用户名: 密码: 验证码:
CFRP网架结构静力与抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国社会的发展,经济实力的增强以及人口的城市化,对大跨度空间结构的需求越来越多,要求也在不断提高。众所周知,特定建筑材料建造一定结构形式的建筑物,其跨度存在着一个极限。目前的大跨度建筑多采用钢材,在已建成的建筑中最大跨度可达到200多米,要突破这一跨度极限,使用高强、轻质的新型材料,并合理选择结构形式是一种可行的途径。
     纤维增强复合材料(Fiber Reinforced Plastic,简称FRP)具有比强度高、比模量大、性能易于设计、易加工成型、抗腐蚀、耐疲劳等多种优越性能。这种材料既是一种材料又是一种结构。FRP作为结构材料比传统材料自重轻20%~50%,并且除可以作为承力构件,还具有自感知等功能。因此,FRP的应用日益广泛,从航空航天、国防到民用经济的各个领域,并已经进入土木建筑领域。
     本文以空间结构中最常用的网架结构为研究对象,以碳纤维复合材料(Carbon Fiber Reinforced Plastic,简称CFRP)为构建网架的基本材料,以圆管为构建网架的基本单元,深入系统地研究CFRP网架的静动力特性、动力特性与抗震能力,并与相同跨度、相同网格布置方式和相同构件截面尺寸的钢网架进行对比。
     本文主要研究内容如下:
     首先,设计并制造两组共6个CFRP圆管,进行单向拉压性能试验。研究其抗拉强度和直至破坏的拉伸应力-应变曲线,分析其破坏特征;研究其抗压强度和直至破坏的受压应力-应变曲线,分析试件受压破坏特征。利用CFRP圆管单向拉压本构模型数值计算上述试验试件的拉伸和受压应力-应变曲线,并与试验结果进行比较。
     第二,提出CFRP网架结构的设计方法,包括杆件强度设计原则、杆件的屈曲分析和CFRP网架结构的设计总原则。根据上述设计方法分别设计3种形式的平板网架,并采用通用有限元分析软件ABAQUS分析3种网架在自重和屋面荷载共同作用下的内力分布规律,及网架支撑数量发生变化时其内力分布的变化规律。
     第三,采用ABAQUS计算分析跨度、网格布置方式及杆件截面尺寸均相同的CFRP网架和钢网架分别在常遇和罕遇地震作用下的动力响应,比较二者内力分布规律和频率特性,进而比较分析二者的跨越能力,验证CFRP网架可以实现更大跨度的跨越。
     第四,基于静力弹塑性分析方法,分析CFRP网架在水平、竖向及三向荷载作用下的失效模式,建立基于位移的CFRP网架失效判断准则,给出CFRP网架失效模式控制设计建议。
With the development of society and economy in our country, more and more people migrate to cities. The requirement of long span space structure increased and the request of people for these structures also increased. Structures with longer span are required. However, the span of structures with certain structural form and constructed with certain material has insurmountable limit. The long-span space structures are constructed mainly by steel at the present time, and the largest span of these structures can reach to 200m. To exceed this span limit, a feasible way is choosing reasonable structural form and using new materials, lighter but with higher strength.
     The fiber reinforced plastic (FRP) is just a lightweight and high strength material with many excellent properties, like high specific strength, high specific modulus, easy to be designed and constructed, and good corrosion and fatigue resistance. A structure made by FRP is about 20%-50% lighter than that made by steel. Furthermore, FRP can be used not only to support structural weight, but also as smart sensing material. Until now, FRP has been widely applied in various fields, such as aerospace, defense and civil engineering.
     One type of FRP material, the carbon fiber reinforced plastic (CFRP), is utilized in this dissertation as the basic material to construct the double-layer grids. Each bar element in the double-layer grids is tube element that is wholly constructed by CFRP material. The property of the CFRP double-layer grids under static and dynamic loads are investigated in this dissertation. Also, the earthquake resistance ability of the CFRP grids is investigated. Then the CFRP double-layer grids are compared with traditional steel grids which has the same span, grid and element section.
     The main contents are included as follows.
     First, six CFRP tubes that is divide into two groups are constructed. Performance tests for these CFRP tubes under uniaxial tension and compression load are carried out. The tension strength, together with the stress-strain curves of the specimens up to failure are measured. The failure characteristics of the tubes are observed and analyzed. Also, the compression strength, as well as the stress-strain curves under compression up to the failure of specimen are measured. The failure characteristics of the tubes under compression are analyzed. After that, the stress-strain curves of the specimens under tension and compression load are simulated by utilizing the constitutive model of CFRP tubes. The simulation results and compared with the experimental results.
     Second, the design method for CFRP double-layer grids is proposed, including the design principle of tube strength, the element buckling analysis method and the general design principle of CFRP double-layer grids. Three typical double-layer grids are designed according to the said design method. Then the finite element software, ABAQUS, is utilized to analyze the inner force distribution of these CFRP double-layer grids under the static load that including the deadweight of the grids and the roof board. The variation of inner force distribution with the arrangement pattern of bearings is also discussed.
     Third, the seismic responses of a CFRP double-layer grid and a steel double-layer grid under common earthquake and rare earthquake are calculated by ABAQUS. The two grids have the same span, grid arrangement and element section. The inner force distribution and frequencies are compared for these two double-layer grids. Also, the span ability of these two grids are analyzed and compared. The results indicate that the CFRP double-layer grid has better span ability.
     Finally, the failure mode of CFRP grids under horizontal load, vertical load and three-directional load respectively are analyzed based on the pushover analysis method. The judgement criterion for the failure of CFRP grid is proposed. Also, the design advices controlling the failure mode of the CFRP grid is proposed.
引文
1张毅刚,薛素铎,杨庆山,范峰.大跨空间结构.北京:机械工业出版社,2005:5~6
    2 J. M. Gerrits. Morphology of structural connections of space frames. Proc.,2nd Int. Seminar on Structural Morphology, Interna tional Association for Shell and Spatial Structures, Institute for Lightweight Structures, Stuttgart, Germany. 1994:47~56
    3蓝天.空间钢结构的应用与发展.建筑结构学报. 2001, 22(4):2~8
    4董石麟.预应力大跨度空间钢结构的应用与展望.空间结构. 2001, 7(4):3~14
    5任磊,陈晓恬.大跨空间结构技术在奥运建筑中的运用.华中建筑. 2008, 26(1):108~115
    6刘锡良.国内大型空间结构的最新进展.工程建设与设计. 2005,1:5~10
    7沈世钊.十年来中国悬索结构的发展.第六届空间结构学术会议论文集.北京:地震出版社, 1996:23~29
    8蓝天,刘枫.中国空间结构二十年.第六届空间结构学术会议论文集.北京:建材工业出版社, 2002:14~18
    9赵基达,李明顺.大跨度空间结构在我国的发展及其关键技术.建筑技术. 1997, 28(7):483~484
    10沈世钊.大跨空间结构理论研究和工程实践.中国工程科学. 2001,3(3):34~41
    11 Richard Bradshaw, David Campbell, et al. Special Structures: Past, Present, and Future . Journal of structural engineering, ASCE. 2002, 128(6):691~709
    12王仕统.衡量大跨度空间结构优劣的五个指标.空间结构. 2003 ,9(1):60~64
    13刘锡良.空间结构世界发展水平-简论1994年美国国际空间、网格及张拉结构会议.空间结构. 1994, 1(2):68~71
    14刘锡良,远方.为构造超大跨度空间结构而设想的一种新的结构形式-弦辐结构.空间结构. 1999, 5(1):43~50
    15刘学武.复合材料大跨度空间结构体系及其结构的智能损伤诊断研究.西安建筑科技大学硕士学位论文. 2003
    16刘雄亚,欧阳国恩,张华新,刘宁.透光复合材料、碳纤维复合材料及其应用.北京:化学工业出版社,2006:30~32
    17王均,刘东,王翔,杨小利.碳纤维在功能复合材料中的应用.国外建材科技. 2002, 23(2):6~8
    18 C. E. Bakis, L. C. Bank, V. L. Brown, E. Cosenza, J. F. Davalos, J. J. Lesko, A. Machida, S. H. Rizkalla and T. C. Triantafillou. Fiber-Reinforced Polymer Composites for Construction-State-of-the-Art Review. Journal of Composites for Construction. 2002, 6(2):73~87
    19 B. Bakht, G. Al-Bazi, N. Banthia, et al. Canadian bridge design code provisions for fiber-reinforced structures. Journal of Composites for Construction, ASCE. 2000, 4 (1) :3~15
    20熊光晶,等.混杂纤维复合材料及其在混凝土梁柱加固中的应用研究.建筑结构. 2001, 31 (9) :11~13
    21 J. M. Gilstrap, C. R. Burke, D. M. Dowden, et al. Development of FRP reinforcement guidelines for prestressed concrete structures [ J] . Journal of Composites for Construction, ASCE. 1997,1 (4) :131~139
    22蒋剑彪,赵长伟.纤维增强塑(FRP)加固混凝土结构技术在日本的应用与研究.建筑物改造与病害处理学术论文集. 2001:15~18
    23赵稼祥.日本东丽公司及其碳纤维事业.高科技纤维与应用, 1998, 23(02):16~23
    24 S.Luke, A.Skwarsik. Strenthening with carbon fiber plates. Reinforced plastice, 1998, 3 (3):48~52
    25 P. H. Serp, J. L. Figueiredo,et al. Surface treatments of vapor-grown carbon fibers produced on a substrate. Carbon. 1998,36 (12) :1791~1799
    26王赫,刘亚青,张斌.碳纤维表面处理技术的研究进展.合成纤维. 2007, 1:29~32
    27吴庆,陈惠芳,潘鼎.碳纤维的表面处理.化工新型材料. 1999, 28(3):11~14
    28刘杰,郭云霞,梁节英,等.碳纤维电化学氧化表面处理效果的动态力学热分析研究.复合材料学报. 2004, 21(4):40~44
    29 C. Marieta, E. Schulz, et al. Evaluation of fiber surface treatment and toughening of thermoset matrix on the interfacial behaviour of carbon fiber - reinforced cyanate matrix composites. Composites Science and Technology. 2005, 65:2189- 2197
    30 Norio Iwashita, Eleni Psomiadou, Yoshihiro Sawada. Effect of coupling treatment of carbon fiber surface on mechanical properties of carbon fiberreinforced carbon composites. Composites Part A Applied Science and Manufacturing. 1998, 29:965- 972
    31王德中.环氧树脂生产与应用.北京:化学工业出版社, 2001
    32 D. Eddie, A. Shalaby and S. H. Rizkalla. Glass Fiber-Reinforced Polymer Dowels for Concrete Pavements. ACI Structural Journal. 2001, 98(2):201~206
    33 C. Ballinger. Structural FRP Composites. Civil Engineering. 1990, 60(7):63~65
    34赵渠森.先进战斗机用复合材料树脂基体.高科技纤维与应用. 2004, 25(2):1~8
    35陈平,陆春,于祺,孙明.连续纤维增强PPESK树脂基复合材料的界面性能.材料研究学报. 2005, 19(2):159~164
    36陈平,蹇锡高,陈辉,高巨龙,等.碳纤维复合材料发动机壳体用韧性环氧树脂基体的研究.复合材料学报. 2002, 19(2):24~27
    37徐璋.固体火箭发动机复合材料壳体用树脂基体的选择原则.宇航材料工艺. 1992, 22 (4):38~41
    38 K. Chawla. Fibrous Materials. Cambridge University Press. New York, 1998
    39 R. L. McCullough, Concepts of Fiber - Resin Composites. Marcell Dekker, Inc. New York, 1971
    40赵稼祥.国外碳纤维及其复合材料开发应用动向-2000年美国材料与加工工程促进学会年会与展览侧记.工程塑料应用. 2001, 29(1):46~48
    41 Hiroshi Fukuyama. FRP Composites in Japan. Concrete International. 1999, 10, (10):29~32
    42曹锐,乐清瑞.连续纤维复合材料及其发展历程.工业建筑. 2001, 31(9):54~57
    43冯鹏.新型FRP空心桥面板的设计开发与受力性能研究.清华大学工学博士学位论文, 2004
    44张彦华.工程材料与成型技术.北京:北京航空航天大学出版社, 2005
    45张玉龙.高技术复合材料制备手册.北京:国防工业出版社, 2003
    46 J. G. Paul, P. Azadeh. An experimental study on Kevlar strengthening of beam-column connections. Composite Structures. 2001, (53) :163~171
    47黄玲,于志.碳纤维布在梁桥上部结构加固中的应用.公路交通科技(应用技术版). 2008, (10) :148~150
    48闫长旺,刘曙光,王刚,王猛,王玉清.碳纤维布加固预应力空心板刚度试验与计算.武汉理工大学学报. 2008, (11) :103~107
    49 T. C. Miller, M. J. Chajes, D. R. Mertz, et al. Strengthening of a steel bridgegirder using CFRP plates. Journal of Bridge Engineering, ASCE. 2001, 6 (6): 514~522
    50 S. H. Ahmad, P. Zia, T. J. Yu and Y. Xie. Punching Shear Tests of Slabs Reinforced with 3-D Carbon Fiber Fabric. Concrete International. 1994, 16(6):36~41
    51 M. Saafi. Design and Fabrication of FRP Grids for Aerospace and Civil Engineering Applications. Journal of Aerospace Engineering. 2000, 13(4):144~149
    52王川,欧进萍. FRTP筋制备与基本物理力学性能试验.玻璃钢/复合材料. 2007, (5):20~23
    53 A. Nanni. North American Design Guidelines for Concrete Reinforcement and Strengthening Using FRP: Principles, Applications and Unresolved Issues. Construction and Building Materials. 2003, 17:439~44
    54 L. R. Taerwe. FRP Developments and Applications in Europe. A. Nanni. Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications. Orlando, Elsevier Science Publisher. Amsterdam, 1993, 99~114
    55杜善义,章继峰,张博明.先进复合材料格栅结构(AGS)应用与研究进展.航空学报. 2007, (2):7~12
    56 M. H. Steven, E. M. Troy, M. W. Peter, et al. Manufacturing theory for advanced grid stiffened structures .Composites: Part A. 2002 , 33(2) :155~161
    57 L. R. Taerwe and S. Matthys. FRP for Concrete Construction: Activities in Europe. Concrete International. 1999, 21(10):33~36
    58 E. El-Salakawy, B. Benmokrane, G. Desgagne. Fiber-Reinforced Polymer Composite Bars for the Concrete Deck Slab of Wotton Bridge. Canadian Journal of Civil Engineering. 2003, 30:861~870
    59 A. C. Berg. Analysis of a Bridge Deck Built on U.S. Highway 151 with FRP Stay-In-Place Forms, FRP Grids, and FRP Rebars. MS Thesis of University of Wisconsin at Madison, 2004
    60 B. Brahim, B. Zhang, C. Adil. Tensile properties and behavior of AFRP and CFRP rods for grouted anchor applications.Construction and Building Materials. 2000, 14 (14):157~170
    61黄家康,岳红军,董永祺.复合材料成型技术.北京:化学工业出版社, 2000
    62 H. V. S. GangaRao, C. Craigo. Fiber-reinforced composite bridge desks in theUSA. Structural Engineering International. 1999, 92, 9(2):286~288
    63王景全,孙宝俊,陈娟.钢- FRP桥面板结合梁桥剪力连接件的试验研究.世界桥梁. 2003, (3):40~43
    64 E. G. John. Overview of filament winding. SAMPE Journal. 2001, 371, 37(1):7~11
    65诸爱士,郑传祥,成忠.复合材料基体固化成型工艺综述.浙江科技学院学报. 2008, 20(4):269~273
    66李晓芹,张巨伟.纤维缠绕复合材料管道的应力分析.石油化工应用. 2008, 27(4):106~108
    67 A. K. Alexis. Composite pressure vessel with higher stiffess. Composite Structure. 2000, 48:119~127
    68 M. Shaukat, B. Andrew, N. Mohammad. Fiber-reinforced composite cylindrical vessel with lugs. Composite Structure. 2001, 53(53):143~151
    69廖原,梅力彪.复合材料混凝土预应力组合梁的初步研究.广州大学学报(自然科学版). 2004, 3(2):172~175
    70 M. Amir Large beam-column test on concrete-filled composite tubes. ACI Structural Journal. 2000, 972, 97(2):268~276
    71熊翔,旷文敏,肖鹏,杨阳,姜四洲.模压法制备C/C-Si复合材料的力学性能.中南大学学报(自然科学版). 2008, (03):486~492
    72郭兴峰.三维正交机织物结构的研究.天津工业大学博士学位论文, 2003
    73 P. J. Callus, A. P. Mouritz, M. K. Bannister, et al. Tensile properties and failure mechanisms of 3D woven GRP composites. Composites A. 1999, 30(11):1277~1287
    74孙玉敏,段跃新,李丹,梁志勇,张佐光.风机叶片RTM工艺模拟分析及其优化.复合材料学报. 2005, 22(4):23~29
    75戴福洪,张博明,杜善义,等.复杂形状三维薄壁构件RTM制造工艺注模过程模拟.复合材料学报. 2004, 21 (2): 87~91
    76董永祺.我国树脂基复合材料成型工艺的发展方向.纤维复合材料. 2003, (2):32~34
    77 J. P. Coulter, S. I. Guceri. Resin impregnation during the manufacturing of composite materials subject to prescribed injection rate. J. of Reinforced Plastics and Composites. 1988,75, 7(5):200~219
    78 A. Kelly. Interface effects and the work of fracture of a fibrous composite. Proc R Soc London Ser A. 1970, 319:95~116
    79 P. D. Ewins, R.P. Potter. Some observations of nature of fiber reinforced plastics and the implications for structural design. Philos Trans R Soc London Ser A. 1980, 294:507~517
    80 A. C. Moloney, H. H. Kausch, H. R. Stieger. The fracture of particulate-filled epoxide resins. J Mater Sci. 1983,18:208~219
    81 J. Spanoudakis, R. J. Young. Crack propagation in a glass particle-filled epoxide resins 1: effect of particle volume fraction and size. J Mater Sci. 1984, 19:473~486
    82 J. Spanoudakis, R. J. Young. Crack propagation in a glass particle-filled epoxiside resins 2: effect of particle-matrix adhesion. J Mater Sci. 1984,19:487~496
    83 A. C. Moloneg, H. H. Kaausch, T. Kaiser, H. Bear. Parameters determining the strength and toughness of particulate filled epoxide resins. J Mater Sci. 1987, 22:381~393
    84 J. Cook, J. E. Gordon. A mechanism for the control of crack propagation in all-brittle systems. Proc R Soc London Ser A. 1964, 282:508~520
    85 Y. Tomita, M. Tempaku. Effect of fiber strength on tensile fracture of unidirectional long carbon fiberreinforced epoxy matrix composite. Materials Characterization. 1997, 38:91~96
    86 Y. Tomita, T. Tamaki, K. Morioka. Effect of fiber strength on notch bending fracture of unidirectional long carbon fiber-reinforced epoxy composite. Materials Characterization. 1998, 41:123~135
    87 K. Morioka, Y. Tomita. Effect of lay-up sequences on mechanical properties and fracture behavior of CFRP laminate composites. Materials Characterization. 2000, 45:125~136
    88 L. F. Tenn. Statistical analysis of fibrous composite strength data In: Chamis CC, editor. Test methods and design allowables for fibrous composites, ASTM STP 734, American Society for Testing and Materials. 1981:229~244
    89 B. H. Jones. Probabilistic design and reliability In: Chamis CC, editor. Composite materials, Ch. 8, Structure Design and Analysis, Part II. New York: Academic Press. 1985:33~72
    90 C. T. Sun, S. E. Yamada. Strength distribution of a unidirectional fiber composite. J Comp Mater. 1978, 12:169~176
    91 T. P. Philippidis, D. J. Lekou, D. G. Aggelis. Mechanical property distributionof CFRP filament wound composites. Composite Structures. 1999, 45:41~50
    92 L. Ferry, D. Perreux, D. Varchon, L. L. Bras. Tensile failure of filament-wound pipes under long-term creep loading: a probabilistic analysis. Compos Sci Technol. 1997, 57:1281~1288
    93 D. Perreux, C. Suri. A study of the coupling between the phenomena of water absorption and damage in glass/epoxy composite pipes. Compos Sci Technol. 1997, 57:1403~1413
    94 E. Joseph, D. Perreux. Fatigue behaviour of glass fibre/epoxy matrix filament wound pipes: tension loading tests and results. Compos Sci Technol. 1994, 52:469~480
    95 J. Rousseau, D. Perreux, N. Verdieáre. The influence of winding patterns on the damage behaviour of filament-wound pipes. Composites Science and Technology. 1999, 59:1439~1449
    96 M. Xia, H. Takayanagi, K. Kemmochi. Bending behavior of filament-wound fiber-reinforced sandwich pipes. Composite Structures. 2002, 56:201~210
    97沈观林.复合材料力学.北京:清华大学出版社, 1996
    98刘春城,高洪顺,马桂兰,李毅. CFRP复合材料在土木工程中的应用现状.北华大学学报(自然科学版). 2003, 4(3):258~260
    99 F.C. McCormick. Advancing Structural Plastics into the Future. Struc. Eng, ASCE. 1998, 114(3):235~243
    100 R.M. Measures. Smart Structures A Revolution in Civil Engineering. Advanced Composite Materials in Bridges and Structure. Canada CSCE: Sherbrooke, 1992, 31~59
    101姜天华.碳纤维复合材料(CFRP)在土木建筑结构中的应用及其前景.武汉交通管理干部学院学报. 2001, 3(1):77~80
    102王建平.复合材料斜拉桥设计理论研究.武汉理工大学博士学位论文. 2001
    103李正仁(译).关于在直布罗陀海峡最窄处建造碳纤维强化复合材料桥的建议.国外桥梁. 1990, (4):45~50
    104李松辉.碳纤维布加固桥梁的设计理论研究.大连理工大学博士学位论文. 2003
    105赵彤,谢剑.碳纤维布补强加固混凝土结构新技术.天津:天津大学出版社. 2001
    106匡志平,王皓波,赵强.碳纤维加固桥梁结构技术的应用.同济大学学报. 2001,29(8):986~989
    107 Bakht Baidar, Al-Bazi George et al. Canadian Bridge Design Code Provisions for Fiber-Reinforced Structures. Journal of Composites for Construction. 2000,4(l):3~15
    108 L. C. Hollaway. The Evolution of the Way Forward for Advanced Polymer Composites in the Civil Infrastructure. Proc. of the International Conference on FRP Composites in Civil Engineering, Hong Kong, China. New York: Elsevier Science Ltd., 2001:27~40
    109蔡国宏.先进复合材料在桥梁中的应用现状和发展前景.高新技术专题报道:中国交通. http://www.iicc.ac.cn/jiaotongkj/ gaoxinjs/t20040210_8793.htm, 2000
    110张强,朱华民. FRP材料在日本预应力混凝土桥梁及其它结构中的应用.国外桥梁. 1996, (3):31~35
    111 ACI Committee 440. Prestressing Concrete Structures with FRP Tendons (ACI 440.4R-04). ACI Committee 440, 2004:1~35
    112曾宪桃,车惠民.复合材料FRP在桥梁工程中的应用及其前景.桥梁建设. 2000, (2):66~70
    113 A. C. Berg. Analysis of a Bridge Deck Built on U.S. Highway 151 with FRP Stay-In-Place Forms, FRP Grids, and FRP Rebars. MS Thesis of University of Wisconsin at Madison, 2004
    114 ACI Committee 440. Guide for the Design and Construction of Concrete Reinforced with FRP Bars (ACI 440.1R-03). ACI Committee 440, 2003:1~42
    115 B. Bakht, G. Al-Bazi, N. Banthia, et al. Canadian Bridge Design Code Provisions for Fiber-Reinforced Structures. J. Compos. Const., ASCE. 2000, 4(1):3~15
    116 Y. Sonobe, H Fukuyama, T Okamoto, et al. Design Guidelines of FRP Reinforced Concrete Building Structures. J. Compos. Const., ASCE. 1997, 1(3):90~115
    117茅卫兵,章定国.钢筋新型代用材料FRP筋粘结锚固性能试验研究.河海大学学报(自然科学版). 2000, (5):47~51
    118王博. FRP加筋混凝土梁的力学与自感知性能研究.哈尔滨工业大学博士学问论文, 2004
    119王言磊. FRP-混凝土组合梁/桥面结构试验、分析与设计方法.哈尔滨工业大学博士学问论文, 2008
    120张新越. FRP筋及其加筋混凝土梁桥体系的性能与设计研究.哈尔滨工业大学博士学位论文, 2006
    121 F. Nosternigj. Carbon Fibre Composites as Stay Cables for Bridges. Applied Composite aterials. 2000, 7(2-3):139~150
    122张锡祥,顾安邦.复合材料用于大跨径斜拉桥发展展望.重庆交通学院学报. 1995, 14 (1) :14~19
    123 K. Thomas. Recent All-composite and Hybrid Fiber-reinforced Polymer Bridge and Buildings. Progress in Structural Engineering and Material. 2001,3(2):132~140
    124 N. winkler, P. klein. Carbon Fibre Products (CFP) a Construction Material for the Next Century. In: Challenges for Concrete in the Next Millennium. 1998, (1) :69~72
    125张新军,应磊动.大跨度碳纤维复合材料主缆悬索桥的抗风性能研究.浙江工业大学学报. 2006,34(6):617~621
    126梅葵花,吕志涛. CFRP在超大跨度悬索桥和斜拉桥中的应用前景.桥梁建设. 2002 , (2) :75~78
    127方明山,项海帆,肖汝诚.超大跨径复合材料悬索桥静风性能研究.重庆交通学院学报. 1999 ,18 (3) :1~6
    128郑宏宇,梅葵花,吕志涛. CFRP缆索体系悬索桥的优势及可行性研究.桥梁建设. 2006,(4):7~10
    129张玉成,徐德新.新型CFRP材料在桥梁工程中的应用及前景.重庆交通学院学报. 2005,24(3):28~30
    130应磊东.碳纤维索在大跨度缆索承重桥梁上的应用研究.浙江工业大学硕士学位论文, 2007
    131林芸.复合材料的发展及应用研究.贵阳金筑大学学报. 2003, 51,(3):105~108
    132邱祥,王勇敢,崔广君.复合材料型材发展的前景及应用.房材与应用. 2004, (02):4~5
    133李湘洲.玻璃钢的应用现状与展望.中国建设信息. 1999, (23):24~26
    134晏石林,杨学忠,刘亚雄,庄英.复合材料建筑结构及其应用.北京:化学工业出版社, 2006
    135刘鑫昌.玻璃钢在上海建筑中的应用.上海建材. 1999, (4):32~33
    136彭超义.空间运载器推力支架用复合材料杆件轴压性能研究.国防科学技术大学博士学位论文, 2006
    137 H.Bansemir, O. Haider. Fiber composite structures for space applications-recent andfuture developments. Cryogenics. 1998, 38(1):51~59
    138陶家清,廖明光,冯凌霄.玻璃钢/复合材料大跨度结构工程研究.四川大学学报(工程科学版). 2003, 35(2):45~48
    139叶列平,冯鹏. FRP在工程结构中的应用与发展.土木工程学报. 2006, 39(3):24~36
    140冯鹏,叶列平,包睿,齐玉军. FRP编织网结构体系的概念、形式及基本受力分析.建筑结构学报. 2007, 28(4):109~116
    141钱鹏,冯鹏,叶列平. CFRP-铝合金组合管Keiwitt网壳的弹塑性稳定性.清华大学学报(自然科学版). 2007, 47(9):1423~1426
    142冯鹏,林旭川,钱鹏,叶列平. CFRP增强铝合金组合杆件的受力性能与设计方法.建筑钢结构进展. 2008, 10(1):34~43
    143李冰,潘炳玉.复合材料大跨结构新体系研究.中国建材科技. 2008, (1):59~62
    144冯鹏,叶列平. FRP结构和FRP组合结构在结构工程中的应用与发展.第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会论文集, 2002
    145 L. C. Hollaway. The evolution of and the way forward for advanced polymer composites in the civil infrastructure. Proceedings of the international conference on frp composites in civil engineering. 2001,:27~40
    146 Y. Tmmita, K. Morioka. Effect of lau-up sequence on mechanical properties and fracture behaviour of advanced CFRP laminate composite. Materials Science and Engineering. 1997, A234-236: 778~781
    147 L. Parnas, N. Katirci. Design of fiber-reinforced composite pressure vessels under various loading conditions. Composite Structures. 2002, 58: 83~95
    148 M. Xia, et al. Analysis of multi-layered filament-wound composite pipes under internal pressure. Composite Structure. 2001, 53: 483~491
    149 P. M. Wild, G. W. Vickers, Analysis of filament-wound cylindrical shells under combined centrifugal pressure and axial loading. Composites Part A. 1977, 28A: 47~55
    150张少实,庄茁.复合材料与粘弹性力学.北京:机械工业出版社,2005
    151沈观林.复合材料力学.北京:科学出版社, 2006
    152王向阳,陈建桥,魏俊红.复合材料层合板的可靠性和优化问题的研究进展.力学进展. 2005, (4):
    153 M. J. Hinton, P. D. Soden. Predicting failure in composite laminates: Thebackground to the exercise. Comp Sci &Tech, 1998
    154 T. Y. Kam, H. F. Sher. Nonlinear and first-ply failure analyses of laminated composite cross-ply plates. J. Comp Mater, 1995
    155 K.S. Liu, S.W.Tsai. A progressive Quadratic Failure Criterion for A Laminate. Composites Science and Technology. 1998, 58:1023~1032
    156王向阳,陈建桥.基于最终失效强度的层合板结构的鲁棒优化分析.机械强度. 2004, (6):675~679
    157 S. W. Tsai. A survey of macroscopic failure criteria for composite materials. J. Reinf. Plast. Compos. 1984, 3:40-60
    158钱鹏,叶列平,翁冠群. CFRP管轴心受力性能的试验研究.工业建筑. 2004, 34(4):11~14
    159 P.Tan, L. Tonga, G.P. Steven, Takashi Ishikawa. Behavior of 3D orthogonal woven CFRP composites Part I. Experimental investigation. Composites: Part A . 2000, 31:259~271
    160 C.S. Lee, W. Hwang, H.C. Park, K.S. Han. Failure of carbon/epoxy composite tubes under combined axial and torsional loading 1. Experimental results and prediction of biaxial strength by the use of neural networks. Composites Science and Technology. 1999, 59:1779~1788
    161 C.S. Lee, W. Hwang, H.C. Park, K.S. Han. Failure of carbon/epoxy composite tubes under combined axial and torsional loading 2. Fracture morphology and failure mechanism. Composites Science and Technology. 1999, 59:1789~1804
    162 Hiroshi Fukuda, Tetsuya Watanabe, Masaaki Itabashi, Atsushi Wada. Compression bending test for CFRP pipe. Composites Science and Technology. 2002, 62:2075~2081
    163 F. Ellyin, M. Martens. Biaxial fatigue behavior of a multidirectional filament-wound glass-fiber/epoxy pipe. Composites Science and Technology. 2001, 61:491~502
    164王晓洁,张炜,刘炳禹.碳纤维湿法缠绕基体配方及成型研究.固体火箭技术. 2001, 24(1):60~63
    165 J. Rousseaua, D. Perreux, N. Verdiere. The influence of winding patterns on the damage behaviour of flament-wound pipes. Composites Science and Technology. 1999, 59:1439~1449
    166 R. S. Stephen, V. S. Lloyd. Comparison of the biaxial strength properties of braided and laminated carbon fiber composites. Composites: Part B. 1996,27B(1):71~77
    167 A.Y. Elghazouli, M.K. Chryssanthopoulos, A. Spagnoli. Experimental response of glass-reinforced plastic cylinders under axial compression. Marine Structures. 1998, 11:347~371
    168 H. Levi, O. Ishai, E. Altus , I. Sheinman. Mechanical performance of thin-walled tubular composite elements under uniaxial loading part 1: tensile behavior. Compasite Structures. 1995, 31:163~170
    169 H. Levi, O. Ishai, E. Altus , I. Sheinman. Mechanical performance of thin-walled tubular composite elements under uniaxial loading part 2: compreessive behavior. Compasite Structures. 1995, 31:171~175
    170 Z. Hashin, A. Rotem. A Fatigue Criterion for Fiber-Reinforced Materials[J]. Journal of Composite Materials. 1973, 7:448~464
    171 Z. Hashin. Failure Criteria for Unidirectional Fiber Composites. Journal of Applied Mechanics.1980, 47:329~334
    172庄茁,张帆,岑松,等. ABAQUS非线性有限元分析与实例.北京:科学出版社,2005
    173庄茁,朱以文,肖金生,等. ABAQUS有限元软件6.4版入门指南.北京:清华大学出版社, 2004
    174石亦平,周玉蓉. ABAQUS有限元分析实例详解.北京:机械工业出版社, 2006
    175中华人民共和国行业标准.网架结构设计与施工技术规程(JGJ-91).北京:中国建筑科学研究院, 1991
    176 Z. S. Makowski. Analysis, design and construction of double-layer grids. Applied Science Publishers LTD, London, 1981
    177沈祖炎,陈扬骥.网架与网壳.上海:同济大学出版社, 1997
    178 R. Schütze. Lightweight carbon fibre rods and truss structures. Materials & Design.1997, 18(4/6):231~238
    179赵伶丰,白光明.复合材料胶接接头分析研究.航天器环境工程. 2007, 24(6):393~396
    180 W. H. Lin, M. H. Jen. The Strength of Bolted and Bonded Single-Lapped Composite Joints in Tension . Journal of Composite Materials. 1999, 337, 33(7) :640~666
    181吴晓青,李嘉禄,焦亚男.复合材料胶接方式的设计.纺织学报. 2003, 24(4):372~374
    182 J. S. George. Buckling of moderately thick laminated cylindrieal shells: a review. Composites PartB. 1996, 27:581~587
    183 A. Spannoli, A. Y. Elghazouli, M. K. Chryssanthopoulos. Numerical simulation of glass-reinforced plastic cylinders under axial compression. Marine Structures. 2001, 14:353~374
    184 Y. W. Li, I. Elishakoff, J. H. J. Starnes. Buckling of composite cylindrical shells with periodic thinckness. Composite Structures, 1995, 56:65~75
    185王毅,罗永峰,沈惠申.各向异性复合材料圆柱薄壳轴压下的屈曲性能.同济大学学报. 2006, 30(6):673~679
    186郭明.正交各向异吐复合材料圆柱壳轴对称大变形解析.固体火箭技术. 1997, 20(2):61~66
    187何景轩.固体发动机复合材料裙轴压屈曲载荷计算.固体火箭技术.1998, 21(2):62~65
    188周建平,李道奎,吴德隆等.轴压层合结构脱层屈曲及其扩展研究进展.力学进展. 2000, 30(1):37~46
    189 B. Geier, H. Klein, R. Zimmermann. Buckling test with axially compressed unstiffened cylindrical shells made form CFRP . In J. F. Jullien editor. Proceedings of the International Colloquium on Buckling of Shell Structures, on Land, in the Sea and in the Air, Lyon, Fracne.1991,:498~507
    190 B. Geier, G. Singh.Some simple solutions for buckling loads of thin and thick cylindrical shells and panels made of laminated composite materials. Aerospace Science and Technology. 1997, 1:47~63
    191 H. R. Meyer-Piening, M. Farshad, B. Geier, et al. Buckling loads of CFRP composite cylinders under combined axial and torsion loading-experiments an computations. Composite Structures. 2001, 53:427~435
    192 B. Chiara, C.Potito. An experimental investigation into the buckling and post-buckling of CFRP shells under combined axial and torsion loading. Composite Structures. 2003, 60: 391~402
    193陈永刚,许亚洪,益小苏.引发角对碳纤维/环氧复合材料圆管轴向压溃性能的影响.材料工程. 2004, (12):36~39
    194 A.Y. Elghazouli, M.K. Chryssanthopoulos, A. Spagnoli. Experimental response of glass-reinforced plastic cylinders under axial compression. Marine Structures. 1998, 11:347~371
    195宋宏伟.复合材料圆柱管撞击缓冲吸能特性研究.哈尔滨工业大学工学博士论文, 2001
    196姜鲁珍,文献民,马兴瑞,等.复合材料圆管构件的等效模型研究.工程力学. 2000, (3):127~131
    197 G. A. Kardomateas. Bifurcation of Equilibrium in Thick Orthotropic Cylindrical Shells Under Axial Compression. Journal of Applied Mechanics. 1995, 62 :43~52
    198 D. Yadav, N. Verma, Buckling of composite circular cylindrical shells with random material properties. Composite Structures. 1997, 37(4 ):385~391
    199 G. A. Kardomateas, D. S. Dancila. Buckling of moderately thick orthotropic columns: comparison of an elasticity solution with the euler and Engesser/ Haringx/Timoshenko formulae. Int. J. Solids Structures. 1997, 34(3):341~357
    200 T. S. Plagianakos, D. A. Saravanos. Mechanics and finite elements for the damped dynamic characteristics of curvilinear laminates and composite shell structures. Journal of Sound and Vibration. 2003, 263:399~414
    201 H. Y. Jong. A damping analysis of composite laminates using the closed form expression for the basic damping of Poisson's ratio. Composite Structures. 1999, 46:405~411
    202 B. M. Ramesh, L. S. Reynaud. Double-layer grids: review of dynamic analysis methods and special topics. Journal of structural engineering, ASCE. 2002, 122(8):882~892
    203中华人民共和国国家标准.建筑抗震设计规范(GB 50011-2001).北京:中国建筑工业出版社, 2001
    204种迅,孟少平.钢筋混凝土框架结构全过程pushover分析.地震工程与工程振动. 2005, 25(1): 38~42
    205叶燎原,潘文.结构静力弹塑性分析(push-over)的原理和计算实例.建筑结构学报. 2000, 21(1):37~51
    206侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响.地震工程与工程振动. 2004, 24(3):89~97
    207余师和.竖向地震反应谱.哈尔滨建筑工程学院学报. 1982, (2):26~39
    208周正华,林淋,王玉石,王伟.竖向地震动反应谱.防灾减灾工程学报. 2007, 27: 33~42
    209徐龙军,谢礼立.竖向地震动加速度反应谱特征.地震工程与工程振动. 2007, 27(6):17~23
    210严慧,董石麟.板式橡胶支座节点的设计与应用研究.空间结构. 1995,1(2) :33~40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700