用户名: 密码: 验证码:
氮化硅基多孔透波材料制备及其性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化硅陶瓷是结构陶瓷中综合性能最好的材料之一,它既具有优于一般陶瓷材料的机械性能、很高的热稳定性,又有较低的介电常数,其抗雨蚀、沙蚀能力优于其它天线罩材料。以氮化硅为基体的多孔陶瓷复合材料具有较低的介电常数、较低的密度,能够满足高速飞行器飞行过程中的信号传递功能,又能够通过多体系材料设计与相关试验克服氮化硅陶瓷本身的脆性弱点。本文以氮化硅、氮化硼以及二氧化硅为初始原料,主要从介电性能理论预测、材料体系组成试验、制备工艺研究、性能影响因素试验分析等四个方面对氮化硅基多孔陶瓷复合材料展开研究。
     首先,通过对电磁波在材料中的传播分析,深入研究了材料与结构透波影响因素。并进一步通过蒙特卡洛理论与有限元方法相结合,运用计算结构电容的方法对多孔陶瓷复合材料的相对介电常数进行了理论预测计算,通过拟合分析以及与相对介电常数串联模型、并联模型以及对数模型比较,从而给出了三相多孔材料相对介电常数预测公式。通过有限元数值模拟手段分析了介电常数对结构透波性能的影响。研究结果表明,氮化硅基多孔复合材料在电磁理论分析时隶属于连续随机材料,马尔可夫近似过程以及微扰法能够描述其微观透波过程,材料本身的介电常数对其组成结构透波性能影响最大。三相复合材料体系相对介电常数满足对数模型,建立的三相多孔复合材料相对介电常数预测公式与有限元方法的计算结果相一致。数值模拟结果显示材料介电常数越大,结构微波透过率越低,这与在天线罩材料设计中选用介电常数较低的材料体系理论相符合。
     其次,针对氮化硅、氮化硼以及二氧化硅成型为混合均匀复合材料问题,对初始原料的粒径、形貌进行了试验研究。并且分别通过添加炭粉以及淀粉作造孔剂的初步试验制备,确立了以淀粉作为造孔剂和粘接剂,采用淀粉固结工艺制备氮化硅基多孔复合材料坯体工艺过程。就淀粉固结工艺,试验研究了原材料的Zeta电位以及混合浆料的流变特性,建立了混合陶瓷浆料体系的流变模型,分析了分散剂PEI对混合陶瓷浆料体系粘度的影响,并最终确立了氮化硅、氮化硼、二氧化硅以及水的最佳配比。分别采用真空烧结、气氛烧结以及常压烧结工艺制备氮化硅基多孔陶瓷复合材料,分析了每种工艺制备的多孔陶瓷物相组成,通过烧结后样品的表观分析,最终确定低温常压烧结为本研究材料体系的烧结工艺。
     再次,通过试验以及理论分析深入研究了淀粉固结化学机理以及淀粉固结工艺制备氮化硅基多孔复合材料坯体的过程,得出了陶瓷浆料与玉米淀粉混合体系中水含量以及温度机制对坯体成型的影响,通过多次试验确定了坯体成型的最佳条件为水含量为50%,成型过程采用90℃1h,而后直接进行脱水。对氮化硅基多孔陶瓷材料的常压烧结过程进行了探讨,其烧结原理为氮化硅在低温时体系中氮化硅氧化产生液相,而氮化硼则没有氧化,产生的液相二氧化硅作为高温粘接剂能够促进多孔陶瓷成型,并使其具有一定强度。XRD以及SEM测试分析了保温时间对氮化硅基多孔陶瓷材料成型的影响,试验分析结果表明,烧结体在1100℃保温时间为5h时,烧结情况最好,并且连接紧密,微观结构无缺陷。
     最后,通过试验对显气孔隙率对氮化硅基多孔复合材料力学性能的影响以及显孔隙率、孔隙尺寸分布、频率以及温度等因素对氮化硅基多孔复合材料介电性能的影响进行了讨论分析。结果表明,显气孔隙率越大,其力学性能越低,并给出了相应的显气孔隙率与力学性能关系模型。在一定温度以及频率下,显气孔隙率对介电常数在一定范围内影响很大,能够降低成型的烧结体的介电常数,在该条件下影响介电常数的另一因素是孔隙尺寸分布,孔隙尺寸分布范围大,体系介电常数会有一定程度提高,以RIR法计算的物相质量组成为条件,对多孔陶瓷体系的介电常数进行了理论与试验结果对比,建立的预测公式与试验结果相一致。在室温,高频段的条件下,多孔氮化硅陶瓷复合材料介电常数随频率改变变化很小。在低频段下,多孔氮化硅陶瓷复合材料介电性能受温度的影响很大,温度升高,介电常数以及介电损耗显著升高。对低频下多孔氮化硅复合材料介电常数的变化规律以及原因进行了试验及理论分析,排除了相转变对介电常数的影响。极化理论,具体为德拜驰豫理论很好的解释了多孔氮化硅陶瓷复合材料在低频段介电性能随温度变化原因。
Silicon nitride ceramics are materials with the best combination properties in the structural ceramics. They have better mechanical characters, better thermal stability, and lower dielectric constant compared with other regular ceramics. Their ability of rain and sand erosion of silicon nitride are also superior to other radome materials. Silicon nitride matrix porous composites have low dielectric constant and density, which help to fulfill the request of signal transmission for flight of high-speed flying vehicle. They can also overcome the disadvantage of brittleness through the design of materials and correlated experiments. Based on the start materials of silicon nitride, silicon dioxide, and boron nitride, this research is focusing on the prediction of dielectric properties, the experiment of materials’system with different composition, the analysis of preparation technology, and influential factors on performance in study of silicon nitride matrix porous composites.
     First, according to the analysis results of electromagnetic wave transmission in material, the effect elements on transmission in material and structure were explored profoundly. Further coupled with Monte Carlo technique and FEM method, theoretical prediction of the relative dielectric constant of porous ceramic composites was solved by calculating the capacitance of structure. With the consideration of the format of the serial mixing model, parallel model, and logarithmic mixing rule, a new equation for predicting the dielectric constant of the three phase porous composites was built by fitting the FEM calculated data. Effects of dielectric constant on the transmission ability of microwave in structure were analyzed by FEM mehtod. The results of above analysis showed that silicon nitride matrix porous composite is a kind of continuous random material. Markov approximate process and perturbation theory could describe the process of microwave transmitting in the microscopic view of the materials. Dielectric constant of the material played the most important role in the microwave-transmitting process of the structure. The dielectric constant of three phases composite was in accord with logarithmic mixing rule, the predictor formula of solving the tri-phase porous material matched the results of calculated by FEM very well. It showed that the bigger the dielectric constant was, the better the microwave-transmitting ability of the structure was, which meets the theory for choice of low dielectric constant materials for material design of radome.
     Second, the particle sizes and patterns of the raw materials were studied for even molding composites of silicon nitride, boron nitride, and silicon dioxide. By the preliminary experiments of adding powdered carbon and corn starch as pore-forming agent, the corn starch was chose as both pore former and consolidator in the confectioning of porous composite bodies. Starch consolidation technique was used in the assembly progress of the porous composite green bodies. Zeta potential of the raw materials and rheological dynamics of the slurries were investigated experimentally to solve the potential problem in the starch consolidation technique. A new model for predicting rheological change of mixed slurries was deduced, and effect of PEI on the change of viscosity of ceramic slurries was explored; In the end, the best mixture ratio of silicon nitride, silicon dioxide, boron nitride, and water was fixed. The vacuum sintering, atmosphere sintering, and normal atmosphere sintering were adopted in preparing the silicon nitride matrix porous composites, respectively. Phase compositions of the porous composites prepared by these three sinter technologies were analyzed. According to the apparent patterns to the porous composites analysis, the normal atmosphere sintering technique in relative low temperature was employed in preparing our material systems.
     Third, starch consolidation technique chemism and the process of preparing silicon nitride porous composite green bodies using starch were explored by experiments and theoretical analysis. Effects of water content of the material systems and temperature on preparation of the bodies were studied and the optimal condition for body preparation was 50% water content, starch consolidation at 90℃for 1 h, drying and sintering in the electric muffle furnace. The process of normal atmosphere sintering for silicon nitride matrix porous composites was investigated theoretically. In normal atmosphere condition, at low temperature, silicon nitride could be oxidized, and the liquid phase generated at this process was a kind of high temperature adhesive material, which could accelerate the preparation of the porous composites and enhance the strength of the sintered body. Boron nitride could not be oxidized at this low temperature. Effect of holding time at 1100℃on the preparation of the porous composites was analyzed by XRD and SEM experiments. The results of experiments showed that, the porous composites perfomed perfect close bonding structure at the holding time of 5 h, and no flaw was found in the microstructure of the porous composites.
     Finally, effects of apparent porosity on the mechanical properties as well as the influence of apparent porosity, distribution of pore sizes, frequency, and temperature on the dielectric properties of the porous composites were studied by experiments and theoretical analysis. The mechanical experiments showed that, the bigger the apparent porosity was, the lower the mechanical property was. Models of the relationship between apparent porosity and mechanical property were deduced. The study on the dielectric properties indicated that the apparent porosity had effects on the dielectric constant of the porosity at constant frequency and temperature. Another factor influenced the dielectric properties of the sintered body was distribution of pore sizes; the range of distribution of pore sizes increment could result in increasing dielectric constant. Based on the phase mass percent calculated by relative intensity ratio (RIR) technique, the dielectric constant of the porous composites was predicted by the theoretical equations. The results by the MC equation were in accord with the experimental results. At room temperature, dielectric constant of the porous silicon nitride matrix composite changed little with variation of frequencies. At the range of the low frequency, effect of temperature on the dielectric constant was great, and dielectric constant and loss tangent raised with the increment of the temperature. The variation of the dielectric constant and loss tangent with temperature change was investigated by experiment and theoretical analysis, and the effect of phase transformation on the dielectric properties was eliminated. Debye relaxation theory was applied to explain the variation of the dielectric constant with temperature increment.
引文
1王圣威,金宗哲,黄丽容.多孔材料的制备及应用研究进展.硅酸盐通报, 2006, 25(4):124~129
    2杨坤,齐荣.绿色多功能材料——多孔陶瓷.陶瓷, 2005, 2:15~18
    3 L. M. Rodríguez-Lorenzo, J. M. F. Ferreira. Development of Porous Ceramic Bodies for Applications in Tissue Engineering and Drug Delivery Systems. Materials Research Bulletin, 2004, 39:83~91
    4 H. Nkajima. Fabrication, Properties and Application of Porous Metals with Directional Pores. Progress in Materials Science, 2007, 52:1091~1173
    5 U. F. Vogt, L. Gy?rfy, A. Herzog, T. Graule, G. Plesch. Macroporous Silicon Carbide Foams for Porous Burner Applications and Catalyst Supports. Journal of Physics and Chemistry of Solids, 2007, 68:1234~1238
    6张军,张恒,沈献民,闫耀辰.电磁透波功能复合材料的研究.材料导报, 2003, 7(17):64~66
    7仝毅,周馨我.微波透波材料的研究进展.材料导报, 1997, 11(3):1~5
    8彭望泽.防空导弹天线罩.宇航出版社, 1987:175~178
    9张大海,黎义,高文.高温天线罩材料研究进展.宇航材料工艺, 2004, 34(2):14~16
    10 Bryte. High Performance Radome & Antenna Materials. High performance composites, 1999(7):15
    11谢志勇.堇青石透波材料的研究与制备.天津大学硕士论文. 2004:1~14
    12张漠杰.石英陶瓷天线罩的增强方法.上海航天, 1994, 4:15~16
    13成来飞,刘永胜,张立同,徐永东.氮化物高温透波材料及其应用研究进展.中国航空学会2005年学术会议论文集, 2005: 200~208
    14曹运红,杨鸿昌.新型无机聚合物基复合材料.飞航导弹, 2004, 4:53~55
    15 A. Facciano. High-Temperature Composite Applications for Supersonic Missile Airframes. SAMPE Journal, 2001, 1:9-23
    16 I. G. Talmy, C. A. Martin, D. A. Haught. Electromagnetic Window, 1996, US5573986
    17高冬云,王树海,潘伟,赵浩.高速导弹天线罩用无机透波材料.现代技术陶瓷, 2005, 4:33~35
    18 I. Lew, J. R. A. Spann. Assement of New Radome Material as Replacement for Pyroceram 9606. Proceedings of the 16th symposium on Electro-Magnetic Windows. 1982, 429~436
    19 K. E. Golden. The Prediction and Measure of Dielectric Properties and RF Transmission through Ablating BN Antenna Windows. AIAA 16th Thermophysical Conference, 1981, 23~25
    20胡连成,黎义,于翘.俄罗斯航天透波材料现状考察.宇航材料工艺, 1994, 1:48~52
    21陈虹,张联盟,罗文辉.透波陶瓷材料的研究现状.陶瓷学报, 2003, 24(3):189~192
    22王磊. Si3N4基导弹天线罩材料的研究.山东大学硕士学位论文. 2005: 97~98
    23 S. J. Lee, W. M. Kriven. Fabrication of Low Thermal Expansion and Low Dielectric Ceramic Substrates by Control of Microstructure. Ceramic Processing Research, 2003, 4(3):118~121
    24张伟儒,王重海,刘建,高芳,范景林.高性能透波Si3N4-BN基陶瓷复合材料的研究.硅酸盐通报, 2003, 3:3~6
    25王重海,张伟儒,高芳,李伶,翟萍.纳米SiO2对Si3N4/BN复合材料性能的影响.硅酸盐通报, 2005, 6:43~45
    26李晓云,步文博,徐杰. AlN-BN复合陶瓷及在微波输能窗上的应用.南京化工大学学报, 2001, 6(23):103~106
    27徐常明,王士维,黄校先,郭景坤.热压制备SiO2f/SiO2复合材料的析晶行为及力学性质.硅酸盐学报, 2006, 3(34):284~289
    28李超,刘建超,陈青.航天透波材料的研究进展.高科技纤维与应用, 2003, 6(28):34~39
    29闫联生,李贺军,崔红.高温陶瓷透波材料研究进展.宇航材料工艺, 2004, 2:14~16
    30崔文亮.熔融石英陶瓷的性能改进研究.武汉理工大学硕士论文. 2003:22~25
    31徐常明,王士维,黄校先,郭景坤.无压烧结制备Si3N4/SiO2复合材料.无机材料学报, 2006, 4(21):935~938
    32肖永栋,刘红影,方晓敏.新型无机烧蚀材料的性能及潜在用途.玻璃钢/复合材料, 2003, 3:46~47
    33齐共金,张长瑞,胡海峰.陶瓷基复合材料天线罩制备工艺进展.硅酸盐学报, 2005, 5(33):632~638
    34张俊宝,温广武,贾德昌.硅氧氮陶瓷德先驱体法合成及性能的研究.航空材料学报, 2001, 3(21):39~42
    35王新鹏,田莳.炭化硅纤维增强磷酸铝基复合材料的制备和性能研究.功能材料, 2005, 11(36):1693~1696
    36曹海琳,张杰,黄玉冬.磷酸铬铝高温透波材料的制备和性能研究.宇航材料工艺, 2004, 2:29~31
    37 F. L. Riley. Silicon Nitride and Related Materials. J. Am. Ceram. Soc., 2000, 2(83):245~265
    38陈磊,陈达谦.多孔陶瓷及其发展.现代技术陶瓷, 2001, 3:7-11
    39 J. W. Saggio, C. E. Scott, W. P. Minnear. Processing of Porous Ceramics. Am Ceram Soc Bull, 1992, 71(11):1674~1682
    40 J.–F. Yang, G.–J. Zhang, T. Ohji. Fabrication of Low-Shrinkage, Porous Silicon Nitride Ceramics by Adding of a Small Amount of Carbon. J. Am. Ceram. Soc., 84(7):1639~1641
    41 K. H. Jack. Sialons and Related Nitrogen Ceramics. J. Mater. Sci., 1976, 11:1135~1158
    42 Y. Inagaki, N. Kondo, T. Ohji. High Performance Porous Silicon Nitride. Journal of the European Ceramic Society, 2002, 22:2489~2494
    43 J. M. Garcés, A. Kuperman, D. M. Millar, M. M. Olken, A. J. Pyzik, W. Rafaniello. Synthetic Inorganic Materials. Adv. Mater, 2000, 12(23):1725~1735
    44 M. Arienzo, W. A. Orr-Arienzo. Silicon Nitride in Semiconductor Device Technology. D. A. Bonnell, T. Y. Tien. Preparation and Properties of Silicon Nitride-Based Materials, Switzerland, 1989:228~248
    45 K. L. Luthra. Some New Perspectives on Oxidation of Silicon Carbide and Silicon Nitride. J. Am. Ceram. Soc., 1991, 5(74):1095~1103
    46刘国玺.氮化硅基多孔材料的制备.昆明理工大学硕士论文, 2003:25~50
    47张伟儒.高性能氮化物透波材料的设计、制备及特性研究.武汉理工大学博士论文, 2007:3~11
    48何利华,张漠杰.可控密度氮化硅在导弹天线罩上的应用.制导与引信, 2007, 28(1):33~36
    49闫法强.夹层结构天线罩材料的设计、制备及其宽频透波性能.武汉理工大学博士论文, 2007:76~88
    50姜勇刚,张长瑞,曹峰,王思青,胡海峰,齐共金.氮化物陶瓷基复合材料烧蚀透波性能研究.中国科学, 2007, 37(5):661~666
    51 A. Givant, J. Shappir, A. Sa’ar. Porous Silicon on Insulator: A New Approach to Fabricate Porous Silicon Based Optoeletronic Devices. Phys. Stat. Sol. (a), 2000, 182:149~424
    52 C. Kawai, A. Yamakawa. Machinablility of High-Strength Porous Silicon Nitride Ceramics. Journal of the Ceramic Society of Japan, 1998, 106(11):1135~1137
    53 C. Kawai, T. Matsuura, A. Yamakawa. Separation–Permeation Performance of Porous Si3N4 Ceramics Composed of Columnarβ-Si3N4 Grains as Membrane Filters for Microfiltration. Journal of Materials Science, 1999, 34:893~896
    54 N. Saito, K. Ishizaki, A. Kuzjukevics. The Production of Porous Si3N4 Ceramics with 100-Percent Beta Phase. Gas Pressure Effects on Materials Processing and design; Proceedings of the Symposium, United States, 1991:149-152
    55 A. K. Gain, J. K. Han, H. D. Jang, B. T. Lee. Fabrication of Continuously Porous SiC–Si3N4 Composite Using SiC Powder by Extrusion Process. Journal of the European Ceramic Society, 2005, 26(2006):2467~2473
    56 Y. Inagaki, N. Kondo, T. Ohji. High Performance Porous Silicon Nitride. Journal of the European Ceramic Society, 2002, 22:2489~2494
    57 T. Fukasawa, M. Ando, T. Ohji, S. Kanzaki. Synthesis of Porous Ceramic with Complex Pore Structure by Freeze-Dry Processing. J. Am. Ceram. Soc., 2001, 84(1):230~232
    58 T. Fukasawa, Z. Y. Deng, M. Ando, T. Ohji, S. Kanzaki. Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze-Dry Process. J. Am. Ceram. Soc., 2002, 85(9):2151~2155
    59 S. Deville. A Review of Current Achievements and Issues. Advanced Engineering Materials, 2008, 3:157~169
    60 V. Lysenko, S. Périchon, B. Remaki, D. Barbier. Thermal Isolation in Microsystems with Porous Silicon. Sensors and Acuators, 2002, 99:13~24
    61 A. Díaz, S. Hampshire. Characterisation of Porous Silcon Nitride Materials Produced with Starch. Journal of the European Ceramic Society, 2004, 24(2):413~419
    62宋银锁.高速战术导弹天线罩材料综述.航空兵器, 2003, 1:42~44
    63 Y. Shigegaki , M. E. Brito, K. Hirao, M. Toriyama, S. Kanzaki. Stain TolerantPorous Silicon Nitride. J. Am. Ceram. Soc, 1997, 80(2):495~498
    64 A. Díaz, S. Hampshire, J. F. Yang, S. Kanzaki. Comparison of Mechanical Properties of Silicon Nitrides with Controlled Porosities Produced by Different Fabrication Routes. J. Am. Ceram. Soc, 2005, 88(3):698~706
    65 T. Ohji, K. Hirao, S. Kanzaki. Fracture Resistance Behavior of Highly Anisotropic Silicon Nitride. J. Am. Ceram. Soc, 1995, 78(11):3125~3128
    66 K. P. Plucknett, M. Quinlan, L. Garrido, L. Genova. Microstructural Development in Porousβ-Si3N4 Ceramics Prepared with Low Volume RE2O3–MgO–(CaO) Additions (RE = La, Nd, Y, Yb). Materials Science and Engineering A, 2008, 489:337~350
    67 N. Kondo, Y. Suzuki, T. Ohji. High-Strength Porous Silicon Nitride Fabricated by Partial Sinter-Forging. Key Engineering Materials, 2003, 247:219~222
    68葛伟萍,赵昆渝,李智东.氮化硅多孔陶瓷.云南冶金, 2004, 1(31):47~49
    69张雯,王红洁,张勇,金志浩.酚醛树脂裂解法增强高气孔率多孔氮化硅陶瓷.硅酸盐通报, 2005, 1:25~32
    70崔霞.复合添加制备Si3N4多孔陶瓷材料的研究.昆明理工大学硕士论文, 2005:24~30
    71李军奇,罗发,朱冬梅,周万城.氮化硅多孔陶瓷的制备及微波介电性能研究.稀有金属材料与工程, 2006, 35(2):173~176
    72贾玲,谷景华,张凡伟,赵宇宏,张跃.大气中烧结多孔氮化硅的相变和氧化机理研究.功能材料, 2007, 38:3843~3845
    73廖荣,程之强,胡利明,王重海,袁维军,张训虎.低介电高强度多孔氮化硅陶瓷的研制.现代技术陶瓷, 2007, 1:3~5
    74罗民,程佳,马晶,陈小虎,王斌鉴,杨建峰.仿生制备多孔氮化硅陶瓷.无机材料学报, 2008, 23(4):763~768
    75张勇,王红洁,张雯,金志浩.高强度多孔氮化硅陶瓷的制备与研究.稀有金属材料与工程, 2004, 33(6):655~658
    76李孟瑜,张跃,谷景华.凝胶注模成型多孔氮化硅陶瓷.稀有金属材料与工程, 2007, 36(1):564~566
    77胡汉军,周万城,李坊森,罗发,朱冬梅,徐洁.包覆工艺制备多孔低介电氮化硅陶瓷的研究.功能材料, 2008, 39(9):1480~1482
    78徐洁,罗发,朱冬梅,周万城.孔隙率和孔径烧结多孔氮化硅陶瓷介电性能的影响.硅酸盐学报, 2007, 35(10):1327~1331
    79贾玲,谷景华,张跃.以β-Si3N4为晶种多孔氮化硅陶瓷的制备.人工晶体学报, 2008, 37(5):1124~1127
    80梁小英,李建峰.添加造孔剂法制备多孔氮化硅陶瓷.中国科技信息, 2008
    81崔霞,赵昆渝,李智东,段云彪,周晓龙,吴双桥,李晓雪.添加剂对多孔陶瓷显气孔率的影响.云南冶金, 2006, 34(3):50~53
    82陕绍云,杨建峰,高积强,张文辉,金志浩.用炭热还原法制备多孔氮化硅陶瓷.无机材料学报, 2006, 21(4):913~918
    83徐洁,罗发,朱冬梅,周万城.预烧结对反应烧结多孔氮化硅陶瓷性能的影响.航空材料学报, 2008, 28(3):39~43
    84崔峰,耿浩然,田宪法,李金峰,王守仁.多孔网状Si3N4陶瓷增强体的制备.硅酸盐学报, 2005, 33(5):655~658
    85韩桂芳,张立同,成来飞,徐永东.二维石英纤维增强多孔Si3N4-SiO2基复合材料的制备及其力学性能.复合材料学报, 2007, 24(1):91~96
    86 W. Zhang, H. J. Wang, Z. H. Jin. Gel Casting and Properties of Porous Silicon Carbide/Silicon Nitride Composite Ceramics. Materials Letters, 2005, 59:250~256
    87 S. Q. Ding, Y. P. Zeng, D. L. Jiang. Oxidation Bonding of Porous Silicon Nitride Ceramics with High Strength and Low Dielectric Constant. Materials Letters, 2007, 61:2277~2280
    88 X. Li, X. Yin, L. Zhang, L. Cheng, Y. Qi. Mechanical and Dielectric Properties of porous Si3N4-SiO2 Composite Ceramics. Materials Science and Engineering A, 2008:doi:10.1016/j.msea.2008.09.066
    89 M. J. Hall, J. P. Hiatt. Exit Flows from Highly Porous Media. Phys. Fluids, 1994, 6(2):469~479
    90 G. J. Zhang, F. Y. Jian, O. Tatsuki. Fabrication of Porous Ceramics with Undirectionlly Aligned Continuous Pores. J. Am. Ceram. Soc, 2001, 84(6):1395~1397
    91 K. Wemer, S. Maria. Method of Manufacturing Porous Sintered Inorganic Bodies with Large Open Pore Volume. US Pat, No 4588540, 1986
    92 N. Ichinose. Advances in Electronic Ceramic Materials in Japan. IEEE Electrical Insulation Magazine, 1988, 4(3):24~30
    93 H. Nakajima. Fabrication, Properties and Application of Porous Metals with Directional Pores. Progress in Materials Science, 2007, 52:1091~1173
    94 K. Schwartzwalder, A. V. Somers. Method of Making Porous Ceramic Articles.US Pat, 1963, No. 3090094
    95 N. O. Engin, A. C. Tas. Manufacture of Macroporous Calcium Hydroxyapatite Bioceramics. Journal of the European Ceramics Society, 1999, 19:2569~2572
    96 J. G. Kim, J. G. Ha, T. W. Lim, K. Park. Preparation of Porous BaTiO3-Based Ceramics by High-Energy Ball-Milling Process. Materials Letters, 2006, 60:1505~1508
    97 L. M. Rodríguez-Lorenzo, J. M. F. Ferreira. Development of Porous Ceramic Bodies for Applications in Tissue Engineering and Drug Delivery Systems. Materials Research Bulletin, 2004, 39:83~91
    98 E. Gregorová, W. Pabst. Porous Ceramics Prepared Using Poppy Seed as a Pore-Forming Agent. Ceramic International, 2007, 1385~1388
    99 L. E. Lunin, V. E. Sheremet, A. G. Kostornov, N. P. Sleptsova. Structure of a Porous Material from a Metal Powder Milled and Mixed together with a Pore-Forming Agent. Powder Metallurgy and Metal Ceramics, 1983, 22:255~257
    100 N. Engin, A. Tas. Preparation of Porous Ca10(PO4)6(OH)2 andβ-Ca3(PO4)2 Bioceramics. J. Am. Ceram. Soc., 2000, 83(7):1581~1584
    101 S. Rakib, M. Sghyar, M. Rafiq, A. Larbot, L. Cot. New Porous Ceramics for Tangential Filtration. Separation and Purification Technology, 2001, 25:385~390
    102 C. Balászi, F. S. Cinar, O. Addemir, F. Wéber, P. Arató. Manufacture and Examination of C/Si3N4 Nanocomposites. Journal of European Ceramics Society, 2004, 24(12):3287~3294
    103蔡舒,周彩楼,李金有,葛志平.双相磷酸钙多孔陶瓷的制备.陶瓷学报, 2001, 22(3):187~190
    104 O. Lyckfeldt, J. M. F. Ferreira. Processing of Porous Ceramics by‘Starch Consolidation’. Journal of the European Ceramic Society, 1998, 18:131~140
    105王连星,党桂彬.系列孔径多孔陶瓷的研制.功能材料, 1997, 28(2):186-191
    106韩永生,李建保,魏强民.多孔陶瓷材料应用及制备的研究进展.材料导报, 2002, 16(3):26~29
    107 L. Zhang, S. P. Jiang, W. Wang, Y. Zhang. NiO/YSZ, Anode-Supported, Thin-Electrolyte, Solid Oxide Fuel Cells Fabricated by Gel Casting. Journal of Power Sources, 2007, 170:55~60
    108 W. H. Wollaston. On a Method of Freezing at a Distance. Philosophical Transactions of the Royal Society of London, 1813, 1:448~449
    109 W. Mahler, M. F. Bechtold. Freeze-Formed Silica Fibres. Nature, 1980, 285:27~28
    110杨涵崧,朱永长,李慕勤,吕迎.多孔陶瓷的研究现状与发展.佳木斯大学学报, 2005, 23(1):88~91
    111 L. Zhang, H. S. Cho, F. Li, R. M. Metzger, W. D. Doyle. Cellular Growth of Highly Ordered Porous Anodic Films on Aluminium. Journal of Materials Science Letters, 1998, 17:291~294
    112 E. Tang, G. Cheng, X. Pang, X. Ma, F. Xing, Synthesis of Nano-ZnO/poly(methylmethacrylate) Composite Microsphere through Emulsion Polymerization. Colloid Polym Sci, 2006, 284:422~428
    113梁永仁,罗艳妮,杨志懋,丁秉钧.多孔陶瓷及其制备方法研究进展.绝缘材料, 2006, 39(2):60~64
    114吴兴惠,项金钟.现代材料计算与设计教程.电子工业出版社, 2002: 204~206
    115赵凯华,陈熙谋.电磁学.第二版.高等教育出版社, 1985:783~785
    116 E. Arvas, A. Rahhalarabi, U. Pekel, E. Gundogan. Electromagnetic Transmission through a Small Radome of Arbitrary Shape. IEE PROCEEDINGS, 1990, 137(6): 401~403
    117 K. Wakino, T. Okada, N. Yoshida, K. Tomono. Aew Equation for Predicting the Dielectric Constant of a Mixture. J. Am. Ceram. Soc., 1993, 76(10):2588~2594
    118 X. C. Fan, X. M. Chen, L. Li. FEM Simulation of Microwave Dielectric Properties for Biphase Ceramics. Journal of the European Ceramic Society, 2006, 26:2179~2183
    119 A. Hieke. ANSYS APDL for Capacitance. Proceedings from“Second International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators”, 1999: 172
    120 Y. Sun, Q. Meng, D. Jia, C. Guan. Effect of Hexagonal BN on the Microstructure and Mechanical Properties of Si3N4 Ceramics. Journal of Materials Processing Technology, 2007, 182:134~138
    121 R. W. Trice, J. W. Halloran. Influence of Microstructure and Temperature on the Interfacial Fracture Energy of Silicon Nitride/Boron Nitride Fibrous Monolithic Ceramics. J. Am. Ceram. Soc., 1999, 82(9):2502~2508
    122 X. Mao, S. Wang, S. Shimai. Porous Ceramics with Tri-Modal Pores Prepared by Foaming and Starch Consolidation. Ceramics International, 2008, 34(1):107~112
    123 G. P. Roberts, H. A. Barnes, P. Carew. Modeling the Flow Behaviour of Very Shear-Thinning Liquids. Chemical Engineering Science, 2001, 56:5617~5623
    124 X. J. Liu, L. P. Huang, X. Xu, X. R. Fu, H. C. Gu. Optimizing the Rheological Behavior of Silicon Nitride Aqueous Suspensions. Ceramic International, 2000, 26:337~340
    125王盘鑫.粉末冶金学.第三版.冶金工业出版社, 2000:188~269
    126果世驹.粉末烧结理论.冶金工业出版社, 1998:11~25
    127 G. N. Babini, A. Bellosi, P. Vincenzini. A Diffusion Model for the Oxidation of Hot Pressed Si3N4-Y2O3-SiO2 materials. Journal of Materials Science, 1984, 19:1029~1042
    128 J. E. Sheehan. Passive and Active Oxidation of Hot-pressed Silicon Nitride Materials with Two Magnesia Contents. J. Am. Ceram. Soc., 1982, 65:111~113
    129 K. K. Phani, S. K. Niyogi. Young’s Modulus of Porous Brittle Solids. J. Mater. Sci., 1987, 22:257~263
    130 T. Ostrowski, J. R?del. Evolution of Mechanical Properties of Porous Alumina during Free Sintering and Hot Pressing. J. Am. Ceram. Soc., 1999, 82(11):3080~3086
    131 J. P. Calame, A. Birman, Y. Carmel, D. Gershon, B. Levush. A Dielectric Mixing Law for Porous Ceramics Based on Fractal Boundaries. J. Appl. Phys., 1996, 80(7):3992~4000
    132 L. J. Manfredo, L. D. Pye. Dielectric-Relaxation Currents in Cadmium Borosilicate Glasses. J. Appl. Phys., 1978, 49(2):682~685

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700