用户名: 密码: 验证码:
多夹层盐岩体中储气库围岩变形规律及安全性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于盐岩具有孔隙度低、渗透率小、损伤自恢复、塑性变形能力大、水文地质条件简单和分布广等优良特性,盐穴被公认为石油、天然气储备和高放射性废物处置的理想场所。与国外盐丘型盐岩矿藏相比,我国盐岩矿藏以多夹层盐岩为主,具有盐岩层多、单层厚度薄且盐岩体中一般含有众多夹层(如硬石膏层、泥岩层和钙芒硝层等)等特点,为多夹层盐岩矿藏中储库的设计和安全评价提出了挑战。本文通过室内试验、理论分析和数值模拟计算等方法对多夹层盐岩破坏准则、盐穴储气库在造腔和运行过程中盐穴围岩变形、矿柱顶板稳定性、地表沉降和密封性等问题进行研究,优化盐穴储气库设计和运行参数,提高其使用效率和安全性。具体研究工作和得到结论如下:
     (1)考虑到应力状态对多夹层盐岩破坏强度影响较为显著,将应力Lode角参数引入到Mohr-Coulomb准则中,对其进行修正,体现应力状态改变对盐岩破坏强度影响。利用室内盐岩实验数据分别回归出三轴压缩和拉伸应力状态下盐岩失效准则表达式,并与已有的盐岩破坏准则计算结果进行对比。数值模拟计算表明改进Mohr-Coulomb准则比已有的盐岩破坏准则具有优越性,能够较好反映我国多夹层盐岩破坏特征。
     (2)对比了4种盐穴储气库设计方案在不同工况下的最大变形量、塑性区体积和体积收缩率等变化规律,给出最优设计方案及建议;讨论了不同参数对盐穴储气库群间矿柱、顶板受力和变形的影响规律。研究结果表明:上部为椭球、下部为半球形状且高径比为3左右,对盐穴储气库整体受力和体积收缩控制较为有利;建议矿柱宽度设计为2-3倍盐穴直径、对于矿柱宽度较小的相邻盐穴储气库采用注采气同步模式运行;埋深越大盐穴顶部结构稳定性越差,顶部相邻夹层弹性模量越大顶部结构稳定性越好,而顶部盐岩厚度和相邻夹层厚度对顶部结构稳定性影响不显著。
     (3)考虑到盐穴储气库群间矿柱和顶板失稳破坏过程具有典型的非线性和突变性,建立了矿柱和顶板稳定性评价的尖点位移突变模型。该模型可以有效克服单纯使用有限单元强度折减法在计算矿柱和顶板稳定性全系数中不能精度量化失效判别标准的缺点,提高数值模拟计算精度。利用该模型对影响盐穴储气库群间矿柱及顶板稳定性的因素进行了分析。矿柱稳定性安全系数随着埋深和时间的增加而降低,随着内压和矿柱宽度增加而增加。埋深、顶跨和内压对多夹层盐穴储气库顶部结构稳定性影响较为显著,且在实际设计和运行过程中可以控制,建议在盐穴选择过程中合理选择埋深、严格控制顶跨尺寸、减少盐穴低压运行时间。
     (4)将盐穴储气库地表沉降量预测分为造腔和存储两个阶段进行研究,考虑盐岩蠕变影响,采用扩展形式的Gaussian曲线表示沉降区形状,建立了盐穴储气库地表动态沉降量计算模型,推导出相应的计算公式。采用该模型、Schober & Sroka模型、Peter A Fokker模型和FLAC3D对某盐穴储气库地表动态沉降量进行了模拟计算,并对比了计算结果。计算结果表明盐穴储气库地表动态沉降量计算模型具有较高计算精度,可以满足实际工程需要。盐穴储气库地表沉降量随着造腔速率、时间、埋深、直径和高度增加而增加,随着内压增加而降低。
     (5)根据天然气在夹层中运移的特点,建立了多夹层盐穴储气库密封性评价的等效渗透率模型,并采用数值模拟计算对该模型进行验证。研究了夹层倾角、渗透非均质性、渗透率、埋深和内压等参数对天然气运移到地面所需时间的影响规律。天然气通过夹层运移到地表所需时间随着渗透非均匀性、埋深增加而增加,随着地层倾角、渗透率和内压的增加而降低。建议在盐穴储气库设计过程中,要着重考虑夹层倾斜角和渗透率对其密封性影响,避免将盐穴储气库建在倾角和垂直渗透率较大的夹层附近。
Due to the unique advantages of rock salt, such as low porosity, low permeability, damage recovery, favorable creep, simple hydrologic geology, and abundant distribution, salt cavern is considered as one of the most suitable place to storage oil, natural gas, and radioactive waste, etc. Comparing to abroad rock salt dome mine, there are many mudstones, anhydrites and glauberites in China bedded rock salt mines, and the salt and non-salt layers with small thickness coming alternately, which make the design and safety assessment of gas storage cavern in bedded rock salt is challengeable. The main motive of the paper is to solve several key problems to improve the safety of bedded rock salt cavern gas storage. Indoor experiments, theory analysis, and numerical simulation are adopted in the dissertation. Many detailed problems are contained, such as bedded salt failure criterion, cavern deformation, volume shrinkage rate, pillar and roof stability, ground subsidence, sealing, etc. Basing on the study results, the optimal cavern dimensions and running parameters are proposed to improve the use efficiency and safety of gas storage cavern in bedded rock salt. The detailed studies are depicted as follows.
     (1) The improved Mohr-Coulomb criterion is proposed considering the remarkable difference of the failure strength of bedded rock salt in triaxial compression and extension stress state. The corresponding formula is regressed by indoor experimental data of rock salt. A comparison of the improved Mohr-Coulomb criterion, two existing criterions and experimental data is made. The advantages of improved Mohr-Coulomb criterion is that the influences of the failure strength change of salt rock when the stress subjected to salt rock convertes from triaxial compression to triaxial extension stress state on the safety of salt cavern gas storage can be reflected. It is more suitable to China bedded rock salt than other existing criterions.
     (2) The rules of maximum deformations, plastic volumes, volume shrinkage rate, etc., of four different proposed salt cavern gas storages under different conditions are compared with each other. Moreover, the optimized cavern dimensions and running parameters of proposed bedded salt cavern gas storage are given. Influences of different parameters on the stresses and deformations of pillar and cavern roof are studied. The calculated results show cavern with the upper ellipsoid and lower hemisphere shape, and high/diameter of about 3 is good for the control of its force and volume shrinkage. The proposed pillar width is 2-3 times cavern diameters, and the synchrony injection-production mode is suggested in caverns with narrow pillars.
     (3) Considering the failure of pillars is typical nonlinear catastrophe problems, the cusp catastrophe model is proposed to obtain the stability factors of pillars and cavern roof. It can overcome the shortages of traditional strength reduction finite element method (SR FEM) and greatly improve the accuracy of stability factors obtained by numerical simulations. The influences of different parameters on the pillar and cavern roof stability factors are studied. The pillar stability factors are equidirectional with the increase of gas pressure and pillar width, but reverse to the increase of cavern depth and time. The cavern depth, roof span and gas pressure have significant effects on cavern roof stability.
     (4) A new model is proposed to predict the dynamic subsidence of ground surface above salt cavern gas storage during the leaching and storage, which takes into account the creep of rock salt. In the model, the extended form of Gaussian curve is adopted to figure out the shape of subsidence areas. The corresponding theoretical formulas are derived. In addition, parameters are studied to investigate the surface subsidence as a function of the salt ejection rate, internal pressure, cavern depth, diameter, height, running time, etc. Through an example, the subsidence of the salt cavern gas storage located at Jiangsu of China obtained by the new model is compared with those by Peter A F formula, Schober & Sroka formula, and FLAC~(3D). The results showed the proposed model is precise and correct, and can meet engineering demands. The surface subsidence is equidirectional with the increase of salt ejection rate, depth, diameter, height, and running time, but reverse to the increase of internal pressure.
     (5) The equivalent permeability model (EPM) is presented in the paper to calculate the equivalent permeability of non-salt layer, which can make the sealing evaluation of bedded salt cavern natural gas storage by numerical simulation easy and sufficient. The influences of non-salt dipping angle, heterogeneity of permeability, permeability, buried depth, and gas pressure, etc. on the time that the natural gas migrates to the ground surface through the non-salt formation are studied. The time natural gas migrating to the surface ground takes is equidirectional with the increase of heterogeneity of permeability, and buried depth, but reverses to the increase of non-salt dipping angle, permeability, and internal pressure.
引文
[1]王同涛,闫相祯,杨秀娟,等.适用于多夹层盐穴储气库的改进Mohr-Coulomb准则[J].石油学报,2010,31(6):1040—1044.
    [2]Watson S, Metcalfe R, Bond A. Scoping calculations for releases from potential UK UGS facilities[R]. Quintessa Report,2007.
    [3]Deborah Keeley. Failure rates for underground gas storage[R]. Health and Safety Laboratory,2008.
    [4]杨春和,李银平,曲丹安,等.层状盐岩力学特性研究进展[J].力学进展,2008,38(4):484—494.
    [5]Evans D J. An appraisal of underground gas storage technologies and incidents for the development of risk assessment methodology[R]. British Geological Survey,2008.
    [6]Singh T N, Verma A K. Prediction of creep characteristic of rock under varying environment[J].Envrion Geol,2005,48:559-568.
    [7]Gillhaus Axel. Natural Gas Storage in Salt Caverns Present Status, Developments and Future Trends in Europe[C]. Solution Mining Research Institute,2007, Basel, Switzerland.
    [8]李银平,刘江,杨春和.泥岩夹层对盐岩变形和破损特征的影响分析[J].岩石力学与工程学报,2006,25(12):2461—2466.
    [9]苏欣,张琳,李岳.国内外地下储气库现状及发展趋势[J].天然气与石油,2007,25(4):1—4+7.
    [10]杨骏.法国遭遇罕见严寒天气启用战略储天然气[EB/OL].http://www.ch ina5e.com /news/oil/200503/200503180097.htm,2005-03-18.
    [11]张海琴,李萍,袁进平,等.安全稳定供气中的调峰问题探讨[J].天然气工业,2006,26(2):152 154.
    [12]James Tobin. U.S. Underground Natural Gas Storage Developments:1998-2005[R]. Energy Information Administration, Office of Oil and Gas, October 2006.
    [13]London looks underground for gas storage. http://www.upi.com/Science News /Resource-Wars/2010/02/15/London-looks-underwater-for-gas-storage/UPI-63991266244162.
    [14]Djebbar Tiab, Erie C Donaldson. Petrophysics-theory and practice of measuring reservoir rock and fluid transport properties (2nd Edition)[M]. Gulf Professional Publishing,2004, 554-670.
    [15]Berest P, Bergues J, Brouard B. Review of static and dynamic compressibility issues relating to deep underground salt caverns[J]. Int J Mech Min Sci,1999,36(8):1031-1049.
    [16]Berest P, Brouard B. Safety of Salt Caverns Used for Underground Storage[J]. Oil & Gas Science and Technology,2003,58(3):361-384.
    [17]John K Warren. Evaporites:Sediments, Resources and Hydrocarbons[M]. Springer Berlin Heidelberg,2006:937-938.
    [18]Ralf Eickemeier, Wim A Paar, Stefan Heusermann. Hengelo brine field revisited "determination of allowable loading of pillars"[C]. Proceedings of 2004 Technical Meeting Berlin, Germany,2004.
    [19]Sambeek, Van L L. Stability analysis of inactive cavern clusters:Hengelo brinefield[R]. Respec topical report RSI-1793, Revision 2, RESPEC,2004.
    [20]Urai J L, Bekendam R F. Pillar deformation induced subsidence, Stage 2. GeoControl Report S00612, RESPEC,2006.
    [21]Hakan Alkan. Percolation model for dilatancy-induced permeability of the excavation damaged zone in rock salt[J]. Int J Mech Min Sci,2009,46(4):716-724.
    [22]Hou Z M. Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities [J]. Int J Mech Min Sci,2003,40(5):725-738.
    [23]Chin F T, Bernier F, Davies C. Geohydromechanical processes in the Excavation Damaged Zone in crystalline rock, rock salt, and indurated and plastic clays-in the context of radioactive waste disposal[J].Int J Mech Min Sci,2005,42(1):109-125.
    [24]Martino J B, Chandler N A. Excavation-induced damage studies at the Underground Research Laboratory [J]. Int J Mech Min Sci,2004,41(8):1413-1426.
    [25]Liang W, Yang C, Zhao Y, et al. Experimental investigation of mechanical properties of bedded salt rock[J]. Int J Mech Min Sci,2007,44(3):400-411.
    [26]Stormont J C. Conduct and interpretation of gas permeability measurements in rock salt[J]. Int J Mech Min Sci,1997,34(3-4):303.el-303.ell.
    [27]Pfeifle T W, Brodsky N S, Munson D E. Experimental determination of the relationship between permeability and microfracture-induced damage in bedded salt[J]. Int J Mech Min Sci,1998,35(4-5):593-594.
    [28]Thomas R L, Gehe R M. A brief history of salt cavern use[C]. Solution Mining Research Institute, The Hague,2000, May,7-11.
    [29]Evans D J. A review of underground fuel storage events and putting risk into perspective with other areas of the energy supply chain[M]. The Geological Society, London, Special Publications,2009,313:173-216.
    [30]专家详解“气荒”成因http://society.people.com.cn/GB/41158/10413166.html,人民网,2009.11.20.
    [31]Spiers C J, Peach C J, Brzesowsky R H, et al. Long term rheological and transport properties of dry and wet salt rocks[R]. University of Utrecht, Netherlands,1988.
    [32]Van Keken P E, Spiers C J, Van den Berg A P, et al. The effective viscosity of rocksalt: implementation of steady-state creep laws in numerical models of salt diapirism[J]. Tectonophysics,1993,225 (4):457-476.
    [33]De Meer S, Spiers C J, Peach C J. Pressure solution creep in gypsum:Evidence for precipitation reaction control[J]. Physics and Chemistry of the Earth,1997,22(1-2):33-37.
    [34]Ratigan J L, Van Sambeek L L, DeVries K L, et al. The influence of seal design on the development of the disturbed rock zone in the wipp alcove seal tests[R]. RE/SPEC Inc., Albuquerque, NM,1991.
    [35]Van Sambeek L L, Ratigan J L, Hansen F D. Dilatancy of rock salt in laboratory test[J]. Int J Mech Min Sci Geomech Abstr,1993,30(7):735-738.
    [36]Ratigan J L, Vogt T J. A note on the use of precision level surveys to determine subsidence rates[J]. Int J Mech Min Sci Geomech Abstr,1991,28(4):337-341.
    [37]Hunsche U, Albrecht H. Results of true triaxial strength tests on rock salt[J]. Engineering Fracture Mechanics,1990,35(4-5):867-877.
    [38]Hunsche U. Failure behaviour of rock around underground cavities[C]. Proceedings,7th Symposium on Salt, Kyoto, Japan,1993.
    [39]Hunsche U, Hampel A. Rock salt-the mechanical properties of the host rock material for a radioactive waste repository[J]. Engineering Geology,1999,3-4:271-291.
    [40]Hunsche U, lbrecht H. Results of true tri-axial strength tests on rock salt[J]. Engineering Fracture Mechanics,1990,4-5:867-877.
    [41]Hatzor Y H, Heyman E P. Dilation of anisotropic rock salt:evidence from mount sedom diapir[J]. Journal of Geophysical Research,1997,102 (B7):14853-14868.
    [42]Hatzor Y H, Talesnick M, Tsesarsky M. Continuous and discontinuous stability analysis of the bell-shaped caverns at Bet Guvrin, Israel[J]. Int J Mech Min Sci,2002,39(7): 867-886.
    [43]Hatzor Y H, Heyman E P. The influence of bedding plane orientation on the compression—dilation boundary in anisotropic rock salt[J]. Int J Mech Min Sci,1998, 35(4-5):592-599.
    [44]Wang T T, Yan X Z, Yang H L, et al. Stability analysis of the pillars between bedded salt cavern gas storages by cusp catastrophe model[J]. Sci China Tech Sci,2011,54(6): 1615-1623.
    [45]王同涛,闫相祯,杨恒林,等.基于尖点位移突变模型的多夹层盐穴储气库群间矿柱稳定性分析[J].中国科学 技术科学,2011,41(6):853862.
    [46]Bekendam R F, Urai J L. Pillar deformation-induced surface subsidence in the Hengelo brine field, the Netherlands [C]. The Mechanical Behavior of Salt-Understanding of THMC Processes in Salt, Hannover, Germany,2007:369-376.
    [47]Bekendam R F, Oldenziel C E, Paar W A. Subsidence potential of the Hengelo brine field (Part Ⅰ)—physico-chemical deterioration and mechanical failure of salt-cavern roof layers[C]. Proceedings of the SMRI fall meeting, San Antonio,2000:103-117.
    [48]Wilson A H. An hypothesis concerning pillar stability[J]. The Mining Engineer (GB), 1972,131 (141):409-417.
    [49]Wilson A H. The effect of yield zones on the control of ground[C]. Sixth International Strata Control Conference, Banff,1977.
    [50]Wilson A H. Stress, stability in coal ridsides and pillars[C]. Proceedings of the First Conference on Ground Control in Mining,1981:1-12.
    [51]Waltham A C, Chorlton I G. Rock roof stability in the sandstone caves of Nottingham. Engineering Geology of Weak Rock[M]. Balkema, Rotterdam,1993:489-492.
    [52]Waltham A C, Cubby T J. Developments in Nottingham's sandstone caves[J]. Mercian Geologist,1997,14:58-67.
    [53]Waltham A C, Swift G M. Bearing capacity of rock over mined cavities in Nottingham [J]. Engineering Geology,2004,75(1):15-31.
    [54]杨春和,陈峰,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报,2002,21(11):1602 1604.
    [55]杨春和,陈峰.盐穴储气库腔体稳定性研究报告[R].中国科学院武汉岩土力学研究所,武汉,2005.
    [56]杨春和,李银平,陈峰.层状盐岩力学理论与工程[M].2009,北京:科学出版社.
    [57]陈锋,杨春和,白世伟.盐岩储气库最佳采气速率数值模拟研究[J].岩土力学,2007,28(1):57—62.
    [58]施锡林,李银平,杨春和,等.盐穴储气库水溶造腔夹层垮塌力学机制研究[J].岩土力学,30(12):3615—3626.
    [59]吴文,侯正猛,杨春和.盐岩中能源(石油和天然气)地下储存库稳定性评价标准研究[J].岩石力学与工程学报,2005,24(14):2497—2505.
    [60]赵尚毅,郑颖人,时卫民,等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343—346.
    [61]郑颖人,肖强,叶海林,等.地震隧洞稳定性分析探讨[J].岩石力学与工程学报,2010,29(6):1081—1088.
    [62]Huang M S, Jia C Q. Strength reduction FEM in stability analysis of soil slopes subjected to transient unsaturated seepage[J]. Computers and Geotechnics,2009,36(1-2):93-101.
    [63]Joanna L G, Adrian R M, Cole M D. Strength reduction factors for near-fault forward-directivity ground motions[J]. Engineering Structures,2010,32(1):273-285.
    [64]DeVries K L, Callahan G D, Mellegard K D. Numerical simulations of natural gas storage caverns in bedded salt[C]. The 40th U.S. Symposium on Rock Mechanics (USRMS): Rock Mechanics for Energy, Mineral and Infrastructure Development in the Northern Regions, Anchorage, Alaska,2005.
    [65]Knothe S. Time influence on a formation of a subsidence surface[J]. Archiwum Gornictwa, Krakow,1952,1(1):1.
    [66]彭小沾,崔希民,减永强,等.时间函数与地表动态移动变形规律[J].北京科技大学学报,2004,26(4):341—344.
    [67]Andrzei Komalski. Surface subsidence and rate of its increments based on measyrements and theory[J]. Arch Min Sci,2001,46(4):391-402.
    [68]Sroka A, Jarosz A, Karmis M. Subsidence development with time-experiences from longwall operations in the appalachian coalfield[J]. International Journal of Mining and Geological Engineering,1990,8:26-273.
    [69]Sroka A, Hejmanowski R. Subsidence prediction caused by the oil and gas development[C].3rd IAG/12th FIG Symposium, Baden,2006.
    [70]Schober F, Sroka T, Sroka A. Zum problem der berechnung dynamischer, bergmannisch bedingter senkungen [J]. Das Markscheidewesen,1987,94(4):416-424.
    [71]Gonzalez Nicieza C, Alvarez Fernandez AE M I, Menendez Diaz A, et al. The influence of time on subsidence in the Central Asturian Coalfield[J]. Bull Eng Geol Environ,2007,66: 319-329.
    [72]Peter A F. Subsidence Prediction and Inversion of Subsidence Data[C]. SPE:78227, 2002.
    [73]Peter A F, Bogdan Orlic. Semi-analytic modelling of subsidence [J]. Mathematical Geology,2006,38(5):565-589.
    [74]Muntendam Bos A G, Kroon I C, Peter A F. Time-dependent inversion of surface subsidence due to dynamic reservoir compaction [J]. Mathematical Geosciences,2008,40(2): 159-177.
    [75]Kittitep Fuenkajorn, Sarayuth Archeeploha, Prediction of cavern configura subsidence data[J]. Suranaree J. Sci. Technol,2009,16(2):127-140.
    [76]Jenkunawat P. Results of drilling to study occurrence of salt cavities and surface subsidence[C]. In Proceedings of the First Thailand Symposium on Rock Mechanics, Nakhon Ratchasima:Suranaree University of Technology 2007.
    [77]Ehgartner B L, Park B Y, Herrick C G, et al. Numerical simulation evaluating the structural stability of the strategic petroleum reserve (SPR) in Bayou Choctaw Salt Dome, USA[C]. SPE:08-150,2008.
    [78]刘新荣,姜德义,谭晓慧.岩盐溶腔覆岩沉降和变形规律的研究[J].化工矿物与加工,1999,7:21—25.
    [79]曹幼元,贺跃光.钻井水溶法开采矿区地表移动随机介质理论预计研究[J].中国锰业,2006,1(24):23—26.
    [80]吴侃,靳建明,戴仔强.概率积分法预计下沉量的改进[J].辽宁工程技术大学学报,2003,22(1):19—22.
    [81]任松,姜德义,杨春和,等.岩盐水溶开采沉陷新概率积分三维预测模型研究[J].岩土力学,2007,28(1):134—138.
    [82]任松.岩盐溶腔覆岩沉降和变形规律的研究[D].重庆大学,2005.
    [83]任松,姜德义,杨春和.复杂开采沉陷分层传递预测模型[J].重庆大学学报,2009,32(7):823—828.
    [84]屈丹安,杨春和,任松.金坛盐穴地下储气库地表沉降预测研究[J].岩石力学与工程学报,2010,29(Supp.1):2705—2711.
    [85]Hou Z M. Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities[J]. Int. J. Rock Mech. Min. Sci. and Geomech.,2003, 40(5):725-738.
    [86]邓祖佑,王少昌,姜正龙,等.天然气封盖层的突破压力[J].石油与天然气地质,2000,21(2):136—138.
    [87]梁卫国,杨春和,赵阳升.层状盐岩储气库物理力学特性与极限运行压力[J].岩石力学与工程学报,2008,27(1):22 27.
    [88]陈卫忠,谭贤君,伍国军,等.含夹层盐岩储气库气体渗透规律研究[J].岩石力学与工程学报,2009,28(7):1297—1304.
    [89]Stefan Heusermann, Olaf Rolfs, Uwe Schmidt. Nonlinear finite-element analysis of solution mined storage caverns in rock salt using the LUBBY2 constitutive model[J]. Computers & Structures,2003,81(8-11):629-638.
    [90]Jiang Y J, Li B, Yamashita Y J. Simulation of cracking near a large underground cavern in a discontinuous rock mass using the expanded distinct element method[J]. Int J Mech Min Sci,2009,46(1):97-106.
    [91]Wang T T, Huang T H. A constitutive model for the deformation of a rock mass containing sets of ubiquitous joints [J]. Int J Mech Min Sci,2009,46(3):521-530.
    [92]Petr Dymacek, Karel Milicka. Creep small-punch testing and its numerical simulations [J]. Materials Science and Engineering,2009, A(510-511):444-449.
    [93]Pellet F, Roosefid M, Deleruyelle F. On the 3D numerical modelling of the time-dependent development of the damage zone around underground galleries during and after excavation[J]. Tunnelling and Underground Space Technology,2009,24(6):665-674.
    [94]Zhao B Y, Ma Z Y. Influence of cavern spacing on the stability of large cavern groups in a hydraulic power station[J]. Int J Mech Min Sci,2009,46(3):506-513.
    [95]Mirone G, Corallo D. A local viewpoint for evaluating the influence of stress triaxiality and Lode angle on ductile failure and hardening[J]. International Journal of Plasticity,2010, 26(3):348-371.
    [96]Wang T T, Yan X Z, Yang X J, et al. Numerical stimulation of minimum permitted operating pressure of natural gas storage in bedded salt[C]. Rock Stress and Earthquakes[M], Taylor & Francis Group, London,2010:425-428.
    [97]王同涛,闫相祯,杨恒林,等.多夹层盐穴储气库群间矿柱稳定性研究[J].煤炭学报,2011,36(5):790-795.
    [98]Adams J. Natural gas salt cavern storage operating pressure determination[C]. SPE: 97-180,1997.
    [99]Pierre Berest, Berguesa J, Brouarda B, et al. A salt cavern abandonment test[J]. International Journal of Rock Mechanics & Mining Sciences,2001,38:357-368.
    [100]王同涛,闫相祯,杨恒林,等.多夹层盐穴储气库最小运行压力数值模拟研究[J].油气储运,2010,29(11):877—879.
    [101]张黎明,郑颖人,王在泉,等.有限元强度折减法在公路隧道中的应用探讨[J].岩土力学,2007,28(1):97—101+106.
    [102]郑颖人,唐晓松,赵尚毅,等.有限元强度折减法在涉水岸坡工程中的应用[J].水利水运工程学报,2009,4:1—10.
    [103]秦四清.初论岩体失稳过程中耗散结构的形成机制[J].岩石力学与工程学报,2000,19(3):265—269.
    [104]Bornyakov S A, Truskov V A, Cheremnykh A V. Dissipative structures in fault zones and their diagnostic criteria (from physical modeling data)[J]. Russian Geology and Geophysics,2008,49:138-143.
    [105]付成华陈胜宏.基于突变理论的地下工程洞室围岩失稳判据研究[J].岩土力学,2008,29(1):167—172.
    [106]Yang K, Wang T X, Ma Z T. Application of cusp catastrophe theory to reliability analysis of slopes in open-pit mines[J]. Mining Science and Technology (China),2010,20(1): 71-75.
    [107]Leynaud D, Sultan N.3-D slope stability analysis:A probability approach applied to the nice slope (SE France)[J]. Marine Geology,2010,269(3-4):89-106.
    [108]周翠英,陈恒,朱凤贤.基于渐进演化的高边坡非线性动力学预警研究[J].岩石力学与工程学报,2008,27(4):818—824.
    [109]Kemal Haciefendioglu, Hasan Basri Basaga, Alemdar Bayraktar, et al. Nonlinear analysis of rock-fill dams to non-stationary excitation by the stochastic Wilson-θ method[J]. Applied Mathematics and Computation,2007,194(2):333-345.
    [110]潘岳,张勇,王志强.煤与瓦斯突出中单个煤壳解体突出的突变理论分析[J].岩土力学,2009,30(3):595—603.
    [111]Yan C B, Xu G Y, Zuo Y J. Destabilization analysis of overlapping underground chambers induced by blasting vibration with catastrophe theory[J]. Transactions of Nonferrous Metals Society of China,2006,16(3):735-740
    [112]Li X b, Zhou Z L, Lok T S, et al. Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. Int J Mech Min Sci,2008,45(5):739-748.
    [113]Kenneth H, John J C, John F O. Legacies of catastrophic rock slope failures in mountain landscapes [J]. Earth-Science Reviews,2008,87(1-2):1-38.
    [114]Gu C S, Wu H Z, Su H Z. Research on stability of the accumulated rock-s oil body of reservoir bank under rainfall condition [J]. Sci China Ser E-Tech Sci,2009,52(9): 2528-2535.
    [115]Casti J. Catastrophe theory and the problem of stellar collapse[R]. International Institute for Applied Systems Analysis, Laxenburg, Austria,1974.
    [116]Qin S Q, Jiao J J, Wang S J, et al. A nonlinear catastrophe model of instability of planar-slip slope and chaotic dynamical mechanisms of its evolutionary process [J]. International Journal of Solids and Structures,2001,38(44-45):8093-8109.
    [117]许传华,任青文.围岩稳定分析的熵突变准则研究[J].岩土力学,2004,25(3):3440.
    [118]Steven R S, Brian L E.3-D cavern enlargement analyses[R]. Sandia National Laboratories,2001.
    [119]Wang T T, Yan X Z, Yang X J, et al. Dynamic subsidence prediction of ground surface above salt cavern gas storage considering the creep of rock salt[J]. Sci China Tech Sci,2010, 53(12):3197-3202.
    [120]王同涛,闫相祯,杨恒林,等.考虑盐岩蠕变的盐穴储气库地表动态沉降量预测[J].中国科学 技术科学,2011,41(5):687—692.
    [121]Ryszard Hejmanowsk, Anton Sroka. Time-space ground subsidence prediction determined by volume extraction from the rock mass[C]. Proceedings of the sixth international symposium on Land subsidence, Ravenna,2000.
    [122]Vyacheslav Palchik. Use of Gaussian distribution for estimation of gob gas drainage well productivity[J]. Mathematical Geology,2002,34(6):743-765.
    [123]Ibrahim Djamaluddin, Tetsuro Esaki, Yasuhiro Mitani, et al. Development of GIS-based analytical method for predicting mining subsidence[C].2005 ESRI International User Conference Proceedings, Tokyo,2005.
    [124]Pierre Berest, Mehdi Karimi-Jafari. Transient creep in salt caverns[C]. Proceedings of McMat 2005 Joint ASME/ASCE/SES Conference on Mechanics and Materials, Louisiana, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700