用户名: 密码: 验证码:
面向时间过程的电网静态安全分析与日发电计划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,对于电力系统经济运行,例如日发电计划的安排,均是基于等时间间隔的数据断面进行计算,未充分考虑负荷变化情况,经济效益有待进一步提高。而且,电力系统的经济运行通常仅考虑了完整网络时的安全性,对计及断线事故时的校正控制还缺乏进一步的研究。通常一次事故带来的经济损失,往往高于数年甚至数十年的经济运行效益,故必须重视系统的N-1安全。随着电力系统量测手段的不断更新、状态估计算法及负荷预测技术的进步,电力系统的分析计算可以获得更加精细、准确的断面数据支持,充分利用这些数据无疑会进一步提高电力系统的经济性和安全性。本文基于丰富的量测和负荷预测数据,运用面向时间过程的思想,对电力系统静态安全分析与优化进行了探讨,在提高电力系统安全性同时,保证系统的经济性。
     首先,本文介绍了面向时间过程思想的基本理论和方法。综合考虑电力系统静态安全性和经济性,提出了改进的凝聚型分层聚类方法来对时间过程进行初步的划分。该方法计及了电力系统的运行特性,即电力系统各断面数据在时间上的连续性及各节点注入在空间上的分布特性,优于传统的等时间间隔静态划分方法。定义了提取各子过程最大特征断面、最小特征断面和中值特征断面的评价指标及方法。前两者跟电力系统的安全性紧密相关,中值特征断面能更加真实的反映时间过程内系统的整体负荷水平。
     其次,在用改进的凝聚型分层聚类方法初步划分时间过程以及提取各子过程特征断面的基础上,本文阐述了面向时间过程的静态安全分析方法。提取了各子过程的虚拟最大特征断面。介绍了基于虚拟最大特征断面的多级预想事故选择与评定算法,实现对各子过程中的严重预想事故的快速筛选及排序。将系统N-1静态安全作为约束条件,以子过程内针对特征断面的控制策略一致有效性为原则,实现对相应子时间过程的进一步划分。
     再次,针对传统日发电计划安排没有细致考虑负荷变化情况的不足,本文基于面向时间过程的思想,提出了一种计及负荷变化率的日发电计划安排方法。采用改进的凝聚型分层聚类方法对时间过程进行划分后,在负荷变化平稳时,子过程数量较少且持续时间较长,其中值特征断面更加接近系统的实际负荷水平;而在负荷急剧变化时,子过程数量较多且持续时间较短,其中值特征断面细致刻画了负荷攀峰降谷过程,为顺利渡越陡峭段落提供充足的缓冲时间。基于瓶颈序列分析,运用段落全局优化方法进行求解。同传统方法相比,在不增加计算量的前提下,取得了更为良好的优化效果。同时,发电机在各时段的有功输出更加平稳,利于同自发电控制系统的协调。
     最后,综合考虑面向时间过程的静态安全分析及日发电计划安排方法,提出了面向时间过程的多发电计划方案。在安排日发电计划时,计及了系统的N-1静态安全,为可能发生的严重事故制定了控制预案。系统在满足经济性的同时,其运行的安全性得到进一步提高。
     本文面向时间过程分析方法充分挖掘利用量测及负荷预测数据,详细分析了系统的状态变化情况,跟随系统状态的改变而制定相应的经济运行计划和安全控制策略。在保证系统安全性的前提下,提高了系统的经济效益。
At present, the economic operation of power system, such as the daily generation scheduling, is calculated based on the sections with equal time intervals. The changing trend of load curve is not considered thoroughly. There are still benefit margins for the economic operation of power system. Furthermore, the economic operation scheme usually is established under the condition of intact power network. The security of power network with the losing of one element and the corresponding correction control are lacking of further study. However, the expense brought by one emergency commonly is higher that the benefit gained by economic operation of several years. And enough attention should be paid to the N-1 security of power system. With the constant renewal of measuring approach, the improvement of state estimation method and the development of load forecasting technique, much denser and more accurate data will be provided for calculation. If the data is fully utilized, the economy and security of power system definitely will be promoted. Based on the abundant measuring and forecasting data, the paper makes some study on the power system static security analysis and optimization with the time-process oriented method. The economy of power system is guaranteed while the security is promoted.
     Firstly, the basic theory and method of time-process oriented idea are presented. The improved agglomerative hierarchical clustering (IAHC), which synthetically considers the static security and economy of power system, is put forward to partition the time process preliminarily. IAHC takes into account the operation characteristics of power system, that is, all the data sections are in time sequence and the load injections distribute widely. And it is prior to the traditional partition method with equal intervals. The index to pick up the maximum section, the minimum section of each process is defined. And the way to get the mean section is introduced. The maximum and the minimum section are closely related to the security of power system in the process. The mean section of each process shows the load level that is much closer to the real operation state of power system.
     Secondly, based on the time processes partitioned by IAHC and the characteristic sections extracted, the time-process oriented static security analysis is expatiated. The fictitious maximum section of every sub-process is distilled. Multi-level contingency selection and ranking method is implemented on the fictitious maximum section. And the serious contingencies of each sub-process are selected and ranked rapidly. While the N-1 static security is specified as constraint, the time processes are further partitioned according to the principle that the control schemes are feasible in the whole interval.
     Thirdly, in allusion to the deficiency that the traditional daily generation scheduling roughly consider the load changing trend, the paper presents a novel daily generation scheduling that takes the load variation rate into account with time-process oriented method. During the periods of gentle load variations, the time processes partitioned by IAHC are fewer and last longer. And the mean sections extracted are closer to the actual load level of power system. By contrast, during the periods of abrupt load variation, there are more time processes with shorter time duration. And the mean sections depict in detail the load behavior in the pick-up and drop-down process and provide sufficient buffer time for power system to get through the critical peak and valley loads. Based on bottle neck analysis, the full-stage optimal algorithm is applied to make the daily generation scheduling. Compared with the traditional one, the method proposed attains better optimization effect without increasing any computational workload. Meanwhile, the active outputs of generation units are smoother in every time process and it is easier to coordinate with the automatic generation control (AGC).
     At last, time-process oriented static security analysis and daily generation scheduling are considered integratedly. And a multi daily generation scheduling (MDGS) method is brought forward. MDGS takes the N-1 static security into account and establishes the predetermined correction schemes of the serious contingencies forecasted. The security of power system is promoted while the economy is satisfied.
     The time-process oriented method adequately mines the measurement and forecasting data and makes careful analysis on the changing tendency of power system. In allusion to the changing state, the relative economic operation and correction control schemes are constituted. Under the condition of secure operation, the economic benefit of power system is increased.
引文
1 Massoud Amin. Automation, Control, and Complexity: An Integrated Approach. John Wiley and Sons Ltd., NY. March 2000: 263~286
    2 Massoud Amin. Balancing Market Priorities with Security Issues. IEEE Power and Energy Magazine. 2004, 2(4): 30~38
    3 C.C. Liu. Strategic Power Infrastructure Defense (SPID): A Wide Area Protection and Control System. Transmission and Distribution Conference and Exhibition 2002: Asia Pacific. IEEE/PES. Vol.1, Oct. 2002: 500 ~ 502
    4周双喜,王庆红.关注电力战略防御系统,中国电力. 2003, 36(1): 32~38
    5 C.C. Liu, V. Vittal, et al. The Strategic Power Infrastructure Defense System. IEEE Control Systems Magazine. 2003, 13(8): 40~52
    6 Massoud Amin. Conceptual Design of a Strategic Power Infrastructure Defense (SPID) System. EPRI/DoD Complex Interactive Networks/ Systems Initiative. First Annual Report: TP-114661, May 2000
    7 C.C. Liu, J.Jung, A.G. Phadke, etc. Conceptual Design of the Strategic Power Infrastructure Defense (SPID) System. IEEE Control System Magazine. Aug. 2000: 40~52
    8 G.T. Heydt, C.C. Liu, A.G. Phadke, and V.Vittal. Crisis in the Electric Energy Supply - Solution for the Future. IEEE PES Computer Applications in Power, July 2001: 22~30
    9倪以信,陈寿孙,卢卫星.现代电网的稳定性和安全性.电力系统自动化. 1994, 11(4):12~16
    10丁道齐.现代电网运行中的十大问题.电力系统自动化. 1990, 14(3):3~18
    11郑宝森,郭日彩.中国互联电网的发展.电网技术.2003,27(2):1~3
    12王梅义,吴竞昌,蒙定中.大电网系统技术.水利电力出版社, 1991:1~11
    13王梅义.有感于美国西部电网大停电.电网技术. 1996, 20(9):43~46
    14薛禹胜.综合防御由偶然故障演化为电力灾难——北美“8·14”大停电的警示.电力系统自动化. 2003, 27(18): 1~5
    15唐葆生.伦敦南部地区大停电及其教训.电网技术. 2003, 27(11):1~5
    16陈为化.基于风险的电力系统静态安全分析与预防控制.浙江大学博士学位论文.2007.
    17江长明,朱继忠,徐国禹.有功调度中经济性与安全性的协调问题.电力系统自动化. 1995, 19(11): 43~48.
    18郭志忠.电网自愈控制方案.电力系统自动化. 2005, 29(10): 85~91
    19 W. F. Tinney, C. E. Hart. Power Flow Solution by Newton’s Method. IEEE Trans. on PAS. 1967, 86(11): 1449~1460
    20 B. Stott, O. Alsac. Fast Decoupled Load Flow. IEEE Trans. on PAS. 1974, 93(3): 859~869
    21 H. L. Nguyen. Newton~Raphson Method in Complex Form. IEEE Trans. on Power Systems. 1997, 12(3): 1355~1358
    22 F. Zhang, C. S. Cheng. A Modified Newton Method for Radial Distribution System Power Flow Analysis. IEEE Trans. on Power Systems. 1997, 12(1): 389~397
    23 R. A. M. Amerongen. A General Purpose Version of the Fast Decoupled Load Flow. IEEE Trans. on Power Systems. 1989, 4(2): 760~770
    24 R. D. Zimmerman, H. D. Chiang. Fast Decoupled Power Flow for Unbalanced Radial Distribution Systems. IEEE Trans. on Power Systems. 1995, 10(4): 2045~2052
    25邹森.电力系统安全分析与控制.水利电力出版社, 1995.
    26王宪荣,包丽明,柳焯.极坐标系准最优乘子病态潮流解法研究.中国电机工程学报. 1994, 14(1): 40~45.
    27姚玉斌,鲁宝春,陈学允.小阻抗支路对牛顿法潮流的影响及其处理方法.电网技术. 1999, 23(9): 28~32
    28于继来,王江,柳焯.电力系统潮流算法的几点改进.中国电机工程学报. 2001, 29(9): 88~93
    29吴际舜.电力系统静态安全分析.上海交通大学出版社. 1985.
    30 Halpin T F, Fischl R. Analysis of Automatic Contingency Selection Algorithm. IEEE Trans on PAS. 1984, 103(5): 938~945
    31 Balu N, Brandwajn V, Bose A, et al. On-line Power System Security Analysis Proceedings of the IEEE. 1992, 80(2): 262~280
    32 Ejebe G C, Paliza R F. An Adaptive Localization Method for Real-time Security Analysis. IEEE Trans on Power System. 1992, 7(5): 777~783
    33 Carpentier J. Static Assessment and Control: a Short Survey. Proceedings of Athens Power Tech, 1993, Vol.1: 1~9
    34 A.P.Sakis Meliopoulos, Carol S. Cheng, Feng Xia. Performance Evaluation of Static Security Analysis Methods. IEEE Trans on Power System. 1994, 9(3):1441~1450
    35 K.H.Abdul-Rahman, S.M.Shahidehpour. Static Security in Power System Operation with Fuzzy Real Load Conditions. IEEE Trans on Power System, 1995, 10(1): 77~87
    36 Dy Liacco T E. Real Time Control of Power System. Proceeding of IEEE, 1974, 62(7): 884~891
    37邓佑满,黎辉,张伯明,等.电力系统有功安全校正策略的反向等量配对调整法.电力系统自动化. 1999, 23(18): 5~9
    38赵晋泉,江晓东,张伯明.用于静态稳定预防控制的新灵敏度方法.电力系统自动化. 2004, 28(21): 27~33
    39白晓民,于尔铿,傅书逖,等.一种安全约束经济调度的广义网络流规划算法.中国电机工程学报. 1992, 12(3): 66~72
    40赵晋泉,江晓东,李华,等.一种基于连续线性规划的静态稳定预防控制方法.电力系统自动化. 2005, 29(14): 17~22
    41 Carpentier J, Contribution A. Letude du Dispatching Economique. Bulletin DE LA Societe Francaise DES Electriciens, 1962, 3: 431~447
    42 W.W.Stadlin. Economic Allocation of Regulating Margin. IEEE Trans. Vol. PAS-90, No.4, July/Aug. 1971: 1776~1781
    43 Lee,T.H. Modified Minimum Cost Flow Dispatching Method for Power System Application. IEEE-PAS, Vol.100, 1981: 737~744
    44 Luo J.S, Hill E.F, Lee T.H. Power System Economic Dispatch via Network Approach. IEEE-PAS, Vol.103, 1984: 1242~1248
    45朱继忠,徐国禹.网流技术的不良状态校正法用于安全有功经济调度.重庆大学学报. 1988, Vol.2: 5~11
    46朱继忠,徐国禹. N及N-1安全经济调度的综合研究.中国电机工程学报. 1991, Vol.11: 139~145
    47 Steinberg M J, Smith T H. Economic Loading of Steam Power Plants and Electric Systems. New York: John Wiley and Sons Inc, 1943
    48 EE George. Coordination of Fuel Costs and Transmission Loss by Use of the Network Analyzer to Determine Plant. HW Page, JB Ward - AIEE Trans, 1949
    49 L.K.Kirchmayer, G.W. Stagg. Evaluation of Methods of Co-ordinating Incremental Fuel Costs and Incremental Transmission Losses. Power Apparatus and Systems. Transactions of the American Institute of Electrical Engineers, 1952, PartⅢ, 71(1): 513~521
    50 K.Aoki, T.Satoh. Economic Dispatch with Network Security Constraints Using Parametric Quadratic Programming. IEEE Transactions on Power Apparatus and Systems, Vol. PAS-101, No.12 December 1982: 4548~4556
    51 R Mota-Palomino, V H Quintana. A Penalty Function-Linear Programming Method for Solving Power System Constrained Economic Operation Problems. IEEE Transactions on Power Apparatus and Systems, 1984, 103(6): 1414~1442
    52李文沅.电力网络N-1安全性有功实时经济调度计算的研究.重庆大学博士学位论文. 1987
    53江长明,朱继忠,徐国禹,等.有功调度中经济性与安全性的协调问题.电力系统自动化. 1995, 19(11): 43~48
    54 L.K. Kirchmayer, G.W Stagg. Analysis of Total and Incremental Losses in Transmission Systems. A. I. E. E. Trans., 1951, 70, PartⅡ: 1197~1205
    55 R.H Kerr, L.K Kirchmayer. Theory of Economic Operation of Interconnected Areas. Transactions of the American Institute of Electrical Engineers, 1959, PartⅢ, 78(3): 647~653.
    56丁晓莺,王锡凡.最优潮流在电力市场环境下的最新发展.电力系统自动化. 2002, 26(13): 1~7
    57刘自发,葛少云,余贻鑫.基于混沌粒子群优化方法的电力系统无功最优潮流.电力系统自动化. 2005, 29(7): 53~57
    58 Yan Wei, Liu Fang, Chung C.Y., etc. A Hybrid Genetic Algorithm-interior Point Method for Optimal Reactive Power Flow. IEEE Transactions on Power Systems. 2006, 21(3): 1163~1169
    59 R.Gnanadass, Nara yana Prasad Padhy, T.G.Palanivelu, etc. Evolutionary Programming Based Optimal Power Flow for Generating Units with Non-smooth Fuel Cost Functions. Automation of Electric Power Systems. 2004, 28(5): 38~44
    60李宏仲,王承民,程浩忠.基于参数控制变量最优潮流算法在电力系统配网无功优化中的应用.上海交通大学学报. 2005, 39(增刊): 71~74
    61 Sergio Granville. Optimal Reactive Dispatch Through Interior Point Methods. IEEE Transactions on Power Systems.1994, 9(1): 136~146
    62 P.R.Shoults, D.T.Sun. Optimal Power Flow Based on P-Q Decomposition. IEEE Trans. on Power Apparatus and Systems, Vol.PAS-101, Feb.1982: 397~405
    63严正.最优潮流新算法的研究——交叉逼近法的理论与实践.清华大学博士学位论文. 1991: 1~6
    64 O.Alsac, B.Stott. Optimal power flow with steady-state security. IEEE Trans on Power Apparatus and Systems. Vol.PAS-93, 1974: 745~754
    65 A.Monticelli, M.V.F.Pereira, S.Granville. Security-constrained Optimal Power Flow with Post-contingency Corrective Rescheduling. IEEE Trans. on Power Systems.Vol.PWRS-2, Feb.1987: 175~182
    66 H.Harsan, N.Hadjsaid, P.Pruvot. Cyclic Security Analysis for Security Constrained Optimal Power Flow. IEEE Trans. on Power Systems. 1997, 12(2): 948~953
    67 F.Allella, D.Lauria. Fast Optimal Dispatch with Global Transient Stability Constraint. IEE Generation, Transmission and Distribution. 2001, 148(5): 471~476
    68 Deqiang Gan, Robert J.Thomas, Ray D.Zimmerman. Stability-constrained Optimal Power Flow. IEEE Trans. on Power Systems. 2000, 15(2): 535~540
    69 Yue Yuan, Junji Kubokawa, Hiroshi Sasaki. A Solution of Optimal Power Flow with Multicontingency Transient Stability Constraints. IEEE Trans. on Power Systems. 2003, 18(3): 1094~1102
    70袁越,久保川淳司,佐佐木博司,等.基于内点法的含暂态稳定约束的最优潮流计算.电力系统自动化. 2002, 26(13): 14~19
    71 Luonan Chen, Yasuyuki Tada, Hiroshi Okamoto, etc. Optimal Operation Solutions of Power Systems with Transient Stability Constraints. IEEE Trans. on Circuits and Systems I:Fundamental Theory and Applications. 2001, 48(3): 327~339
    72陈洛南,多田泰之,冈本浩,等.基于经济和稳定的电力系统最优运行策略.电力系统自动化. 2004, 28(10): 8~13
    73 Y.San, Y.Xinlin, H.F.Wang. Approach for Optimal Power Flow with Transient Stability Constraints. IEE Generation, Transmission and Distribution. 2004, 151(1): 8~18
    74杨新林,孙元章,王海风.考虑暂态稳定性约束的最优潮流.电力系统自动化. 2003, 27(14): 13~17
    75 Y.Xia, K.W.Chan, M.Liu. Direct Nonlinear Primal-dual Interior-point Method for Transient Stability Constrained Optimal Power Flow. IEE Generation, Transmission and Distribution. 2005, 152(1): 11~16
    76 Katia C.Almeida, Roberto Salgado. Optimal Power Flow Solutions Under Variable Load Conditions. IEEE Trans. on Power Systems. 2000, 15(4): 1204~1211
    77 Ebrahim Vaahedi, Jeyant Tamby, Yakout Mansour, etc. Large Scale VoltageStability Constrained Optimal VAr Planning and Voltage Stability Applications Using Existing OPF/optimal VAr Planning Tools. IEEE Trans. on Power Systems. 1999, 14(1): 65~74
    78潘雄,徐国禹.连续潮流与最优潮流相结合的电力市场双侧竞价交易计划研究.中国电机工程学报. 2005, 25(6): 6~10
    79 Erahim Vaahedi, Yakout Mansour, Chris Fuchs, etc. Dynamic Security Constrained Optimal Power Flow/Var Planning. IEEE Trans. on Power Systems. 2001, 16(1): 38~43
    80 Florin Capitanescu, Thierry Van Cutsem. Preventive Control of Voltage Security Margins: a Multicontingency Sensitivity-based Approach. IEEE Trans. on Power Systems. 2002, 17(2): 358~364
    81 William D.Rosehart, Claudio A.Canizares, Victor H.Quintana. Effect of Detailed Power System Models in Traditional and Voltage-stability-constrained Optimal Power-flow Problems. IEEE Trans. on Power Systems. 2003, 18(1): 27~35
    82 Hwachang Song, Byongjun Lee, Sae-Hyuk Kwon, etc. Reactive Reserve-based Contingency Constrained Optimal Power Flow(RCCOPF) for Enhancement of Voltage Stability Margins. IEEE Trans. on Power Systems. 2003, 18(4): 1538~1546
    83 William D.Rosehart, Claudio A.Canizares, Victor H.Quintana. Multiobjective Optimal Power Flows to Evaluate Voltage Security Costs in Power Networks. IEEE Trans. on Power Systems. 2003, 18(2): 578~587
    84 Codruta Roman, William Rosehart. Complementarity Model for Generator Buses in OPF-based Maximum Loading Problems. IEEE Trans. on Power Systems. 2005, 20(1): 514~516
    85 T.V.menezes, L.C.P.da Silva, C.M.Affonso, etc. MVAR Management on the Pre-dispatch Problem for Improving Voltage Stability Margin. IEE Generation, Transmission and Distribution. 2004, 151(6): 665~672
    86 H.Ambriz-Perez, E.Acha, C.R.Fuerte-Esquivel, etc. Incorporation of a UPFC Model in an Optimal Power Flow Using Newton's Method. IEE Generation, Transmission and Distribution. 1998, 145(3): 336~344
    87 S.Y.Ge, T.S.Chung. Optimal Active Power Flow Incorporating Power Flow Control Needs in Flexible AC Transmission Systems. IEEE Trans on Power Systems. 1999, 14(2): 738~744
    88 Xiao-Ping Zhang, Edmund Handschin, Maojun Yao. Modeling of the Generalized Unified Power Flow Controller(GUPFC) in a Nonlinear InteriorPoint OPF. IEEE Trans. on Power Systems. 2001, 16(3): 367~373
    89 Carsten Lehmkoster. Security Constrained Optimal Power Flow for an Economical Operation of FACTS-devices in Liberalized Energy Markets. IEEE Trans. on Power Systems. 2002, 17(2): 603~608
    90 Tina Orfanogianni, Rainer Bacher. Steady-state Optimization in Power Systems with Series FACTS Devices. IEEE Trans. on Power Systems. 2003, 18(1): 19~26
    91 B.Venkatesh, M.K.George, H.B.Gooi. Fuzzy OPF incorporating UPFC. IEE Generation, Transmission and Distribution. 2004, 151(5): 625~629
    92谢开,宋永华,于尔铿,等.基于最优潮流的实时电价分解模型及其内点法实现——兼论最优潮流中λp,λq乘子的经济意义.电力系统自动化. 1999, 23(2): 5~11
    93 A.A.Kl-Keib, X.Ma. Calculating Short-run Marginal Costs of Active and Reactive Power Production. IEEE Transactions on Power Systems. 1997, 12(2): 559~565
    94韩肖清,肖宇,张海燕. MATPOWER在电力系统最优潮流实时电价中的应用.太原理工大学学报. 2005, 36(3): 242~245
    95李宏仲,王承民,程浩忠.基于参数控制变量最优潮流算法在电力系统配网无功优化中的应用.上海交通大学学报. 2005,39(增刊): 71~74
    96 Sergio Granville. Optimal Reactive Dispatch Through Interior Point Methods. IEEE Transactions on Power Systems.1994, 9(1): 136~146
    97潘雄,徐国禹.基于最优潮流并计及静态电压稳定性约束的区域间可用输电能力计算.中国电机工程学报. 2004, 24(12): 86~91
    98柳焯.最优化原理及其在电力系统中的应用.哈尔滨工业大学出版社. 1988: 277~292.
    99 D.I.Sun, B.Ashley, B.Brewer, etc. Optimal Power Flow by Newton Approach. IEEE Transactions On PAS. 1984,103(10): 2864~2880
    100 Monticelli A, Liu Wen-Hsuing E.. Adaptive Movement Penalty Method for the Newton Optimal Power Flow. IEEE Transactions on Power Systems. 1992, 7(1): 334~342
    101赵晋泉,侯志俭,吴际舜.改进最优潮流牛顿算法有效性的对策研究.中国电机工程学报. 1999, 19(12): 70~75
    102 G.R.M.da Costa, C.E.U.Costa. Improved Newton Method for Optimal Power Flow Problem. Electrical Power and Energy Systems. 2000, 22: 459~462
    103丁晓莺,王锡凡,张显,等.基于内点割平面法的混合整数最优潮流算法.中国电机工程学报.2004, 24(2): 1~7
    104 Xihui Yan, Victor H.Quintana. Improving an Interior-point-based OPF by Dynamic Adjustments of Step Sizes and Tolerances. IEEE Trans. on Power Systems. 1999, 14(2): 709~717
    105 Imad M.Nejdawi, Kevin A.Clements, Paul W.Davis. An Efficient Interior Point Method for Sequential Quadratic Programming Based Optimal Power Flow. IEEE Trans. on Power Systems. 2000, 15(4): 1179~1183
    106 M.J.Rider, V.L.Paucar, A.V.Garcia. Enhanced Higher-order Interior-point Method to Minimise Active Power Losses in Electric Energy Systems. IEE Generation, Transmission and Distribution. 2004, 151(4): 517~525
    107 M.J.Rider, C.A.Castro, V.L.Paucar, A.V.Garcia. Higher Order Interior-point Method for Minimising Load-shedding in a Competitive Electric Power Market. IEE Generation, Transmission and Distribution. 2004, 151(4): 433~440
    108 M.J.Rider, C.A.Castro, M.F.Bedrinana, etc. Towards a Fast and Robust Interior Point Method for Power System Applications. IEE Generation, Transmission and Distribution. 2004, 151(5): 575~581
    109 Wang Min, Liu Shengsong. A Trust Region Interior Point Algorithm for Optimal Power Flow Problems. Electrical Power and Energy Systems. 2005, 27(7): 293~300
    110韩肖清,肖宇,张海燕. MATPOWER在电力系统最优潮流实时电价中的应用.太原理工大学学报. 2005, 36(3): 242~245
    111 Dong Feng, Chowdhury Badrul H., Crow Mariesa L., etc. Improving Voltage Stability by Reactive Power Reserve Management. IEEE Transactions on Power Systems. 2005, 20(1): 338~345
    112 Yan Wei, Liu Fang, Chung C.Y, etc. A Hybrid Genetic Algorithm-interior Point Method for Optimal Reactive Power Flow. IEEE Transactions on Power Systems. 2006, 21(3): 1163~1169
    113 Jason Yuryevich, Kit Po Wong. Evolutionary Programming Based Optimal Power Flow Algorithm. IEEE Transactions on Power Systems. 1999, 14(4): 1245~1250
    114袁志强,蒋传文,侯志俭.基于混沌优化算法的电力系统经济调度和最优潮流.上海交通大学学报. 2003, 37(9): 1343~1346
    115 Ross D.W., Kim S. Dynamic Economic Dispatch of Generation. IEEE Trans. on Power Apparatus and Systems.1 1980, Vol. PAS-99(6): 2060~2068
    116张勇军,任震.电力系统动态无功优化调度的调节代价.电力系统自动化. 2005, 29(2): 34~38
    117 W.G.Wood. Spinning Reserve Constrained Static and Dynamic Economic Dispatch. IEEE Trans.on PAS. 1982, 101(2): 381-389
    118柳焯.电力系统动态负荷瓶颈分析.哈尔滨工业大学学报. 1994, 26(6): 69~74
    119韩学山,徐志勇,柳焯.动态优化调度积留量法的基本理论──动态优化调度的解耦求解模型.东北电力学院学报. 1996,16(1): 1~7
    120潘毅,柳焯,于尔铿.电力系统动态优化调度的两级协调方程算法.中国电机工程学报. 1996, 16(6): 417~420
    121王永刚,李为东,柳焯.动态优化调度走向实用的策略与段落全局优化.中国电机工程学报. 1998, 18(6): 160~162
    122 X.S. Han, H.B. Gooi, Daniel S. Kirschen. Dynamic Economic Dispatch: Feasible and Optimal Solutions. IEEE Transactions on Power Systems. 2001, 16(1): 22~28
    123 Xia Qing, Song Y.H., Zhang Boming, etc. Dynamic Queuing Approach to Power System Short Term Economic and Security Dispatch. IEEE Transactions on Power Systems. 1998, 13(2): 280~284
    124袁晓辉,袁艳斌,王乘.计及阀点效应的电力系统经济运行方法.电工技术学报. 2005, 20(6): 92~96
    125 Attaviriyanupap P., Kita H., Tanaka E., etc. A Fuzzy-optimization Approach for Dynamic Economic Dispatch Considering Uncertainties. IEEE Transactions on Power Systems. 2004, 19(3): 1299~1307
    126 Guoli Zhang, HaiYan Lu, Gengyin Li. A New Hybrid Real-Coded Genetic Algorithm and Application in Dynamic Economic Dispatch. The Sixth World Congress on Intelligent Control and Automation. 2006: 3627-2632
    127 Xiuqin Shang, Jianggang Lu, Youxian Sun. A Prefence-Based Non-dominated Sorting Genetic Algorithm on Dynamic Economic Dispatch. 7th world Congress on Intelligent Control and Automation. 2008: 25~27
    128 Hosseini S.H, Kheradmandi M. Dynamic Economic Dispatch in Restructured Power Systems Considering Transmission Costs Using Genetic Algorithm. Canadian Conference on Electrical and Computer Engineering. 2004, Vol 3: 1625~1628
    129 Youssef Hosam K., El-Naggar Khaled M.. Genetic Based Algorithm for Security Constrained Power System Economic Dispatch. Electric Power Systems Research. 2000, 53(1): 47~51
    130 Gaing Zwe-Lee. Constrained Dynamic Economic Dispatch Solution Using Particle Swarm Optimization. 2004 IEEE Power Engineering Society GeneralMeeting. Denver. 2004: 153~158
    131 Bo Zhao, Chuangxin Guo, Yijia Cao. Dynamic Economic Dispatch in Electricity Market Using Particle Swarm Optimization Algorithm. Fifth World Congress on Intelligent Control and Automation. 2004, Vol 6: 5050~5054
    132 Attaviriyanupap Pathom, Kita Hiroyuki, Tanaka Eiichi, etc. A Hybrid EP and SQP for Dynamic Economic Dispatch with Nonsmooth Fuel Cost Function. IEEE Transactions on Power Systems. 2002, 17(2): 411~416
    133 Babu G.S.S, Das D.B., Patvardhan C. Dynamic Economic Dispatch Solution Using an Enhanced Real-Quantum Evolutionary Algorithm. Power System Technology and IEEE Power India Conference. 2008: 1~6
    134 Joned A.M., A.A. Musirin, I. Titik Khawa Abdul Rahman. Solving Dynamic Economic Dispatch Using Evolutionary Programming. PECon’06, IEEE International. 2006: 144~149
    135 Shailti Swamp K., Natarajan A.. Constrained Optimization Using Evolutionary Programming for Dynamic Economic Dispatch. Proceedings of 2005 International Conference on Intelligent Sensing and Information Processing. 2005: 314~319
    136 Abdelaziz A.Y, Mekhamer S.F, Kamh M.Z, etc. A Hybrid Hopfield Neural Network-quadratic Programming Approach for Dynamic Economic Dispatch Problem. 12th International Middle-East Power System Conference. 2008: 565~270
    137方兴.面向过程配电网优化研究.哈尔滨工业大学博士学位论文. 2005.
    138方兴,郭志忠.基于时间周期的配电网络动态重构.电力自动化设备. 2004, 24(5): 31~34.
    139方兴,郭志忠.配电网时变无功电压优化方法.电力系统自动化. 2005, 29(9): 31~34.
    140 Fang Xing, Zhizhong Guo, Zhongqin Cai. Improved Moment Method for Network Reconfiguration with Time-varying Load in Distribution Systems. International conference on power system technology, Pan Pacific Singapore. 2004: 139~141
    141 Xing Fang, Zhongqin Cai, Zhizhong Guo. Dynamic Network Reconfiguration Using Time-interval Based Strategy and Improved Moment Method. IEEE Power Engineering Society General Meeting, San Francisco. 2005: 271~277
    142方兴,郭志忠.配电网时变综合优化方法研究.电工技术学报. 2006, 21(9): 31~36
    143陈得治.基于过程的配电网分析与控制的研究.哈尔滨工业大学博士学位论文. 2006
    144毛安家.面向过程测量数据的暂态稳定算法研究.哈尔滨工业大学博士学位论文.2006
    145石连山.面向时间过程的特征模式提取及N-1静态安全分析研究.哈尔滨工业大学硕士学位论文. 2006
    146 Ren Jiangbo, Guo Zhizhong. Period-Oriented State Estimation Approach for Power System Operational Control. 2005 IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific Dalian, China Aug. 2005: 1~7
    147任江波.电力系统过程状态估计研究.哈尔滨工业大学博士学位论文. 2007
    148任江波,郭志忠.电网自愈控制中的状态估计模式.电网技术. 2007, 31(3): 59~63
    149任江波,于尔铿,郭志忠等.基于灵敏度分析的逐次追踪状态估计.电网技术. 2007, 31(7): 64~68
    150白宏.基于PMU量测信息的面向过程状态估计研究.哈尔滨工业大学博士学位论文. 2008.
    151 Lin Yang, Xuefeng Bai and Zhizhong Guo. System State Characterization and Application to Technical Energy Loss Computation. 2007 IEEE/PES General Meeting: Tampa, USA, Jul.2007:1~7
    152杨霖.过程状态特征化方法及其在配网能耗计算与优化中的应用.哈尔滨工业大学博士学位论文. 2008
    153杨霖,郭志忠.系统状态特征化及其在配电网络重构中的应用.中国电机工程学报. 2008,28(16): 39~44
    154杨霖,郭志忠.基于过程状态特征化的电容器动态规划与控制.电力系统自动化. 2008, 32(19):40~44
    155 Lin Yang, Zhizhong Guo. Comprehensive Optimization for Energy Loss Reduction in Distribution Networks. 2008 IEEE/PES General Meeting: Pittsburgh, PA USA, Jul.2008:1~7
    156 Lin Yang, Zhizhong Guo. Reconfiguration of Electric Distribution Networks for Energy Losses Reduction. The Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies: Nanjing, China, Apr.2008:1~7
    157 Marannino P, Granelli G P, Montagna M, etc. Different Time-scale Approaches to the Real Power Dispatch of Thermal Units. IEEE Trans on Power Systems. 1990, 5(1): 169~176

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700