用户名: 密码: 验证码:
框支配筋砌块短肢砌体结构拟动力子结构试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
框支配筋砌块短肢砌体剪力墙结构是作为替代粘土实心砖建设多层房屋提出的一种节能环保型结构体系,既容易满足人们日益增加的建筑功能需要,又具有较多层钢筋混凝土框架房屋造价低和便于施工等优点,是我国建设底部大空间房屋的一种具有竞争力的结构体系。然而,目前国内外未见有对框支配筋砌块短肢砌体剪力墙结构整体房屋试验研究的报道,其在地震作用下破坏形态和破坏机理,以及能否满足“小震不坏,中震可修,大震不倒”的“三水准”抗震设防理论,是否能经受住地震的考验等等,都是该结构体系在我国应用推广、减少地震损失所亟需解决的科学问题。没有试验作基础,抗震理论难以得到验证和认可,更难以应用到实际工程中去,尤其对于砌体这种非线性异常复杂的材料,进行结构模型的试验研究,其意义是不言而喻的。拟动力子结构试验方法是将计算机的计算、控制与结构试验有机结合起来,既经济方便又可真实模拟地震作用,可以很好的模拟大型复杂结构的地震反应。
     鉴于此,根据工程实践,考虑试验室场地及加载装置的限制,在哈尔滨工业大学抗震与结构试验大厅,建成一栋足尺三层框支配筋砌块短肢砌体剪力墙子结构模型,用以模拟六层框支配筋砌块短肢砌体剪力墙结构抗震性能。针对该模型的特点分别进行了拟动力子结构算法研究和拟动力子结构控制方法研究,同时对本文试验模型在地震作用下的破坏形态、破坏机理以及抗震性能进行了研究,并对破坏后的试验模型进行了加固方法初探。
     高阶单步法本身是一种无条件收敛的隐式算法,已成功地应用于结构地震非线性反应分析、主动、半主动及智能振动控制、刚度解析表示的动力反应等分析。本文在前人研究的基础上,提出了高阶单步拟动力试验算法及高阶单步拟动力子结构试验算法,结合等效剪切刚度概念,提出了本步刚度的近似假设,实现了将隐式的高阶单步法转换成对拟动力试验的显式算法,方便地实现了高阶单步隐式积分算法的拟动力试验及拟动力子结构试验。数值模拟分析和多自由度试验结果表明,高阶单步法具有较中心差分法有较高的精度和稳定性,将其应用到拟动力试验和拟动力子结构试验是可行的。
     针对本文试验模型在峰值加速度较小时属于大刚度试验模型,结合高阶单步法,提出了力控制高阶单步拟动力子结构试验方法。多自由度结构模型试验研究表明,采用力控制试验方法进行大刚度模型拟动力子结构试验,在结构恢复力特性进入下降段之前是可行的,从而丰富和发展了拟动力子结构试验方法。
     由于作动器之间的藕联,使得多自由度拟动力子结构试验变得异常复杂,大量用数值模拟分析及单自由度验证过的算法却在多自由度中无法行得通,要么是由于试验误差导致算法发散,要么是根本不能或很难实现算法计算的命令信号,从而引起国内外科研工作人员越来越重视拟动力子结构控制技术的发展。基于此,本文首先对逐步趋近目标位移的软耦合加载系统控制方法进行了研究,试验结果表明,采用软耦合加载控制方法进行多自由度体系的结构拟动力试验时,在一定程度上能够达到减少作动器耦联的目的。但是,没有从根本上解决作动器之间的耦联,随着模型复杂化,自由度的增加将大大增加了试验的控制难度,将使软耦合加载控制方法彻底失效。因此,本文尝试对等效力控制方法进行研究,数值模拟和试验结果表明,等效力控制试验方法具有很好的鲁棒性,通过合理的设置等效力控制器,可以很好的完成多自由度的位移控制,为多自由度试验模型的拟动力子结构试验提供了有效的控制手段。
     采用上述拟动力子结构试验技术对本文试验模型进行了地震动峰值加速度分别为35 gal、70 gal、110 gal、220 gal、260 gal、310 gal、350gal下的拟动力子结构试验,试验结果表明,破坏主要发生在底部框架层及与框架层相连的剪力墙层,上部各层发生轻微破坏,未形成明显的薄弱层,整体结构抗震性能良好,可以满足我国抗震规范7~8度区的弹塑性阶段位移验算要求,符合“三水准”抗震设防目标,为底框配筋砌块短肢砌体剪力墙结构体系的抗震性能理论研究及其工程设计提供了参考,推动该结构在多层建筑中的工程应用。
     在试验模型完成系统的拟动力子结构试验后,模型的结构构件梁、板、柱、墙均出现不同程度的损坏。本文根据对模型损伤程度的评估,有针对性地制定了加固方案,并通过对加固后的试验模型再次进行的拟动力子结构试验,研究了震后受损结构构件所用加固方法的适用性和加固对恢复结构抗震性能的效果,为框支剪力墙结构形式房屋的震后整体修复提供了技术支持,也为整体结构加固修复提供了理论支持。
Frame-supported reinforced concrete short-leg masonry shear wall structure is used as an alternative to solid clay brick masonry structure for building multi-storey structure. A competitive development space can be provided by the proposed structural system to build the bottom big-space structure in the multi-storey structural system with such advantages as follows: firstly, architectural function can be gained easily by using the structural system; secondly, the structure system has the advantages of both lower cost and more convenient construction process than the reinforced concrete frame structure with the same architectural function. However, so far any theoretical and experimental studies on the proposed structural system have not been done home and abroad. Some scientific problems need to be solved urgently to popularize the structural system and reduce earthquake losses in our country. The first one is how to get the failure mode and failure mechanism through the real earthquake action. The second is whether the proposed structural system can meet the 3-level seismic requirements of no damage under frequent earthquake, repairable damages under basic earthquake and no collapse under rare earthquake or not. The third is whether the proposed structural system can stand the test of the earthquake or not. Without the experimental results, it is hard to validate the seismic theory and harder to apply it to the practical engineering. Especially to the masonry which is the extremely complicated nonlinear material, it is more important to accomplish the full-scale model test. The substructure pseudo-dynamic test method is an effective method that combines the calculation and control of the computer. This method is both convenient and economical to simulate the true seismic action, so it completely fits to simulating the seismic response of the large and complex structure.
     According to the engineering practice and the testing condition, a full-scale three-storey frame-supported reinforced concrete short-leg masonry shear wall test model was constructed in the structural & seismic laboratory of Harbin Institute of Technology. In accordance with the feature of the model, the algorithm and the control method of the substructure pseudo-dynamic test were investigated. Simultaneously this paper studied the failure mode, the failure mechanism and seismic performance under earthquake action. After that, the preliminary study on the strengthened method was finished to the test model damaged by earthquake.
     As an unconditionally stable implicit algorithm, the high-order single-step method has been successfully applied to nonlinear seismic response analysis, semi-active, active vibration control and smart vibration control, the dynamic response analysis for analytic expression of stiffness, and so on. Based on the previous research, this paper introduces the equivalent shear stiffness, and proposes the high-order single-step pseudo-dynamic or substructure pseudo-dynamic testing method. The pseudo-dynamic or substructure pseudo-dynamic test is easily conducted with the assumption of calculated stiffness through the implicit high-order single-step algorithm. The numerical simulation and the test results indicate that the proposed method is more accurate and stable than the central difference method, so it is feasible to apply it to the pseudo-dynamic or substructure pseudo-dynamic test.
     This paper proposes the force-control high-order single-step substructure pseudo-dynamic testing method to solve the problem that the stiffness of test model is relatively large under small peak acceleration. The MDOF testing results show that the force-control testing method is feasible for the large-stiffness model before descent segment of structure restoring force properties that it can improve and develop the existing substructure pseudo-dynamic test method.
     Because of the coupling effect of actuators, the substructure pseudo-dynamic test of MDOF structure model becomes especially complex. Lots of algorithms validated by the numerical and SDOF testing results are invalid for the MDOF model, which either leads to the divergence of the used algorithm or makes the calculated command signal hard to be executed exactly. Therefore, the development of the control technique becomes more and more important for the substructure pseudo-dynamic test home and abroad. Firstly, this paper studies the soft coupling load system control method which is used to approach the command signal step by step. The test results show that the soft coupling load system control method can partly reduce, but can not fundamentally solve the coupling effect of actuators. With the increment of degree of freedom, the control of model test is getting harder, which will result in absolute invalidness of the soft coupling load system control method. Therefore, this paper tries to investigate equivalent force control method. The numerical and testing data demonstrate that equivalent force control method has well robustness. The displacement control of the MDOF system can be realized by rationally setting equivalent force controller that the equivalent force control method can effectually provide a control measure for the substructure pseudo-dynamic test of the MDOF model.
     Using the proposed and validated substructure pseudo-dynamic technique, the systemic substructure pseudo-dynamic test of the full-scale model was finished under the different peak accelerates of the earthquake motion which were 35 gal, 70 gal, 110 gal, 220 gal, 260 gal, 310 gal and 350gal, separately. Then the main conclusions can be got by the test results. The major damage intensively appeared in critical areas which were the bottom frame floor and the shear wall floor in connection with the frame floor and the surrounding parts of the structure were slightly damaged, which shows that the obvious weak parts of the structure don’t appear. Therefore, the frame-supported reinforced concrete short-leg masonry shear wall structure has better seismic performance and can meet the check requirements of elastic-plastic deformation and the 3-level seismic requirements in the 7~8 degree seismic intensity region.
     After the systematic substructure pseudo-dynamic test on the full-scale three-floor frame-supported reinforced concrete masonry short-leg shear wall structure, different damage degrees of model elements such as beams, plates, columns and walls appeared. Therefore, this paper assesses the damage degree of the whole structural model and draws up the corresponding reinforcement scheme. Then, the strengthened model was tested through the same substructure pseudo-dynamic testing method. The applicability of the proposed strengthening technique was discussed for the building damaged by earthquake. Thus, the seismic performance of the strengthened model is proposed to explore the strengthening technique for the structure damaged by earthquake and provide the important reference value for the post-disaster reconstruction.
引文
1王凤来,费洪涛.配筋砌块短肢砌体剪力墙结构简介及受力性能. 2005年全国砌体结构基本理论与工程应用学术会议论文集,2005: 65-68
    2容柏生.高层住宅建筑中的短肢剪力墙结构体系.建筑结构学报,1997,18(6):14~19
    3 R.T.Leon and G.G.Deierlein. Consideration for the Use Quasi-stativ Testing, Earthquake Spectra, Vol. 12, No. 1, February 1996:87~109
    4 Y.J.Park , A.H.S.Ang and Y.K.Wen , Seismic Damage Analysis of Reinforced Concrete Buildings, ASCE, Journal of Structural Engineering, Vol. 111, Vo. 4, 1985:740~757
    5宗周红,林于东,陈慧文等.方钢管混凝土柱与钢梁连接节点的拟静力试验研究.建筑结构学报,2005年2月,26(1):77~84
    6 Xilin Lu, Yun Zou, Wensheng Lu and Bin Zhao. Shaking Table Model Test on Shanghai World Finalcial Center Tower. Earthquake Engineering and Structural Dynamics, 2007;36:439~457
    7 D. Benedetti, P.Carydis and P.Pezzoli. Shaking Table Tests on 24 Simple Masonry Buildings. Earthquake Engineering and Structural Dynamics, 1998;27:67~90
    8 Alidad Hashemi and Khalid M. Mosalam. Shake-table Experiment on Reinforced Concrete Structure Containing Masonry Iinfill Wall. Earthquake Engineering and Structural Dynamics, 2006;35:1827~1852
    9樊珂,李振宝,夏兵等.国家体育馆屋盖模型模拟地震振动台试验研究.北京工业大学学报,2008年2月,34(2):159~172
    10 M.Hakuno, M.Shidowara, T.Hara. Dynamic Destructive Test of a Cantilever Beam, Controlled by an Analog-computer. Transaction of the Japan Society of Civil Engineering,1969,171(12):1~9
    11 M.Nakashima. Stability and Accuracy of Integration Techniques in Pseudo Dynamic Testing. Research Paper No. 105, Bldg. Res. Inst., Ministry of Constr., Tsukuba, Japan, Mar. 1984
    12邱法维.拟动力试验中的数值积分方法.哈尔滨建筑工程学院学报,1994年6月,27(3):120~127
    13 M. Nakashima, T. Kaminosono, etc. Integration Techniques for Substructure PseudoDynamic Test. Proceedings of Fourth U.S. National Conference on Earthquake Engineering. California, 1990, 2: 515~524
    14 H.M.Hilber, T. R. Hugher and R. L. Taylor. Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics. Earthquake Engineering and Structural Dynamics, Vol. 5, No. 2, 1977:283~292
    15 S.N.Dermitzalds and S.A.Mahin. Development of Substructuring Technique for On-line Computer Controlled Seismic Performance Testing, Report No. UCB/EERC-85/04
    16 C.R.Thewalt, S.S.Mahin. Hybrid Solution Techniques for Generalized Pseudo-dynamic Testing.. Report No. UCB/EERC_87/09, Earthquake Engineering Research Center, University of California, Berkeley, CA, 1987
    17 P.B.Shing , M.T.Vanan, et al. Implicit Time Integration for Pseudo-dynamic Test, Earthquake Engineering and Structural Dynamics, 1991, 20(6)
    18 F.Seibal, et. al. Simulation Seismic-load Test on Full-scale Five Story Masonry Building. Journal of Structural Engineering, March 1994, 120(3)
    19邱法维,钱稼茹,陈志鹏.结构抗震试验方法.科学出版社,2000.
    20 S.Y.Chang. Explicit Pseudodynamic Algorithm with Unconditional Stability. Journal of Engineering Mechanics, 2002, 128(9):935~947
    21 K.-C.Tsai, J.-W.Li and T.-F.Wang. Pseudodynamic Performance of Steel Plate Energy-dissipating Substructures. Proc. 5th U.S. natl conf. earthquake eng., Chicago, IL, Vol. I, 1994: 735~744
    22 B.Wu, G.Xu, Q.Wang. Operator-splitting Method for Real-time Substructure Testing. Earthquake Engineering and Structural Dynamics, 2006, 35(3):293~314
    23许国山,吴斌.实时子结构试验OS法的累积误差分析.第11届全国实验力学会议,中国大连,2005
    24王焕定,张永山,王伟等.非线性结构时程分析的高阶单步法.地震工程与工程振动,1996,16(3):48~54
    25王伟,张永山,王焕定等.结构主动控制的一种瞬时最优算法.哈尔滨建筑大学学报,2000,33(3): 11~13
    26耿淑伟,王焕定,王伟,等.主动控制中的高阶单步时滞修正算法.地震工程与工程振动,1998,18(1):271~273
    27王伟,王焕定,耿淑伟,等.高阶单步时滞修正算法主动控制实验研究.地震工程与工程震动,1999,19(3):106~108
    28李进,王焕定,张永山,等.高阶单步实时动力子结构试验技术研究.地震工程与工程振动,2005,25(1):97~101
    29崔雪娜,王焕定,等.刚度解析表达时高阶单步法的研究.地震工程与工程振动,2006,26(4):63~67
    30 M.Nakashima,H.Kato,‘Experimental Error Growth Behavior and Error Growth Control in On-line Computer Test Control Method‘, Research Paper 123, Building Research Institute, Ministry of Construction, Japan, 1987.
    31 R.Peek and W.-H.Yi,‘Error Analysis for the Pseudodynamic Test Method, I: Analysis’, Journal of engineering mechanics. ASCE 116, 1618~1637 (1990).
    32 R.Peek and W.-H.Yi,‘Error Analysis for the Pseudodynamic Test Method 11: Application’, Journal of engineering mechanics. ASCE 116, 1638~1658, (1990).
    33 V.Bayer, U.E.Dorka, U.Füllekrug, J.Gschwilm. On Real-time Pseudo-dynamic Sub-structure Testing: Algorithm, Numerical and Experimental Results. Aerospace Science and Technology, 2005,9:223~232
    34 D.J.Wagg, D.P.Stoten. Substructuring of Dynamical Systems via the Adaptive Minimal Control Synthesis Algorithm. Earthquake Engineering and Structural Dynamics, 2001,30:865~877.
    35 D.Drury, D.P.Stoten, D.J. Wagg, E.G. Gomez, A. Crewe. Advances in Numerical Experimental Substructuring Techniques using MCS Control. 12th European Conference on Earthquake Engineering, 2002, paper reference 277.
    36 S.A.Neild, D.Drury, D.P.Stoten. An Improved Substructuring Control Strategy Based on the Adaptive Minimal Control Synthesis Control Algorithm. Proceeding of the Institution of Mechanical Engineering, Part I: Journal of Systems and Control Engineering, 219(5):305~317.
    37 C.N.Lim, S.A.Neild, D.P.Stoten, D.Drury. Real-time Dynamic Substructure Testing via an Adaptive Control Strategy. Proceedings of the First International Conference on Advances in Experimental Structural Engineering, Nagoya, Japan, 2005: 393~400.
    38吴斌,王向英,王倩颖.电液伺服加载系统的滑动模态控制及其在实时子结构试验中的应用.第四届中国结构控制年会,中国大连,2004
    39 D.W.Clarke, C.J.Hinton. Adaptive Control of Materials Testing. Mechanics Automatic, 1997, 33(6): 1119~1131
    40 O.Mercan, J.M.Ricles, T.M.Marullo. Real-time Pseudo-dynamic Testing of SteelStructures Equipped with Passive Dampers. 5th International Conference on Behaviour of Steel Structures in Seismic Areas, Yokohama, Japan, 2006
    41 O.Mercan, X.Zhang, J.M. Ricles. State Space Control Design for Real-time Pseudodynamic Testing Application. The 8th U.S. National Conference on Earthquke Engineering, San Francisco, California, 2006
    42 Bin Wu, Qianying Wang, P. Benson Shing and Jinping Ou. Equivalent Force Method for Generalized Real-time Substructure Testing with Implicit Integration. Earthquake Engineering and Structure Dynamics, 2007, 36:1127~1149
    43刘季,李暄,张培卿.大刚度结构力控制拟动力实验方法.地震工程与工程振动,1996年12月,16(4):55~59
    44李暄,刘季,田石柱.结构拟动力试验力控制实验技术.地震工程与工程振动,1997年12月,17(1):49~53
    45 J.Dimig, C.Shield, C.French, F.Bailey, and A.Clark. Effective Force Testing: a Method of Seismic Simulation for Structural Testing. Journal of Structural Engineering, 1999, 125(9):1028~1037
    46 C.K.Shield, C.W.French and J.Timm. Development and Implementation of the Effective Force Testing Method for Seismic Simulation of Large-scale Structures. The Royal Society, 2001:1911~1929
    47田石柱,赵桐,赵雪峰.位移保护下力控制拟动力试验方法的原理.地震工程与工程振动,2002年6月,22(3):37~41
    48 P.Pan, M.Nakashima and H.Tomofuji. Online Test Using Displacement-force Mixed Control. Earthquake Engineering and Structural Dynamics, 2005:869~888
    49施楚贤,蔡勇,余志武,黄靓.配筋混凝土砌块砌体框支剪力墙模型房屋抗震性能试验研究.建筑结构学报,2007年12月,28(6):175~184
    50蔡勇.配筋混凝土砌块砌体框支剪力墙房屋抗震性能研究.湖南大学博士学位论文,2005
    51施楚贤,黄靓,蔡勇等.框支配筋砌块砌体剪力墙抗震性能试验研究.建筑结构学报,2007,28(1):89~100
    52黄尚安,邹银生.底部框剪配筋砌块砌体房屋弹塑性地震反应的数值模拟.建筑结构学报,2004,25(1):53~57
    53苑振芳,何振文. 15层配筋砌块住宅试点工程简介.施工技术,1998,第7期:18~20
    54钱义良等.高层配筋砌块砌体房屋的设计. 97全国砌块建筑设计施工技术研讨会论文集,中国建筑砌块协会,1997.4:2~7
    55 M.J.N.Priestley. Seismic Resistance of Reinforced Concrete Masonry Shear Walls with High Steel Percentages. Bull. New Zealand Nat. Soc. Earthquake Engrg. 1977, 10(1):226~236
    56 F.Seible, G.A.Hegemier, A.Igarashi and G.R.Kingsley. Simulated Seismic Load Tests in Full Scale Five Story Masonry Building. Journal of Structural Engineering. 1994, 120(3):903~924
    57 F.Seible, M.J.N.Priestley, G.R.Kingsley, and A.G.Kurkchubasche. Seismic Response of Full Scale Five Story Reinforced Masonry Building. Journal of Structural Engineering. 1994, 120(3):925~947
    58 M.J.N.Priestley. Seismic Design of Concrete Masonry Shear walls. ACI Journal,1986, 83(1): 58~68
    59 P.B.Shing, M.Schuller, and V.S.Hoskere. In~Plane Resistance of Reinforced Masonry Shear Walls. Journal of Structural Engineering. 1990,116(3):619~640
    60 P.B.Shing, J.L.Nolang, and E.Klamerus. Inelastic Behavior of Concrete Masonry Shear Walls. Journal of Structural Engineering. 1989,115(3):2204~2225
    61 P.B.Shing, M.Schuller, V.S.Hoskere, and E.Carter. Flexural and Shear Response of Reinforced Masonry Shear Walls. ACI Journal.1990,87(6):646~656
    62 M.Tomazevic, M.Lutman, and L.Petkovic. Seismic Behavior of Masonry Walls: Experimental Simulation. Journal of Structural Engineering .1996,122 (9):1040~1047
    63 M.Tomazevic and M.Lutman. Seismic Behavior of Masonry Walls: Modeling of Hysteretic Rules. Journal of Structural Engineering. 1996,122(9):1048~1054
    64 Y.H.Chai, L.L.Yaw. Reversed Cyclic Response of Monolithic and Slitted Reinforced Concrete Masonry Wall~piers. Engineering Structures.1999,21: 99~111
    65钱义良,吴明舜. 18层砼小型砌块配筋砌体房屋墙体的静力和抗震试验研究.西班牙配筋砌体研讨会论文集,2000
    66谢小军.混凝土小型砌块砌体力学性能及其配筋墙体抗震性能的研究.湖南大学硕士学位论文,1998:36~62
    67中华人民共和国国家标准.砌体结构设计规范(GB 50003-2001).中国建筑工业出版社,2002
    68龚绍熙.新砌体结构设计规范关于墙梁设计内容的修订.建筑结构,2003,33(6):62~72
    69范砥.砌体结构抗震软件开发及对规范若干问题的初步讨论.哈尔滨工业大学硕士学位论文,2003
    70于德湖.配筋砌块砌体剪力强偏心结构地震响应及实用设计方法.哈尔滨工业大学硕士学位论文,2003
    71曾森.底部框架配筋砌块砌体结构静动力程序开发.哈尔滨工业大学学士学位论文,2005
    72盖遵彬.多层住宅结构方案对比分析.哈尔滨工业大学硕士学位论文,2007
    73孙维东. 7度抗震设防区多层住宅结构方案对比分析.哈尔滨工业大学工程硕士学位论文,2008
    74费洪涛.配筋砌块短肢砌体剪力墙抗震性能的试验研究.哈尔滨工业大学硕士论文,2005.7
    75许祥训.配筋砌块短肢砌体剪力墙抗剪性能试验研究.哈尔滨工业大学硕士学位论文, 2006.7
    76翟希梅,国艳锋,唐岱新.带洞口配筋混凝土砌块墙梁受力性能的试验研究.建筑砌块与砌块建筑,2008,(1):8~10
    77刘洧骥.框支配筋砌块短肢砌体剪力墙墙梁受力性能试验研究.哈尔滨工业大学硕士学位论文, 2007
    78杨刚.框支配筋砌块砌体剪力墙墙梁的试验研究.哈尔滨工业大学硕士学位论文, 2008
    79库克(R.D.Cook).有限元分析的概念和应用(Concepts and Application of Finite Element Analysis).何穷,程耿东译.科学出版社,1981
    80 H.Kato. Research and Development on Performance Evaluation and Structural Control Methods for Buildings with Soft First Story To Ensure The Seismic Safety. Building Research Institute.www.kenken.go.jp, 2002: 1~8
    81 Lee Han-Seon and Ko Dong-Woo. Shaking Table Tests of a High-Rise RC Bearing-Wall Structure with Bottom Piloti Stories. Journal of Asian Architecture and Building Engineering, 2002,1(1): 47~54
    82底层大空间剪力墙结构研究组.底层大空间剪力墙结构12层模型的试验研究.建筑结构学报,1984,5(1):1~8
    83底层大空间剪力墙结构研究组.底层大空间剪力墙结构12层模型的试验研究.建筑科学, 1984, (2):12~20
    84郝锐坤.底层大空间剪力墙结构十二层模拟拟动力试验研究.建筑科学,1986(4)
    85徐培福.底层大空间上层鱼骨式剪力墙结构的抗震设计.建筑科学,1986(4)
    86郝锐坤.底层大空间上层鱼骨式剪力墙结构十二层模拟纵向拟动力试验研究.建筑科学, 1986(4)
    87黄宗瑜,沈聚敏.框支剪力墙结构地震反应研究.建筑结构学报,1986,7(6):40~51
    88廖耘.框支短肢剪力墙结构受力分析.西南交通大学硕士论文, 2002
    89杨金金.框支短肢剪力墙结构转换梁在竖向荷载下的受力分析.西南交通大学硕士论文, 2001
    90鲁瑛、钟树生.竖向荷载作用下钢筋混凝土斜柱-薄壁柱局部转换节点研究.重庆大学硕士论文, 2003
    91王章浩.低周反复荷载作用下框支—短肢剪力墙中斜柱转换结构的试验研究.重庆大学硕士论文, 2005
    92钟树生,祁勇,倪忠.加腋梁式框支短肢剪力墙转换结构试验研究.重庆建筑大学学报,2007年12月,29(6):44~48
    93黄襄云,金建敏,周福霖,杨志勇,罗学海.高位转换框支剪力墙高层建筑抗震性能研究.地震工程与工程振动,2004年6月,24(3):73~81
    94金建敏.高位转换框支剪力墙高层建筑抗震性能研究.武汉理工大学硕士学位论文, 2004
    95雍军.带高位转换层高层建筑框支剪力墙结构抗震性能研究.西南交通大学硕士学位论文, 2008
    96 Xinbao Yang, Jun Wei. Shape Effect on the Performance of Carbon Fiber Reinforced Polymer Wraps. Journal of Composites for Construction.2004,8(5):444~451
    97 Michele Theriault, Kenneth W. Neale. Fiber-Reinforced Polymer-Confined Circle Concrete Columns: Investigation of Size and Slenderness Effects. Journal of Composites for Construction.2004,8(4):323~331
    98 A.Mukherjee,T.E.Boothby. Mechanical Behavior of Fiber-Reinforced Polymer-Wrapped Concrete Columns-complicating Effects. Journal of Composites for Construction.2004,8(2):97~103
    99 Michel samaan,Amir Mirmiran. Model of Concrete Confined By Fiber Composites. Journal of Structural Engineering. 1998, 124(9):1025~1031
    100 Amir Mirmiran, Mohsen Shahawy. Slenderness Limit for Hybrid FRP-Concrete Columns. Journal Composites for Construction, 2001, (1):26~34
    101陶忠,于清. FRP约束钢筋混凝土圆柱力学性能的试验研究.建筑结构学报, 2004,25(6):75~87
    102吴刚,吕志涛.纤维增强复合材料约束混凝土矩形柱应力-应变关系的研究.建筑结构学报, 2004, 25(3):99~106
    103 J.Li, M.N.S. Hadi. Behaviour of Externally Confined High-strength Concrete Columns under Eccentric Loading. Composite structures, 2003:145~153
    104 Toshiaki Fujimoto, Akiyoshi Mukai. Behavior of Eccentrically Loaded Concrete-Filled Steel Tubular Columns. Journal of Structural Engineering,2004, (2) :203~212
    105 N.Plevris, T.C.Triantafillou and D.Veneziano. Reliability of RC Members Strengthed with CFRP Laminates. Journal of Structural Engineering. 1995, 121(7): 1037~1044
    106 Dimitri V. Val. Reliability of Fiber-Reinforced Polymer-Confined Reinforced Concrete Columns. Journal of Structural Engineering, ASCE, 2003, (8): 1122-1131.
    107 T.Y.Kam, E.S.Chang. Reliability Formulation for Composite Laminates Subjected to First-ply Failure. Composite Structures, 1997, 38(1): 447~452
    108 D.M.Frangopol, S.Recek. Reliability of Fiber-Reinforced Composite Laminate Plates. Probabilistic Engineering Mechanics, 2003, 18(4): 119~137
    109 A.M.Okeil, S.El-Tawil and M.Shahaway. Flexural Reliability of Reinforced Concrete Bridge Girders Strengthened with Carbon Fiber-Reinfored Polymer Laminates. Journal of Bridge Engineering, ASCE, 2002, 7(5): 290~299
    110 H.P.Hong and W.Zhou. Reliability Evaluation of RC Columns. Journal of Structural Engineering, 1999, 125(7): 784~790
    111 G.Monti and S.Santin. Reliability-Based Calibration of Partial Safety Coerricients for Fiber-Reinforced Plastic. Journal of Composites for Construction, ASCE, 2002, 6(3): 162~167
    112 M.Thériault, K.W.Neale and S.Claude. Fiber-reinforced Polymer-confined Circular Concrete Columns: Investigation of Size and Slenderness Effects. Journal of composites for construction, 2004, Vol.8, No.4:323-331
    113 J.G.Teng, L.Lam. Behavior and Modeling of Fiber Reinforced Polymer-Confined Concrete. Journal of structural engineering, ASCE, 2004, 130(11):1713-1723
    114金熙男,潘景龙.增强纤维约束混凝土轴压应力-应变关系试验研究.建筑结构学报, 2003, 24(7):47~53
    115于清,韩林海. FRP约束混凝土构件抗弯承载力研究.土木工程学报, 2004, 37(11):33~40
    116 S.N.Bousias, T.C.Triantafillou, M.N.Fardis, L.Spathis and B.A.O’Regan. Fiber-Reinforced Polymer Retrofitting of Rectangular Reinforced Concrete Columns with or without Corrosion. ACI Structural Journal, 2004, 101(4):512-520
    117 A.Fam, D.Schnerch, S.Rizkalla. Rectangular Filament-wound Glass Fiber Reinforced Polymer Tubes Filled with Concrete under Flexural and Axial Loading: Analytical Modeling. Journal of composites for construction, ASCE, 2005, Vol.9, No.1:34-43
    118 A.Fam, D.Schnerch, S.Rizkalla. Rectangular Filament-wound Glass Fiber Reinforced Polymer Tubes Filled with Concrete under Flexural and Axial Loading: Experimental Investigation. Journal of composites for construction, ASCE, 2005, Vol.9, No.1:25-33
    119 S.Matthys, H.Toutanji, K.Audenaert and L.Taerwe. Axial Load Behavior of Large-scale Columns Confined with Fiber-reinforced Polymer Composites. ACI structural journal, 2005, V.102, No.2: 258-267
    120 M.N.S.Hadi. Behaviour of FRP Wrapped Normal Strength Concrete Columns Under Eccentric Loading. Composite Structures, April 2006, Vol. 72, Issue 4:503-511
    121 J.G.Teng, Y.L.Huang. Theoretical Model for Fiber-Reinforced Polymer- Confined Concrete. Journal of Composites for construction. 2007(2):201-210
    122丁孙玮.钢筋混凝土单层厂房抗震鉴定及加固方法研究.同济大学工学硕士学位论文,2008
    123史俊杰.某框架一核心筒结构改建的抗震鉴定及加固设计研究.同济大学工学硕士学位论文,2008
    124郑山锁,郭锦芳,陈爱国,杨勇等.采用斜撑加固钢吊车梁的设计分析与现场动测试验研究.建筑结构学报,2002年第4期:90~96
    125吴波,刘维宁,索晓明,史玉新.城市地铁施工近邻短桩桥基加固效果研究.土木工程学报,2006年第7期:99~103
    126吴波,李惠,林立岩,单明.东北某政府大楼采用摩擦阻尼器进行抗震加固的研究.建筑结构学报,1998年第5期:28~36
    127徐学燕,唐业清,徐国光,何新东.高层建筑纠倾与加固.土木工程学报,1999年第4期:69~74
    128谢新宇,朱向荣,潘秋元,曾国熙.舟山机场场道软基超载预压加固效果分析.土木工程学报,2000年第3期:60~65,91
    129温晓贵,魏纲.某软土地基上倾斜建筑物的纠倾与加固实例.土木工程学报,2004年第8期:61~65
    130苏庆田,张其林,但泽义,赵文曦.宝钢二号高炉炉体框架的加固设计.建筑结构学报,2003年第5期:31~35
    131刘涛,甄星灿.某高层建筑工程质量事故实例分析与加固处理.建筑结构学报,2002年第2期:92~95
    132孙建刚,李岩.八层大开间混凝土砌体结构模型隔震性能试验.大庆石油学院学报,2005年第1期:94-96
    133杨春侠,施楚贤,杨伟军,许兵.混凝土多孔砖砌体模型房屋抗震性能试验研究.建筑结构学报,2006年第3期:84-92
    134施楚贤,蔡勇,余志武,黄靓.配筋混凝土砌块砌体框支剪力墙模型房屋抗震性能试验研究.建筑结构学报,2007年第6期:175-184
    135蔡勇,施楚贤,余志武,黄靓.配筋砌块砌体剪力墙1/4比例模型房屋抗震性能试验研究.土木工程学报,2007年第9期:16-22
    136薛彦涛,刘经伟,徐德良,刘伟庆,杨红伟.大开间约束砖砌体结构模型的拟静力试验研究.建筑结构学报,2002年第1期:48-52
    137刘锡军,邹银生.底部两层框架砌体结构模型试验及动力相似关系.工程抗震,2001年第4期:27-28,38
    138 B.E.Abboud, A.A.Hamid. Harris H. G. Small-scale Modeling of Concrete Block Masonry Structures. ACI Structure Journal,1990,87(2):145-155
    139 J.S.Camacho, R.B.Jr, R. P.Andolfato. An Experimental Investigation of Correlations between Prototypes and Small-scale Modeling of Ceramic Block Masonry Structures. 12th International brick/block Masonry Conference, Spain, 2000
    140 J.S.Amacho, R.P.Andolfato. Dvelopement of the Production Techniques of the Small-scale Concrete Blocks. 12th International brick/block Masonry Conference, Spain, 2000
    141 D.Zonta, G.Zanardo, C.Modena. Experimental Eveluation of the Ductility of Reduced-scale Reinforced Masonry Building. Materials and Structures, 34(12): 636-644
    142 M.Tomazevic, T.Velechovsky. Some Aspects of Testing Small-scale Masonry Building Models on Simple Earthquake Simulators. Earthquake Engineering andStructural Dynamics, 1992(21): 945-963
    143黄靓,施楚贤.配筋砌块砌体结构的模型试验和理论研究.建筑结构学报,2005年第3期:107-113
    144吕西林,周德源.砌体结构墙体模型振动台试验及其动力相似关系.工程抗震与加固改造, 1993年03期
    145王焕定,刘季,李萱.一种解结构动力学运动方程的高阶单步法.哈尔滨建筑大学学报,1980,(4)
    146 Huan-ding Wang, Yong-shan Zhang, Wei Wang. A High Order Single Step-beta Method for Nonlinear Strucutural Dynamic Analysis. Journal of Harbin Institute of Technology(New Series), 10(2):113-119
    147 F.Seible, G.A.Hegemier and A.Igarashi. Simulated Seismic Laboratory Load Testing of Full-scale Buildings. Earthquake Spectra, 1996, 12(1):57–86.
    148高黛陵,吴麒.多变量频率域控制理论.北京:清华大学出版社,1998:30-35
    149 S.G.Buonopan,R.N.White. Pseudodynamic Testing of Masonry Infilled Reinforced Concrete Fame. Journal of Struetural Engineering, 1999, 125(6):101-125
    150王倩颖.实时子结构试验方法及其应用.哈尔滨工业大学博士学位论文,2007.07
    151冯涛.实时子结构试验的无超调等效力控制方法.哈尔滨工业大学硕士学位论文,2007.07
    152 B.Wu, X.Wang, Q.Wang. Sliding Mode Control of Servohydraulic Testing System and Its Application to Real-time Substructure Testing. Proceedings of 4th National Conference on Structural Control, Dalian, China. 2004
    153 D.J.Wagg, D.P.Stoten. Substructuring of Dynamical Systems via the Adaptive Minnimal Control Synthesis Algorithm. Earthquake Engng Struct. Dyn. 2001, 30:865~877
    154谭素杰.抗震结构合理刚度的研究.哈尔滨工业大学博士学位论文, 1997:39~46
    155包世华.新编高层建筑结构.中国水利水电出版社,2003:74~84, 124~131
    156沈聚敏,周锡元,高小旺,刘晶波.抗震工程学.中国建筑工业出版社,2000.12
    157清华大学、西南交通大学、北京交通大学土木工程结构专家组.汶川地震建筑震害分析.建筑结构学报,2008年8月,29(4):1-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700