用户名: 密码: 验证码:
再生骨料对混凝土性能影响的试验研究和计算分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国处于工业化、城市化、现代化的进程中,这一特殊的发展阶段和人口众多的国情决定了各种资源材料的大量需求和各种垃圾、废料大量产生的共存局面。资源和环境问题的不断恶化,促使可持续发展战略的实施。土木建筑工程作为最大的资源耗费产业之一应成为实施这一战略的重点行业。土建废料和垃圾的再利用和资源化是落实这项战略的有效途径。
     建筑垃圾用于混凝土生产的方式一种为分解出建筑垃圾中的混凝土块体加工成再生混凝土骨料,一种为直接用建筑垃圾生产再生混合骨料。
     再生混凝土骨料的表观密度和堆积密度分别在2.31kg/m3~2.62kg/m3和1.29kg/m3-1.47kg/m3之间,其吸水率处于4%-10%之间,压碎指标在14.2%-23.1%之间。再生骨料混凝土抗压强度随再生骨料替代率增加而降低,随水灰比增大而降低。再生骨料混凝土的抗拉强度受替代率影响比较小,随着再生骨料替代率的增大,再生骨料混凝土的坍落度急剧下降、弹性模量降低、收缩值显著增大、抗冻性基本不变、渗透性增大、碳化速度略有增加、抗硫酸盐侵蚀性略有降低。
     建筑垃圾中砖瓦、混凝土碎块、玻璃、木纤维、沥青、旧塑料和贝壳等不同再生骨料成分对混凝土抗压强度、抗拉强度、弹性模量和收缩量等性能有不同的影响。玻璃骨料会产生有害的碱骨料反应,但当磨细到一定程度后能提高混凝土抗压强度,并减小膨胀。再生混凝土碎块对混凝土各项性能均有不利影响。旧塑料骨料可提高混凝土的延展性和抗渗性,减小收缩值。沥青骨料会影响混凝土的抗拉压强度,但提高了混凝土的韧性。贝壳骨料使混凝土的工作性能、弹性模量下降。
     通过不同再生骨料成分对混凝土性能影响的试验研究发现,由厦门地区建筑垃圾破碎而得到的再生混合骨料的密度要小于传统的再生骨料和天然骨料,且由于碎红砖等其他成分的存在,再生混合骨料的吸水率要高于再生骨料和天然骨料,强度也会低于再生骨料和天然骨料。再生混合骨料混凝土,当用水量为300kg、水胶比为0.6、再生混合粗骨料替代率50%时平均强度最高。正交试验表明,水胶比对抗压强度的影响最大,再生混合骨料的替代率次之,用水量更次。再生细骨料比再生粗骨料对混凝土强度的影响大,混凝土抗压强度和抗拉强度相差17.7%和18.5%。再生混合粗骨料含量不超过50%对混凝土强度不会产生影响。再生粗骨料中红砖成分的增加会使得抗压强度和抗拉强度分别降低11.3%和7.4%。再生粗骨料中碎瓷砖成分会使得混凝土的抗压强度和抗拉强度下降大约8.1%。预先将再生细骨料和再生骨料全部浸湿会严重降低再生混凝土强度。再生混合细骨料的取代率提高,再生混凝土的抗拉强度下降。随着砂率的提高,再生混凝土抗拉强度提高,添加一定量的聚羧酸系高效减水剂时,再生混凝土的和易性和流动性均有所提高,且坍落度也会增加,可提高抗压强度10%-15%,抗拉强度可提高10%-14%。当粉煤灰掺量分别为25%和35%时,其强度大约下降了32.1%和36.8%。再生混合骨料用于制造混凝土多空砖一般能满足砌块强度要求,掺加粉煤灰时,其合理掺量为小于15%。
     通过再生混凝土骨料级配对混凝土强度和工作性能影响的试验研究发现,采用再生骨料的自然级配制备混凝土,混凝土工作性能差,受压强度低。按《混凝土泵送施工技术规程》要求的骨料级配制备再生混凝土,混凝土工作性能差,受压强度比较低。再生骨料的抗压强度与其粗骨料的级配具有密切关系,当再生粗骨料的级配较差时,再生骨料混凝土的强度很低,28天抗压强度不到15Mpa,当再生粗骨料的级配合理时,其抗压强度将得到很大的提高,28天抗压强度将可以达到40Mpa。增加粒径范围19-26.5mm和26.5-31.5mm的骨料含量,混凝土工作性好,受压强度高。而增加粒径范围4.75-9.5mm的骨料含量,混凝土工作性能差,受压强度低。粗细再生骨料含量不超过60%时再生混凝土工作性能可以满足施工要求和强度可以达到40Mpa左右。再生骨料替代率分别为50%、60%时,调整粒径范围9.5-26.5mm的骨料,使其级配接近,再生混凝土强度可以高于天然骨料的混凝土强度。
     骨料本身作为复杂的非规则体,用传统的几何学来描述骨料非常困难。利用分形学对骨料的特征分析表明:骨料级配需要一定的粒径宽度,才能满足骨料的粒径级配分形条件;骨料的空隙率与骨料的最大,最小粒径,骨料级配以及骨料堆积密度分维有关;级配骨料的总表面积取决于骨料的最大、最小粒径,骨料的级配分形、表面积分形和骨料质量,同时还取决于测量尺度;由于骨料表面主要是和水泥发生作用,因此测量尺度一般取水泥粒子的粒径量级比较合理。
     混凝土中骨料总表面积和结合层厚度的乘积就是包裹骨料需要的水泥浆体积,用包裹骨料需要的水泥浆体积除以混凝土中水泥浆总体积可得浆裹比,浆裹比直接反映了水泥浆和骨料之间结合层的相互关系。浆裹比可以反映不同骨料级配变化引起的骨料表面的变化。浆裹比值越大,骨料的表面积越大,包裹骨料需要的水泥浆越多。当水灰比为0.55时,浆裹比大于0.085时,混凝土工作性能好差,受压强度低。当浆裹比小于0.085时,混凝土工作性能较好,受压强度高。当浆裹比比较小时,中部粒径范围9.5-26.5mm骨料级配差异较小时,混凝土工作性能较好,受压强度高;而当中部粒径范围9.5-26.5mm骨料级配差异较大时,混凝土工作性能差,受压强度低。
     以骨料级配确定骨料粒径的分布,在空间随机分布骨料颗粒,通过颗粒-弹簧模型模拟骨料颗粒和水泥浆,形成混凝土细观力学的计算模型,计算结果表明,这一方法不仅可以对普通混凝土进行细观分析,通过弹簧的调节,也可以对再生混凝土进行分析。
China is in the progress of industrialization, Urbanization and modernization. In this special development stage, and because of large population, the situation that great deals of various resources material are consumed and great quantities of various garbage or wastes are produced is coexistence. With the resources and the environment problem are continuously worsen, the sustainable development strategy is urged to implement. The civil engineering should be the major field to bring into effect because it is the biggest resources waste industry. Recycling and resource recovery of C&D waste are an effective way to the implementation of this strategy.
     The C&D waste are used to concrete production in two way:one way that the decompounded concrete pieces are produced into the recycled concrete aggregate and another way that C&D waste is directly produced into the recycled combined aggregate.
     The recycled aggregate behaviour was found that apparent density and stacking density are between 2.31-2.62 (kg/m3) and 1.29-1.47 (kg/m3), water absorption is 4%-10%, crush index is 14.2%-23.1%. The compressive strength of recycled concrete reduces with the increase of recycled aggregate substituting ratio and water/cement ratio. Its tensile strength was less affected by substituting ratio. With the increase of recycled aggregate substituting ratio, the slump of recycled concrete rapidly reduce, its elastic model reduce, its shrinkage markedly increase, its frost resistance is less infected, its permeability increase, its carbonization speed slightly increase, its sulphate resistance slightly reduce.
     The effects of different materials in the recycled combined aggregate on the properties of concrete were summarized, including the effects of tile、crashed concrete、glass、wood sawdust、asphalt、oyster shell and recycled plastic on the properties of concrete which include compressive strength、tensile strength、elastic modulus、shrinkage quantity. The activity of tile and glass which were crashed into some degree of fineness increased, and it could minish the effect on the properties of concrete. The crashed concrete had bad effect on the properties of concrete. The recycled plastic could enhance the toughness of concrete. The oyster shell would reduce the elastic modulus of concrete, but had not affect on its early-strength.
     Through different components of the recycled aggregate concrete performance test it is found that, the density of recycled combined aggregate broken from C&D wastes in the Xiamen area is less than the traditional density of recycled aggregate and natural aggregate, and because of broken brick and other ingredients exist, the water absorption of recycled combined aggregate is high than the recycled concrete aggregate and natural aggregate, the strength is lower than the recycled concrete aggregate and natural aggregate. The average strength of recycled combined aggregate concrete is the maximum when the water quantity is 300kg, water-cement ratio is 0.6, and the recycled combined aggregate replacement rate is 50%. Orthogonal tests results showed that water-cement ratio on the compressive strength has of the greatest impact, the recycled combined aggregate replacement rate is next, and water quantity is the minimum. Recycled fine aggregate has of high-impact on concrete strength than the recycled coarse aggregate. Compressive strength and tensile strength has a difference of 17.7% and 18.5%. The content of the recycled combined coarse aggregate have no clear impact on the strength of the concrete when it is not more than 50%. The increase of the red-brick component in the recycled combined coarse aggregate would make the compressive strength and tensile strength decreased by 11.3% and 7.4%. the broken tile component will make the compressive strength and tensile strength fell by about 8.1%. Beforehand wetted the recycled fine aggregate and recycled aggregate would seriously reduce the strength of recycled concrete. The replacement rate of the recycled combined fine aggregate increases, the tensile strength of concrete will fall. With the increase in the rate of sand, recycled concrete tensile strength increase. Adding a certain amount of polycarboxylate superplasticizer, the recycled concrete workability and fluidity are improved, and the slump will increase, can increase 10% to 15% of compressive strength, tensile strength can be increased by 10%~14%. When the fly ash amount are 25% and 35%, its strength declined by about 32.1% and 36.8%. The recycled combined aggregate can be used in the manufacture of concrete blocks and meet the general requirements of the block strength. Admixture of fly ash, its reasonable dosage is less than 15%
     Through the experiment results of the recycled concrete aggregate gradation on concrete strength and working properties, it is found that if using recycled aggregate natural gradation, concrete work performance is poor, compressive strength is low. Preparing the recycled concrete aggregate gradation on requirements of "Technical Specification for Construction of Concrete Pumping, " the recycled concrete work performance is poor, compressive strength is relatively low. The compressive strength of recycled aggregate concrete has a close relationship with coarse aggregate gradation. When the recycled coarse aggregate gradation is weaker the strength of recycled aggregate concrete is very low,28 days compressive strength is less than 15Mpa. When the recycled coarse aggregate gradation is in the reason state, its compressive strength will be greatly improved; 28-day compressive strength will be able to reach 40Mpa. Increasing the size range 19-26.5mm and 26.5-31.5mm in aggregate content concrete workability is good, compressive strength is high. Increasing the size range 4.75-9.5mm aggregate content, performance of concrete is poor, compressive strength is low. When coarse and fine recycled aggregate content is not more than 60% the workability of recycled concrete can meet the construction requirements and the strength can reach 40Mpa around. Recycled aggregate replacement rates were 50%, 60%, adjusting the content of 9.5-26.5mm size of the aggregate to make gradation close; recycled concrete strength can be higher than the natural aggregate concrete strength.
     Aggregate itself as a complex non-rule body, using traditional geometry to describe the aggregate is very difficult. The use of fractal analysis to the characteristics of the aggregate shows that:aggregate gradation of particle size requires a certain width in order to meet the particle size aggregate gradation fractal conditions; aggregate porosity with the aggregate maximum size, minimum size, aggregate gradation and fractal dimension of packing density of aggregate has relationship; the total surface area of aggregate gradation depends on the largest and the smallest particle size, of aggregate, the fractal of aggregate gradation, surface area fractal and aggregate quality; also depends on the measurement scales; the aggregate surface mainly react with cement, so the measurement scales can take the particle size of cement.
     The product of aggregate total surface area with the thickness of aggregates combination layer is the volume of mortar required for wrapping aggregate. The mortar volume required for wrapping aggregate divided by the total volume of available mortar is called wrapped ratio. Wrapped ratio is a direct reflection of the inter-relationship between the aggregate combination layer and mortar. Wrapped ratio reflects the change of the aggregate surface changes due to the different aggregate gradation. The greater wrapped ratio the larger the aggregate surface area, more needed mortar to wrap aggregate. When the water-cement ratio was 0.55, the wrapped ratio was greater than 0.085, the concrete workability is poor, with low compressive strength. When wrapped ratio is less than 0.085, the concrete workability is better, compression strength is high. When the wrapped ratio is smaller, the difference of aggregate gradation in central particle size range 9.5-26.5mm is small, concrete workability is better, compressive strength is high; the difference of aggregate gradation in the middle size range 9.5-26.5mm is large, concrete workablity is poor, with low compressive strength.
     Determining the aggregate particles size distribution by aggregate gradation and randomly distributing aggregate particles in concrete space, through the particles-spring model to simulate aggregate particles and mortar the meso-mechanics calculation model can be established. The calculation results show that this method not only can be used to analysis of ordinary concrete, and can also be used to recycled concrete analysis through the spring adjustment.
引文
1.1邢锋,冯乃谦,丁建彤:再生骨料混凝土[J],混凝土与水泥制品,1999年第2期,10-13。
    1.2孙跃东,肖建庄:再生混凝土骨料[J],混凝土,2004年第6期,33-36。
    1.3 ACI Committee 555:Removal and reuse of hardened concrete[J], ACI Material Journal,2002,99(3):300-325.
    1.4刘巽伯,计亦奇,池建业:复合骨料和高强复合骨料混凝土研究[J],混凝土,2006年第3期,10-14。
    1.5张宝生,孔丽娟,葛勇,袁杰:混合骨料混凝土综述[J],混凝土,2006年第5期,20-23。
    1.6孔丽娟,葛勇,袁杰,张宝生:混合骨料混凝土应力-应变全曲线的研究[J],武汉理工大学学报,第29卷第7期,2007年7月。
    1.7《混凝土用再生粗骨料》(征求意见稿),中华人民共和国国家标准GB/T***—200*
    1.8《混凝土和砂浆用再生细骨料》(征求意见稿),中华人民共和国国家标准GB/T***—200*
    1.9 Vivian W. Y. Tam and C.M. Tam:A review on the viable technology for construction waste recycling[J], Resources, Conservation and Recycling,2006,47(3):209-221.
    1.10 Khalaf FM, De Venny Alan S:Recycling of demolished masonry rubble as coarse aggregate in Concrete:review [J]. ASCE J Mater Civil Eng 2004:331-340.
    1.11 Akash Rao, Kumar N. Jha, Sudhir Misra:Use of aggregates from recycled construction and demolition waste in concrete[J], Resources, Conservation and Recycling,2007,50(1),71-81.
    1.12《循环经济法(草案)》若干内容解读,全国人大环资委法案室主任孙佑海博士,2007年09月06日,法制网http://news. cctv. com/law/ 20070906/107946. shtml
    1.13中华人民共和国国家统计局:http://www. stats. gov. cn/tjsj/ndsj
    1.14 Cement Statistics and Information:http://minerals.usgs.gov /minerals/pubs/commodity/cement
    1.15 Pierre-Claude Aotcin:Cements of yesterday and today Concrete of tomorrow[J], Cement and Concrete Research,2000,30(5):1349-1359
    1.16 Historical Statistics for Mineral and Material Commodities in the United States http://minerals.usgs.gov/ds/2005/140/cement.pdf
    1.17 United Nation, United Nation Statistics Division http://www. un. org/chinese/esa/progareas/stats. html http://esa. un. org/unpp/ http://unstats. un. org/unsd/cdb/cdb_dict_xrxx. asp?def_code=63
    1.18 J. G. Shi, Y. Z. Xu:Estimation and forecasting of concrete debris amounts in China[J], Resources Conservation And Recycling,2006,49 (2):147-158
    1.19杨松涛,王刚:我国水泥消费之拐点[J],中国水泥,2004,11,52-55。
    1.20 Lei Shen, Shengkui Cheng, Aaron James Gunson, Hui Wan:Urbanization, sustainability and the utilization of energy and mineral resources in China[J], Cities,2005,22 (4):287-302.
    1.21曾芬钰,论我国城市化战略的可持续性[D],厦门:厦门大学,2003,4。
    1.22中国宏观经济信息网,China macroeconomic information Network,21世纪上半叶中国经济长期预测,http://macrochina. com. en /report/free/detail/xs/008/00001493. shtml
    1.23高长明:世界水泥工业的市场机遇与风险对策,中国建材报,2007-04-26
    1.24中国砂石协会,砂石行业2003年经济运行分析及2004年发展预测[J],中国建材,2004年第1期,90-91
    1.25中国砂石协会,砂石行业2002年经济运行分析及2003年发展预测[J],中国建材,2003年第2期,82-83
    1.26中国砂石协会,砂石行业2001年经济运行分析及2002年发展预测[J],中国建材,2002年第2期,82-83
    1.27仲启偕:产品多元化市场需求多元化的行业发展基础仍需夯实—“十五”混凝土砌块(砖)行业发展回顾与“十一五”展望[J],建筑砌块与砌块建筑,2006.1,6-8
    1.28刘永民:对建筑废弃物再生利用的思考,中国建材科技[J],2008年3期
    1.29王罗春,赵由才:建筑垃圾处理与资源化[M],化学工业出版社,2004-09-01
    1.30国务院办公厅关于进一步推进墙体材料革新和推广节能建筑的通知,中华人民共和国国务院办公厅,2005-08-04
    1.31许岳周:再生骨料混凝土级配对强度的影响研究与数值模拟[M],厦门大学硕士毕业论文,2007,5
    1.32许岳周,石建光:再生骨料及再生骨料混凝土的性能分析与评价[J],混凝土,2006年7期
    1.33孙跃东,肖建庄:再生骨料混凝土骨料[J],混凝土.2004年第6期,33-36
    1.34徐亦冬,周士琼,肖佳:再生骨料混凝土骨料试验研究[J],建筑材料学报,2004年12月第4期,447-450
    1.35卢鹏程:再生骨料混凝土的抗压强度特征[J],混凝土,2004年第7期,34-36
    1.36《再生骨料应用技术规程》(征求意见稿),中华人民共和国行业标准,JGJ/T××—20××
    1.37陈莹,严捍东,林建华,王琼:再生骨料基本性质及对混凝土性能影响的研究[J],再生资源研究,2003年第6期,34-37
    1.38孔德玉,吴先君,韦苏:再生骨料混凝土研究,浙江工业大学学报.第31卷第1期2003年2月.29-33
    1.39 Jose'M. V. Go'mez-Sobero'n. Porosity of recycled concrete with substitution of recycled concrete aggregates an experimental study [J]. Cement and Concrete Research 2002,32 (5) 1301-1311
    1.40 Ilker Bekir Tope, u, Selim S. engel, Properties of concretes produced with waste concrete aggregate[J]. Cement and Concrete Research, 2004,34 (5) 1307-1312
    1.41邢振贤,周曰农:再生骨料混凝土的基本性能研究[J],华北水利水电学院学报,1998年6月第19卷第2期,30-32
    1.42任庆旺,邱茂智,薛梅,杨鼎宜:再生骨料混凝土的研究现状及其基本性能[J],建筑技术开发,2005年2月第32卷第2期,44-46
    1.43朱缨:建筑废弃混凝土再生利用的分析与研究[J],建筑石膏与胶凝材料,2003.9.58-59
    1.44 Tavakoli, Mostafa, Soroushian, Parviz. Drying shrinkage behavior of recycled aggregate concrete [J]. Concrete International.1996,18 (11):58-61
    1.45水中和,邱晨,赵正齐,潘智生,万惠文:再生骨料混凝土骨料含水状态与新拌混凝土的性能[J].国外建材科技,2003年第24卷第5期,1-2
    1.46水中和,潘智生,朱文琪,詹必浩:再生集料混凝土的微观结构特征[J],武汉理工大学学报,2003年12月,第25卷第12期,99-102
    1.47尚建丽,李占印,杨晓东:再生粗集料特征性能试验研究[J],建筑技术,2003年第34卷第1期,52-53
    1.48覃银辉,邓寿昌,张学兵:再生混凝土与普通混凝土抗冻性能的比较[J].混凝土,2007年7期,34-36.
    1.49王军强,陈年和,蒲琪:再生混凝土强度和耐久性能试验[J].混凝土2007年5期,53-56.
    1.50王立久,汪振双,崔正龙:再生混凝土抗冻耐久性试验及寿命预测[J].混凝土与水泥制品,2009年4期,6-8.
    1.51陈爱玖,章青,王静,盖占方:再生混凝土冻融循环试验与损伤模型研究[J].工程力学,2009年11期,102-107.
    1.52 Buck A. D. Recycled concrete as a source of aggregate [J]. ACI Journal, May 1,1977,212-219.
    1.53 Salomon M. Levy, Paulo Helene. Durability of recycled aggregates concrete:a safe way to sustainable development [J]. Cement and Concrete Research,2004,34(6):1975-1980.
    1.54朱映波:再生骨料混凝土的耐久性及其改善措施[J],混凝土,2004年第7期,31-33
    1.55 B. C. S. J. Study on recycled aggregate and recycled aggregate concrete [J]. Concrete Journal,1978,16(7):18-31.
    1.56 Rasheeduzzafar, Khan. Recycled concrete-a source of new aggregate [J]. Cement, Concrete, and Aggregates (ASTM),1984,69 (1):17-27.
    1.57杜婷,李惠强,郭太平,周志强:再生骨料混凝土的抗氯离子渗透性试验研究[J].武汉理工大学学报,2006年5期,33-36.
    1.58肖开涛,林宗寿,万惠文,杨力远:再生混凝土氯离子渗透性研究[J].山东建材,2004年1期,31-33.
    1.59胡波,柳炳康,张李黎:再生混凝土氯离子渗透性能测试与分析[J].合肥工业大学学报,2009年8期,1240-1243.
    1.60陈爱玖,潘丽云,王静,盖占方:再生混凝土抗氯离子渗透试验研究[J].新型建筑材料,2009年9期,5-7.
    1.61 German committee for Reinforced Concrete:Guideline "Concrete with Recycled Aggregates". Draft Status:July,1998.
    1.62周清长:建筑垃圾再生混合骨料混疑土的受力性能及透水性研究[M],厦门大学硕士毕业论文,2009,5
    1.63 C.S. Poon:Management of construction and demolition waste [J] Waste Management,2007,27 (3) 159-160.
    1.64石建光,许岳周,林树枝,王权民:利用建筑垃圾生产混凝土的技术途径和性能研究,第一届海峡两岸三地混凝土技术研讨会,2007年10月31日~11月1日,台湾,台北。
    1.65石建光,周清长:建筑垃圾中各种组成材料对混凝土性能的影响,混凝土,2008年06期11-13
    1.66 Akhtaruzzaman A A, Hasnat A. Properties of concrete using crushed brick as aggregate. Concrete International 1983;5(2):58-63.
    1.67李玉寿,荀勇,陈国伟:废玻璃骨料混凝土的研究[J],混凝土,2006年第6期53-55
    1.68 Topcu I B, Canbaz M. Properties of concrete containing waste glass [J]. Cement Concrete Res.,2004,34(2):267-274.
    1.69 Khaloo A R. Crushed tile coarse aggregate concrete[J]. Cement Concrete Aggregate.1995;17(2):119-125.
    1.70 Zainab Z. Ismail, Enas A. AL-Hashmi:Use of waste plastic in concrete mixture as aggregate replacement [J], Waste Management,2008,28 (11): 2041-2047
    1.71 Stahl D C, Skoraczewski G, Arena P, Stempski B. Lightweight concrete masonry with recycled wood aggregate[J]. J Mater Civil Eng 2002, 14(2):16-21.
    1.72石建光,许岳周:骨料级配对再生混凝土强度和工作性能影响的实验研究和计算分析[J],混凝土,2008年01期82-86
    1.73 C. S. Poon, D. Chan:Paving blocks made with recycled concrete aggregate and crushed clay brick[J], Construction and Building Materials,2006,20(6):569-577
    1.74 Malek Batayneh, Iqbal Marie, Ibrahim Asi:Use of selected waste materials in concrete mixes[J], Waste Management,2007,27(9): 1870-1876
    1.75 Peng C L, Scorpio D E, Kibert C J. Strategies for successful construction and demolition waste recycling operations[J]. J Construct Manage Econ.1997,15(1):49-58
    2.1刘数华:建筑垃圾综合利用综述,人民网>>科技>>科技专题>>产业类>>科技奥运,材料先行http://scitech. people, com. cn/GB/25509/58105/118897/7089275. html
    2.2城市建筑垃圾管理规定(建设部令第139号),2005年6月1日
    2.3吴贤国、李惠强、杜婷:建筑施工废料的数量、组成与产生原因分析,华中理工 大学学报,2000年12月第28卷第12期,96-97
    2.4张建设,尹玉先,范秀兰,杜晓波:河南某城市建筑施工垃圾公害调查及对策分析,河南城建高等专科学校学报,2001年9月第10卷第3期,15-19
    2.5刘会友:房屋装修垃圾的危害与处置探究,中国资源综合利用,2005年3月第3期,24-27
    2.6沪每年60万套房屋需维修翻新改造服务网络化大受欢迎,新浪房产 http://news.dichan.sina.com.cn/sh/2010/09/03/208349_all.html
    2.7新建住宅全装修已成社会关注的热点,http://www.bjjs.gov.cn/publish/portal0/tab992/info47508.htm
    2.8王艳,王长桥,殷伟强,杨永杰:北京市装饰装修垃圾处置现状及对策,环境卫生工程,2006年8月第14卷第4期,34-36
    2.9萧琴:建筑“短命”现象普遍平均寿命仅为30年《楼市》2009年14期,28-32
    2.10王丽玫:我国建筑物短寿的原因分析与对策研究,山西建筑,2007年11月第33卷第33期,35-36
    2.11苏炜,汪菁:郑州地区砖混结构房屋使用寿命分析,中州大学学报,2009年2月第26卷第1期,112-113
    2.12石建光,邓华:四川汶川震后建筑垃圾的估算和再利用途径探讨[J].中国科技论文在线精品论文,2009,2(2):150-157
    2.13唐沛,杨平:中国建筑垃圾处理产业化分析[J],江苏建筑,2007年第3期(总第113期)57-60
    2.14 Hsiao Y, Huang YT, Yu YH, Wernick IK. Modeling materials flow of waste concrete from construction and demolition wastes in Taiwan[J]. Resour. Pol.2002 (28):39-47.
    2.15 Fatta D, Papadopoulos A, Avramikos E, Sgourou E, Moustakas K, Kourmoussis F, et al. Generation and management of construction and demolition waste in Greece—an existing challenge[J]. Resources Conservation and Recycling,2003(40):81-91.
    2.16 Yost P. A, Halstea J. M. A methodology for quantifying the volume of construction waste [J]. Waste Manage Res.1996(14):453-61.
    2.17阮跃国:华丽转身迈向国际性都市—厦门城市建设管理事业改革开放三十年回顾与展望,城乡建设,2009-03,24-29
    2.18王唯山:厦门城市空间发展分析,城市规划汇刊,2004年6期,38-42
    2.19郑开雄:厦门“城中村”改造研究,现代城市研究,2005年11期,32-36
    2.20赵晓波:复兴滨水区,构建精神港湾—厦门港片区更新与改造研究,现代城市研究,2008年6期,35-42
    2.21湖里区人民政府工作报告,http://www. huli. gov. cn/NewsSpecialTopicShow. aspx?ClassId=1402&Cl assDesc=政府工作报告
    2.22厦门市国土资源与房产管理局2009年依法行政工作报告,http://www. mlr. gov. cn/tdzt/zhgl/yfxzgzbg/2009/201003/t20100318_l 41748.htm
    2.23肖建庄,张洁:上海市废弃混凝土来源与回收前景,粉煤灰,2006年3期,41-43
    2.24中华人民共和国统计局编.中国统计年鉴[M],中华人民共和国国家统计出版社
    2.25吴晓泉,闻德荣:我国混凝土行业空前发展的一年---2003年技术经济指标简要分析[J],混凝土,2004年第七期,7-11
    2.26王纲,程堰陵,陈吉春:建筑垃圾的资源化处理[J],环境卫生工程,2004年九月第11卷第3期.
    2.27邓聚龙.灰色理论[M].华中科技大学出版社.2002.2
    2.28建筑垃圾思考与分析,http://www. buildcc. com/live/20080630. php
    2.29 Shan-shan Chung, Carlos W. H. LO:Evaluating sustainability in waste management:the case of construction and demolition chemical and clinical wastes in Hong Kong[J], Resources Conservation and Recycling,37(2003),119-145.
    2.30杜婷,李惠强,昌永红:再生骨料混凝土-一种新型的绿色建材[J],福建建材,第一期.
    2.31 RCRA, Superfund& EPCRA Hotline Training Module http://www. epa. gov/epawaste/index. htm
    2.32 Timothy G. Townsend:C&D Debris Regulations and Their Impact on the Industry[D], Ph.D., P.E. Environmental Engineering Sciences, University of Florida, Presented at C&D World 2004 New Orleans, January 26
    2.33 Gilpin Robinson Jr R, Menzie DW, Hyun H. Recycling of construction debris as aggregate in the Mid-Atlantic Region[J], Resources Conservation and Recycling,2004,42(3):275-294
    2.34 Characterization Of Building-Related Construction And Demolition Debris In The United States, The U.S. Environmental Protection Agency, Municipal And Industrial Solid Waste Division, Office Of Solid Waste, June 1998
    2.35 C&D Recycling and Deconstruction in the Southeast, Southeast Recycling Conference& Tradeshow, Orange Beach, Alabama, March 13, 2007, The 20th Annual Southeast Recycling Conference& Trade Show (2007)
    2.36 Kimberly Cochran, Timothy Townsend, Debra Reinhart, Howell Heck: Estimation of regional building-related C&D debris generation and composition:Case study for Florida[J], Waste Management,27 (2007),921-931
    2.37建设廃棄物の现状,http://www. pref. osaka. jp/kenshi/recycle/hithuyou. html
    2.38 The State Of Building Deconstruction In Australia, Philip Crowther (Queensland University of Technology, Brisbane, Australia)
    2.39 C. Thormark:Conservation of energy and natural resources by recycling building waste[J], Resources, Conservation and Recycling, 33 (2001),113-130
    2.40 Akash Rao, Kumar N. Jha, Sudhir Misra:Use of aggregates from recycled construction and demolition waste in concrete, Resources[J], Conservation and Recycling,50 (2007) 71-81
    2.41 Vivian W. Y. Tam, C. M. Tam:A review on the viable technology for construction waste recycling[J], Resources, Conservation and Recycling,47(3),2006,209-221
    2.42 Oyeshola Femi Kofoworol, Shabbir H. Gheewal:Estimation of construction waste generation and management in Thailand[J], Waste Management 29 (2009) 731-738
    2.43 Hansen, H. A:method for total reutilization of masonry by crushing, burning, shaping and autoclaving [J]. Demolition and Reuse of Concrete. RILEM 1994,407-414
    2.44 Van Dijk, k. Fraaij, A. Hendriks, CH. F. Mulder, E. Van der Zwan, J: Recycling of Masonry Debris as a Raw Material in the Ceramic industry, Sustainable Concrete Construction, Proceeding of the International Conference held at the University of Dundee, Scotland, UK, September 2002,290-350.
    2.45李巨文,常洪信,郭总理:采用建筑垃圾夯扩桩处理软弱地基的设计与施工[J],建筑技术,2002年第3期
    2.46肖建庄:再生混凝土[M].北京:中国建筑工业出版社.2008年6月第一版
    2.47黄世谋,何廷树,李国信:建筑废料的再生利用研究[J].混凝土,2006年第5期:30-34.
    2.48张超:废弃混凝土路面板在道路改建中的再利用[J],交通运输工程学报,2003(4)
    2.49赵鸣,吴广芬:不同建筑垃圾做水泥混合材的试验研究[J],烟台大学学报(自然科学与工程版),第21卷第2期,2008.4.
    2.50孙业东、曹玉书、朱志强:再生碎砖轻集料混凝土小型空心砌块配合比试验研究[J],新型墙材,2008第5期26-28
    2.51路关生,湛轩业:建筑废料回收利用的新途径[J],砖瓦,2004年第7期:68-74
    2.52“四化”管理:综合利用建筑垃圾深圳市人民政府秘书长 李平http://www. cstcmoc. org. cn/cstc/hwgc/tgyt/20071219/14922. shtml
    2.53 Shichao Li:Socio-spatial and economic relationships of municipal solid waste recycling under china's socio-economic transition-the case of Wuhan [D], USA, a Dissertation Submitted to the Graduate Division of University of Hawaii for the Degree of Doctor, May, 2001
    2.54黄宗益,李兴华:日本对建设工程副产物和建筑垃圾的处理[J],建设机械技术与管理,2002,04,P23-27
    2.55 Peng C L, Scorpio D E, Kibert C J. Strategies for successful construction and demolition waste recycling operations [J]. J Construct Manag Econ 1997;15(1):49-58.
    3.1杨薇薇:再生混凝土多孔砖的配合比及其物理力学性能的研究[D];郑州大学:2007年
    3.2 Antonio Eduardo Bezerra Cabral, Valdir Schalch, Denise Carpena Coitinho Dal Molin, Jose Luis Duarte Ribeiro, Mechanical properties modeling of recycled aggregate concrete [J], Construction and Building Materials xxx (2009) xxx-xxx
    3.3张晏清:建筑废渣再生骨料混凝土的性能[J],建筑材料学报,2003,3(1):100-103.
    3.4孔德玉,吴先君,韦苏:再生骨料混凝土研究[J],浙江工业大学学 报,2003年01期
    3.5金昌,王雪萍,Akinkurolere Olufuake Olanike,蒋沧如:再生混凝土力学性能指标换算关系试验研究[J],混凝土2008年11期,
    3.6华军舰,宋少民:再生混凝土的配合比及其耐久性的研究[J],商品混凝土,2007年第2期
    3.7中国科学院数学研究所数理统计组,正交试验法[M],北京:人民教育出版社,1975.
    3.8《普通混凝土拌和物性能试验方法》(GB/T 50080—2002)[S]
    3.9《普通混凝土力学性能试验方法标准》(GB/T 50081—2002)[S]
    3.10 Turanli L, Bektas F, Monteiro PJM, Use of ground clay brick as a pozzolanic material to reduce the alkali-silica reaction[J], Cement Concrete Res 2003:33(10):1539-42.
    3.11 Shi Cong Kou, Chi Sun Poon, Dixon Chan, Influence of Fly Ash as Cement Replacement on the Properties of Recycled Aggregate Concrete[J], J. Mat. in Civ. Engrg.19(9),709-717 (September 2007)
    3.12 Chi-Sun Poon a,*, Shi-cong Kou a, Hui-wen Wana, Miren Etxeberria, Properties of concrete blocks prepared with low grade recycled aggregates [J], Waste Management 29 (2009) 2369-2377
    3.13 C. S. Poon, S. C. Kou, L. Lam:Use of recycled aggregates in molded concrete bricks and blocks[J], Construction and Building Materials, 16 (2002) 281-28
    3.14 Chi Sun Poon, Dixon Chan, Paving blocks made with recycled concrete aggregate and crushed clay brick[J], Construction and Building Materials,20 (2006) 569-577
    3.15 Chi-Sun Poon, Dixon C:Effects of contaminants on the properties of concrete paving blocks prepared with recycled concrete aggregates [J], Construction and Building Materials,21 (2007) 164-175
    4.1石建光,许岳周:骨料级配对再生混凝土强度和工作性能影响的实验研究和计算分析,混凝土,2008年01期82-86
    4.2《普通混凝土用砂、石质量及检验方法标准》JGJ 52-2006
    4.3 Standard Descriptive Nomenclature for Constituents of Concrete Aggregates ASTM C 294-05
    4.4 Kikuchi M, Dosho Y, Narikawa M, Miura T. Application of recycled aggregate concrete for structural concrete, part-I:experimental study on the quality of recycled aggregate and recycled aggregate concrete. Proceedings of the International Conference on the Use of Recycled Concrete Aggregates. UK:Thomas Telford,1998, p.55-68
    4.5 K K Sagoe-Crentsil, T Brown, A H Taylor:Performance of concrete made with commercially produced coarse recycled concrete aggregate, Cement and Concrete Research 31,2001, p 707-712.
    4.6 Stock, A. F., Hannant, D. J, and Williams, R. I. T. The effect of aggregate concentration up on the strength and modulus of elasticity of concrete. Magazine of Concrete Research [J].1979,31, p225-234.
    5.1《普通混凝土用砂、石质量及检验方法标准》JGJ52-2006
    5.2 P. K. Mehta著,祝永年,沈威等译,混凝土的结构、性能与材料[M].上海:同济大学出版社,1991.
    5.3陈惠苏,孙伟,Stroeven Piet,水泥基复合材料集料与浆体界面研究综述(一):实验技术[J]硅酸盐学报,2004年第32卷第01期63-69
    5.4陈惠苏,孙伟,Stroeven Piet:水泥基复合材料集料与浆体界面研究综述(二):界面微观结构的形成、劣化机理及其影响因素[J],硅酸盐学报,2004年第32卷第01期70-79
    5.5陈云钢,孙振平,肖建庄:再生混凝土界面结构特点及其改善措施[J],混凝土,2004年第2期,10-13
    5.6吴中伟廉慧珍:高性能混凝土[M],中国铁道出版社1999-9-18
    5.7弗朗索瓦·德拉拉尔:混凝土混合料的配合[M],化学工业出版社,北京,2004年9月
    5.8张建智,蔡志达,李隆盛,叶叔通,黄兆龙:骨料裹浆厚度对混凝土性质影响之研究[J],建築材料学报,12卷4期,(2009/08),384-389
    5.9李九苏,肖汉宁,龚建清:再生骨料水泥混凝土的级配优化试验研究[J],建筑材料学报,2008年11卷1期,105-110
    5.10韩建国,阎培渝:粗集料级配对混凝土强度发展历程的影响[J],混凝土,2008年第01期62-68
    5.11廉慧珍,李玉琳:关于混凝土配合比选择方法的讨论-关于当代混凝土配合比要素的选择和配合比计算方法的建议之二[J],混凝土,2009年第5期(总第235期),1-4
    5.12刘广同,张宝生,袁杰,葛勇,周嘉宁:基于最佳浆骨比的混凝土配合比设计方法研究[J],混凝土2003年07期
    5.13王立久,曹明莉:混凝土架构模型研究[J],武汉理工大学学报,2006年第28卷第07期48-54
    5.14 David N. Richardson:Aggregate Gradation Optimization-Literature Search, University of Missouri-rolla, January 2005, http://library.modot.mo.gov/RDT/reports/Ri98035/RDT05001.pdf
    5.15王雨利:低强度等级泵送高石粉机制砂混凝土的研究[D],武汉理工大学材料科学与工程学院博士毕业论文,2007年5月
    5.16 Francois de Larrard and Albert Belloc, The Influence of Aggregate on the Compressive Strength of Normal and High-Strength Concrete [J], ACI Materials Journal,94(5) 417-426, September 1,1997
    5.17 B. B. Mandelbort. The Fractal Geometry of Nature [M]. New York, W. H. Freeman and Co (1982)
    5.18 B. B. Mandelbort. Fractal:Form, Chance and Dimension [M]. San Francisco. Freeman(1977)
    5.19 J. Feder. Fractal [M]. Plenum Press. New York and London (1988)
    5.20施行觉,牛志仁,许和明,范增节,周泰禧:岩石断面的分形测量及其分维的计算[J].地球物理学报.第35卷第2期.1992年3月.154-159.
    5.21力玲,董连科,张静华,胡壮麒:定向凝固高温合金晶界形貌的分形描述[J],金属学报.第30卷第5期.1994年5月.200-203
    5.22谢和平,陈至达:岩石类材料裂纹分叉非规则性几何的分形效应[J],力学学报,第21卷第5期1989年,613-618.
    5.23李国强:级配骨料的分形效应[J],混凝土,1995(1):3-7.
    5.24 Mandelbrot B B. Fractal character of fracture of metals [J], Nature,1984,308.271-272.
    5.25夏春,刘浩吾:混凝土细骨料级配的分形特征研究[J],西南交通大学学报.第37卷第2期2002年4月,186-189
    5.26唐明:混凝土孔隙分形特征的研究[J].混凝土.第8期2000年,3-5
    5.27王谦源:分形分布节理的模拟研究[J],岩石力学与工程学报,第18卷第3期,1999年.271-274
    5.28高安秀树,沈步明,常子文译:分数维[M],地震出版社(1989)
    5.29孙霞,吴自勤,黄昀.分形原理及其应用[M],中国科学技术大学出版社(2003)
    5.30 Turcott D T. Fractals and fragmentation[J], Journal of Geophysical Research.1986.91(2).1921-1926
    5.31 LI G, ZHAO Y, PANGS. Four-Phase Sphere Modeling of Effective Bulk Modulus of Concrete [J], Cement and Concrete Research,1999,29(6):839-845.
    5.32 ZHENGJ J. Mesostructure of Concrete-Stereological Analysis and Some Mechanical Implications [M]. Delft:Delft University Press (2000).
    5.33陈国安,葛世荣,张晓云.机加工表面轮廓的分形插值[J],中国矿业大学学报,1999,28(2):118-121
    5.34葛世荣:粗糙表面的分形特征与分形表达研究[J],摩擦学报,1997,17(1):73-79
    5.35葛世荣,陈国安:磨合表面形貌变化的特征粗糙度参数表征[J],中国矿业大学学报,1999,28(3):204-207
    5.36 DIAMOND S. The microstructure of cement paste and concrete:a visual primer [J], Cement& Concrete Composites,2004,26(8):919-933.
    5.37 TASONG W A, LYNSDALE C J, CRIPPS J C. Aggregate-cement paste interface Part I. Influence of aggregate geochemistry [J]. Cement and Concrete Research,1999,29(7):1019-1025.
    5.38 DIAMOND S. Aspects of concrete porosity revisited [J]. Cement and Concrete Research,1999,29(8):1181-1188.
    5.39陈云钢,孙振平,肖建庄:再生骨料混凝土界面结构特点及其改善措施[J],混凝土,2004年第2期(总第172期),10-13。
    6.1 Hrennikoff A. Solution of problems of elasticity by the framework method[J], J Appl Mech (Trans ASME) 1941;8:169-175.
    6.2 Herrmann HJ, Hansen A, Roux S. Fracture of disordered, elastic lattices in two dimensions [J], Phys Rev B 1989;39(1):637-648
    6.3 A. Caballero, C.M. Lo'pez, I. Carol,3D meso-structural analysis of concrete specimens under uniaxial tension [J], Comput. Methods Appl. Mech. Engrg.195 (2006) 7182-7195
    6.4 Zaitsev YB, Wittmann FH. Simulation of crack propagation and failure of concrete[J]. Mater Construct 1981,14:357-365.
    6.5 Johansen V, Andersen P J:Particle packing and concrete properties [J], Mindless Materials Science of Concrete II. The American Ceramic Society, Westerville, OH,1991:111-148.
    6.6王卓琳,林峰,顾祥林:基于离散单元法的混凝土细观力学模型研究进展[J],结构工程师,2007,23(5)
    6.7 Kimiro Meguro, Hatem Tagel-Din. Applied element simulation of RC structures under cyclic loading [J].Journal of Structural Engineering,2001,127 (11):1295-1305.
    6.8叶志明.各向异性材料与混凝土断裂力学引论[M],北京:中国铁道出版社,2000.
    6.9马怀发,陈厚群,黎保琨.混凝土细观力学研究进展及评述[J],中国水利水电科学研究院学报,2004年6月,124-130.
    6.10陈云钢,孙振平,肖建庄.再生混凝土界面结构特点及其改善措施[J],混凝土,2004年第2期,10-13.
    6.11徐定华、徐敏.混凝土材料学概论[M],中国标准出版社,2002年7月.
    6.12 British Standards Institution, Methods of sampling and testing of mineral aggregate. Sands and Fillers [M], BS 812. London.1975.
    6.13徐飞:粗骨料颗粒形状评定方法的研究.扬州大学学报(自然科学版)[J],2002(5)12,61-63.
    6.14 Waddell, H., shape, and roundness of rock-particles:Jour. Geology, 1932 v.40,443-451.
    6.15 H. P. Schwarcz K. C. Shane, Measurement Of Particle Shape By Fourier Analysis[J], Sedimentology,2006,13(3-4):213-231
    6.16唐明,李晓:混凝土分形特征研究的现状与进展[J],混凝土,2004年第12期,8-11.
    6.17 Sidney Diamond, Aspects of concrete porosity revisited[J], Cement and Concrete Research,29 (1999) 1181-1188.
    6.18李国强,邓学钧:级配骨料的分形效应[J],混凝土,1995,1,3-7.
    6.19许岳周,石建光:骨料分形研究[J],建筑结构学报,V27增刊,2006年11月.
    6.20 Wittmann F H, Roelfstra P E, Sadouki H. Simulation and analysis of composite structures [J]. Mater Sci Eng 1984,68:239-248.
    6.21 Z. M. Wang, A. K. H. Kwan, H. C. Chan. Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh[J], Computers and Structures,70 (1999) 533-544.
    6.22 Schorn H, Rode U. Numerical simulation of crack propagation from microcracking to fracture [J], Cem Concr Compos,1991,13,87-94.
    6.23刘光廷,高政国:三维凸型混凝土骨料随机投放算法[J],清华大学学报(自然科学版),2003年第8期,1120-1123。
    6.24 Z. P. Bazant, M. R. Tabbara, M. T. Kazemi, G. Pi jaudier-Cabot, Random particle model for fracture of aggregate or fiber composites[J], J. Engng. Mech.116 (8) (1990) 1686-1705.
    6.25 P. Wriggers, S.0. Moftah. Mesoscale models for concrete: Homogenization and damage behavior[J], Finite Elements in Analysis and Design,42 (2006) 623-636.
    6.26姜璐,郑建军.混凝土界面体积百分比的计算方法[J],浙江工业大学学报,2004,32(2):163-167
    6.27 De Schutter G, Taerwe L. Random particle model for concrete based on Delaunay triangulation [J]. Mater Struct 1993,26:67-73.
    6.28 J. G. M. van Mier, M. R. A. van Vliet, Influence of microstructure of concrete on size/scale effects in tensile fracture [J], Eng. Fract. Mech.70(16) (2003) 2281-2306.
    6.29陈爱玖;章青;刘仲秋;夏晓舟,混凝土细观分析的研究现状[J],混凝土,2008,6:21-25
    6.30 Bazant Z P, Gambarova R G. Crack shear in concrete:crack band microplane model[J], J Struct Engrg, ASCE 1984,110:2015-2035.
    6.31 Bazant ZP, Oh BH. Microplane model for progressive fracture of concrete and rock[J]. J Engrg Mech, ASCE 1985;111:559-582.
    6.32 Bazant Z P, Caner F C. Microplane model M4 for concrete. I: Formulation with Work-Conjugate deviatoric stress Algorithm and calibration [J]. Journal of Engineering Mechanics, ASCE,2000, 126(9):944-953
    6.33 Bazant Z P. Caner F C. A dley M D. F racturing rate effect and creep In M icrop lane model for dynamics [J]. Journal of Enigeering Mechanics, ASCE,2000,126 (9):962-970
    6.34缪志伟陆新征李易叶列平,基于通用有限元程序和微平面模型分析复杂应力混凝土结构[J],沈阳建筑大学学报(自然科学版),2008,24(1),49-53
    6.35郑建军,混凝土板非线性分析的微平面法[J],浙江工业大学学报,2004,32(1):1-4
    6.36 Ashraf Ragab Mohamed, Will Hansen Micromechanical modeling of crack-aggregate interaction in concrete materials[J], Cement& Concrete Composites,21 (1999) 349-359。
    6.37 De Schutterg, Taerwel. Random particle model for concrete based on Delaunay triangulation [J]. Material Structure,1993,26:67-73.
    6.38 A. K. H. Kwan, Z. M. Wang, H. C. Chan, Mesoscopic study of concrete Ⅱ: nonlinear finite element analysis[J],Computers and Structures,70 (1999) 545-556,
    6.39吴锋,卓家寿,混凝土材料破坏过程的细观数值模拟[J],重庆交通大学学报(自然科学版),2008,27(5):705-708
    6.40 Bazant, Zdenek P.; Tabbara, Mazen R.; Kazemi, Mohammad T. Pijaudier-Cabot, Gilles Random particle model for fracture of aggregate or fiber composites [J], Journal of Engineering Mechanics, 1990,116(8):1686-1705
    6.41 Stefan Ha fner, Stefan Eckardt, Torsten Luther, Carsten Konke, Mesoscale modeling of concrete:Geometry and numeric [J], Computers and Structures 84 (2006) 450-461
    6.42刘光廷:用随机骨料模型数值模拟混凝土材料的断裂[J],清华大学学报(自 然科学版),1996,36(1):84-89.
    6.43宋玉普:多种混凝土材料的本构关系和破坏准则[M].北京:中国水利水电出版社,2002
    6.44黎保琨,彭一江.碾压混凝土试件细观损伤断裂的强度与尺寸效应分析[J].华北水利水电学院学报,2001,22(3):50-53.
    6.45高政国.刘光廷:二维混凝土随机骨料模型研究,清华大学学报(自然科学版),2003,43(5):710-714
    6.46王宗敏:混凝土应变软化与局部化的数值模拟[J].应用基础与工程科学学报,2000,8(2):187-194.
    6.47刘光廷,高政国:三维凸型混凝土骨料随机投放算法[J]清华大学学报(自然科学版),2003,43(8):1120-1123.
    6.48杨强,张浩,周维恒:基于格构模型的岩石类材料破坏过程的数值模拟[J].水利学报,2002,4:46-50
    6.49 Schlangen E, van Mier JGM. Simple lattice model for numerical simulation of fracture of concrete materials and structures [J]. Mater Struct 1992;25:534-542
    6.50 Schlangen E, Garbocai E J. Fracture simulations of concrete using lattice models:computational aspects [J]. Engng. Frac. Mech.,1997,57(2/3):319-322.
    6.51 G. Lilliu, J. G. M. van Mier:3D lattice type fracture model for concrete [J], Engineering Fracture Mechanics,70 (2003) 927-941
    6.52朱万成,唐春安等:混凝土试样在静态载荷作用下断裂过程的数值模拟研究[J],工程力学,2002,19(6):148-1531
    6.53唐春安,朱万成:混凝土损伤与断裂-数值试验[M]北京:科学出版社,2003
    6.54 Mohamed A R, Hansen W. Micromechanical modeling of concrete response under static loading-Part 1:Model development and validation [J]. ACI Materials Journal,1999,96(2):196-203
    6.55远方,刁可:数值试验多重随机等效平面桁架模型[J].中国科技论文在线精品论文,2009,2(2):134-140.
    6.56周尚志,刘明群,梁斌,韩文涛:物理细胞自动机在模拟混凝土破坏过程的应用[J],武汉大学学报(工学版),2006 39(5),35-41
    6.57谭云亮,周辉,王泳嘉,马志涛:模拟细观非均质材料破坏演化的物理元胞自动机理论,物理学报,2001,50(4):704-709
    6.58 Fabio Biondini, Franco Bontempi, Dan M. Frangopol, Pier Giorgio Malerba, Cellular Automata Approach to Durability Analysis of Concrete Structures in Aggressive Environments [J], Journal of Structural Engineering,2004,130(11):1724-1737
    6.59 Cundall P A. A computer model for simulating progressive large scale movement in block rock system, Symposium ISRM,1971, Proc 2:129-136
    6.60刘凯欣,高凌天:离散元法研究的评述[J],力学进展,2003,33(4):483-490
    6.61徐泳,孙其诚,张凌,黄文彬:颗粒离散元研究进展,力学进展,2003,33(2):251-260
    6.62 Strack 0 D L, Cundall P A. The distinct element method as a tool for research in granular media, Part I. Report to the National Science Foundation, Minnesota:University of Minnesota,1978
    6.63 Cundall P A, Strack 0 D L. The distinct element method as a tool for research in granular media, Part II. Report to the National Science Foundation, Minnesota:University of Minnesota,1979
    6.64 Cundall P A, Strack 0 D L. A discrete numerical model for franular assembles[J], Geotechnique,1979,29(l):47-65
    6.65 Walton 0 R. Particle dynamics modeling of geological materials.1980, Lawrence Livermore Mational Lab. Report UCRL-52915
    6.66 Campbell C S, Bremen C E. Computer simulation of granular shear flows [J]. J. Fluid Mech,1985.151:167-188
    6.67 Campbell C S, Bremen C E. Chute, flows of granular materials:some computer simulations [J]. J App Mech,1985,52:172-178
    6.68 D.0. Potyondy, P. A. Cundall. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences. V41, 2004.12.1329-1364
    6.69 Tadahiko KAWAI, Yutaka TOI. A New Element in Discrete Analysis of Plane Strain Problems[J]研究速报.V29.1977.204-207
    6.70 Tadahiko KAWAI. A New Discrete Model for Analysis of Solid Mechanics Problems[J].研究速报.V29.1977.208-210
    6.71 Tadahiko Kawai, Yasuhiro Kawabata, Kazuo Kondou, Kiyohiko Kumagai. A new discrete model for analysis of solid mechanics problems. Numerical methods in fracture mechanics; Proceedings of the First International Conference, Swansea, Wales; United Kingdom; 9-13 Jan. 1978. pp.26-37.1978
    6.72 Shohei Nakazawa, Tadahiko Kawai. A rigid element spring method with applications to nonlinear problems. Numerical methods in fracture mechanics; Proceedings of the First International Conference, Swansea, Wales; United Kingdom; 9-13 Jan.1978. pp.38-51.1978
    6.73 ZubelewiczA, Baant Z P. Interface elementmodeling of fracture in aggregate composites [J]. Journal of EngineeringMechanics,1987,113 (11):1619-1630.
    6.74 HakunoM, Meguro K. Simulation of concrete-frame collap se due to dynamic loading [J]. Journal of Engineering Mechanics, 1993,119(9):1709-1722
    6.75森川博司,泽本佳和,小鹿纪英:個别要素法を用いに.Ey の破壤解析[J].日本建筑学会构造系论文集(Journal of Structural ConstructionEngineering, AIJ),1995,473:127-135.
    6.76邢纪波:梁一颗粒模型导论[M].北京:地震工程出版社,1999.
    6.77 Tang Z P, Horie Y, Psakhie S G. Discrete meso-element modeling of shock processes in powders, Davison Letal. High-pressure Shock Compression of Solids Ⅳ[M]. New York:Springer,1997:143-176.
    6.78石建光许岳周叶志明:骨料级配对混凝土性能影响的细观分析,工程力学,2009年04期134-138
    6.79吴方伯,陈坚强,尚守平:等效铰结桁架单元,工程力学,2005年4月第22卷第2期,,84-88
    6.80沈成武唐小兵杨吉新:平面桁架力学分析的细胞自动机方法初探,武汉交通科技大学学报,2000年4月第24卷第2期105-108
    6.81 Newman K, Newman J B素混凝土破坏理论与设计准则.混凝土的强度和破坏译文集。水利出版社,1982.194:246

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700