A. High Speed Railway Lines on Soft Ground: Dynamic Response of Rail-embankment-soil system. Proceedings of 6th international Workshop on Rail-way and Tracked Transit System Noise, He des Embiez, France, NGI Report, 1998: 108-119.
    119. Fujikake T A. A Prediction Method for the Propagation of Ground Vibration from Railway Trains. Journal of Sound and Vibration, 1986, 111(2): 289-297.
    120. Wilson G P. Control of Ground-borne Noise and Vibration. Journal of Sound and Vibration, 1983, 87(2): 339-350.
    121. Richart F E, Woods R D. Vibration of Soils and Foundations. New Jersey; Prentice-Hall, INC, Englewood Cliffs, 1987.
    122.竹宫宏和,合田和哉,小森大资.高速列车运行时对沿线地基振动的计算机模拟和预测.土木学会论文集,1998, N0.488/ 1-23.
    123.合田和哉.移动加振および移动载荷による3次元成层地盘内の波动传播に关よお研究とよお应用.日本冈山:冈山大学博士论文, 1997.
    124.孙雨明.铁路交通产生的地面振动与排桩隔振,上海:同济大学博士学位论文, 2003: 55-69.
    125. Xia He. A Study of Vibration Effects of Underground Trains upon Environments Advances in Structural Engineering. China Railway House, l995, 116-122.
    126. Wei J, Petyt M. Application of Finite Elements Techniques to Ground Vibration Transmission Using a Semi-infinite Element Model. ISVR Technical Memorandum No. 628. University of Southampton, 1987.
    127. Peplow A T, Jones C J C, Petyt M. Surface Vibration Propagation over a Layered Elastic Half-space with an Inclusion. Applied Acoustics, 1999, 56(4): 283-396.
    128. Jones C J C, Thompson D J, Petyt M. Ground-borne Vibration and Noise from Trains: Elastodynamic Analysis Using the Combined Boundary Element and Finite Elements. ISVR Technical Memorandum No. 844. University of Southampton, 1999.
    129. Ahmad S, Al-Hussaini T M. Simplified Design for Vibration Screening by Open and In-filled Trenches. Journal of Geotechnical Engineering, 1991, 117(1): 67-88.
    130. Takemiya H, Fujiwara A. Wave Propagation/ Impediment in a Stratum, and Wave Impeding (WIB) Measured for SSI Response Reduction. Soil Dynamics and Earthquake Engineering, 1994, 13: 49-61.
    131. Takemiya H, Shiotsu Y, Yuasa S. Features of Ground Vibration Induced by High-speed Trains and the Counter Vibration Measure X-WIB. Proceedings of Japan Society of Civil Engineers, 2000, 661/1-53: 33-42.
    132. Amir M.K., Christian M. Ground Vibration from High-speed Railway Lines. International Conference on Soil-Structure Interaction in Urban Civil Engineering. 1998.
    133. Krylov V V, Dawson A R, Heelis M E, et al. Rail Movement and Ground Waves Caused by High Speed Trains Approaching Track Soil Critical Velocities. Proceedings of the I. MECH. E. Part F, 2000, Vol. 214: 107-116.
    134. Hong Hao, Thien Cheong Ang. Analytical Modeling of Traffic-induced Ground Vibrations. Journal of Engineering Mechanics, 1998, 124(8): 921-928.
    135.翟婉明,黄志辉.列车动力学的非线性数值分析方法,西南交通大学学报, 1991, (1): 82-90.
    136. Zhai Wanming, Sun Xiang. A Detailed Model for Investigating Vertical Interaction between Railway and Track. Vehicle System Dynamics, 1994, 23(S): 603-615.
    137.申跃奎.地铁激励下振动的传播规律及建筑物隔振减振研究.同济大学博士学位论文, 2007: 28-51.
    138. Lang J. Result of Measurements on the Control of Structure-borne Noise from Subways. Seventh International Congress on Acoustics. BudaPest, 1971, 421-424.
    139. Urgar E. Vibrations Produced in Buildings by Passage of Subway Trains. Parameter Estimation for Preliminary Design. Inter-noise, 1975: 491-498.
    140. Nelson J. Prediction and Control of Ground-borne Noise and Vibration from rail Transit Trains. Technical Report No. UMTA-MA-06-0049-83-4 of the US Department of Transportation, Urban Mass Transportation Administration, 1983.
    141. Voberg K. G. Propagation of Ground Vibrations near Railway Tracks. Journal of Sound and Vibration. 1983, 87(2): 371-376.
    142.青木一郎.铁道交通振动对周边居民的影响.东京:东京都环境科学研究所年报, 1994, (18): 24-30.
    143. Hayakawa K. Reduction Effects of Ballast Mats and EPS Blocks on Ground Vibration Caused by Train and its Evaluation. Proc. Inter Noise’92, 1992, 233-240.
    144.李晓霖.地铁诱发振动对地面以及地上结构的影响规律研究.北京:北京工业大学硕士学位论文, 2003: 53-77.
    145. Verhas H P. Prediction of the Propagation of Train-Induced Ground Vibration. Journal of Sound and Vibration, 1979, 66(3): 371-376.
    146.茅玉泉.地面振动传播衰减研究的概括和发展.第一届全国建筑振动学术交流会论文集, 1995:352-362.
    147.茅玉泉.交通运输车辆引起的地面振动特性和衰减.建筑结构学报, 1987, (1): 67-77.
    148. Hirokazu Takemiya, Shuehi Satonaka, Wei-ping Xie. Train track-ground dynamics due to high speed moving source and ground vibration transmission. Journal of Structure Mechanics and Earthquake Engineering, JSCE, 2001, 682(7): 299-309.
    149.徐建.建筑振动工程手册.北京:中国建筑工业出版社. 2001.
    150.邱俊杰.高架轨道交通引起环境振动的实测与评价方法研究.武汉:武汉理工大学硕士学位论文, 2005: 10-25.
    151.王学仁,温忠嶙.应用回归分析.重庆:重庆大学出版社, 1990.
    152.冯军和.地铁列车-轨道系统的动力耦合及诱发的环境振动.北京:北京工业大学博士学位论文, 2007: 19-38.
    153.陈宪麦.轨道不平顺时频域分析及预测方法的研究.北京:铁道科学研究院博士学位论文, 2006:5-13.
    154.陈果,翟婉明.铁路轨道不平顺随机过程的数值模拟.西南交通大学学报,1999(2): 138-142.
    155.邓学钧,孙璐.车辆-地面系统动力学.北京:人民交通出版社, 2000: 98-106.
    156.杨文忠,练松良,刘扬.轨道不平顺功率谱拟合分析方法.同济大学学报, 2006, 34(3): 363-367.
    157.陈果,翟婉明,左洪福.仿真计算比较我国干线谱与国外典型轨道谱.铁道学报, 2001, 23(3): 82-87.
    158.雷晓燕,圣小珍.铁路交通噪声与振动.北京:科学出版社, 2004:228-291.
    159.陈宪麦.轮轨系统轨道不平顺功率谱的进一步研究.哈尔滨:哈尔滨工业大学博士后研究工作报告, 2008.
    160.廖振鹏著.工程波动理论导论.科学出版社,北京, 2002.
    161.张东丽.基于格林函数方法近场长周期地震动模拟.哈尔滨:中国地震局工程力学研究所博士学位论文, 2005.
    162.周正华,廖振鹏.消除多次透射公式漂移失稳的措施.力学学报. 2001, 33(4):550-554.
    163.师黎静.利用地脉动观测反演工程场地剪切波速度结构.哈尔滨:中国地震局工程力学研究所硕士学位论文, 2002.
    164.王小平,曹立明.遗传算法-理论、应用与软件实现.西安交通大学出版社,2002.
    165.姚姚.蒙特卡洛非线性反演方法及应用,冶金工业出版社,1997.
    166.周明,孙树栋.遗传算法原理及应用,国防工业出版社,1999.
    167.崔建文.利用面波资料反演波速剖面的全局优化方法.中国地震局工程力学研究所博士学位论文, 1998.
    168.韩炜.一种全局—局部优化算法及其在桩基承载力反演中的应用.中国地震局工程力学研究所博士学位论文, 2000.
    169.郑鑫.弹性半空间单一覆盖层表面振源的虚拟反演.哈尔滨:哈尔滨工业大学硕士学位论文, 2007.
    170. X. Tao, X. Zheng, Q. Xing. Virtual Inversion of Environment Vibration Sources Caused by Rail Traffic in Urban Areas. The 14th International Conference on Urban Transport and the Environment in the 21st Century, Malta, 2008: 385-393.
    171.聂志红.高速铁路轨道路基竖向动力响应研究.中南大学博士学位论文, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700