用户名: 密码: 验证码:
防止热采井套管热破坏的预膨胀固井理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稠油是油气资源的重要组成部分,我国稠油资源约占总资源的20%-25%,已探明的储量超过13亿吨。开采稠油有蒸汽驱、蒸汽吞吐和火烧油层等热力法,我国一般以蒸汽吞吐方法为主。热采井在注蒸汽几轮次后常出现套管损坏现象,给油田生产造成巨大的经济损失。本文在对国内外套管损坏现状和预防措施深入分析的基础上,对防止热采井套管损坏的预膨胀固井技术进行了全面研究。
     首先阐述了稠油开采方式和注蒸汽热采井的井身结构特点,分析了套管受力,并结合热采井套管损坏部位和损坏形式等统计数据,得出了注蒸汽热采井套管损坏的主要原因以及受热应力的主要部位,并对研究模型进行了相应简化。
     依据在初始状态时就已受到地应力作用的地层上钻井的套管—地层相互作用模型,建立了刚性地层、弹性地层和蠕变地层条件下套管所受外挤力的计算模型。对于固井过程中处于自由膨胀状态下的套管,运用厚壁圆筒平面应力问题理论建立了套管的应力计算力学模型。对于生产过程中受热变形受到固结水泥环限制的套管,运用厚壁圆筒平面应变问题理论建立了套管的应力计算力学模型,以及弹性水泥环和地层的位移计算模型,并根据套管—水泥环—地层围岩接触处的位移协调方程,阐述了不同地层条件下套管外挤力的计算方法。由力学模型计算出了不同注气温度下生产过程中套管的有效应力强度,利用Mises屈服准则分析了热采井套管损坏的力学机理。
     在前述工作的基础上,完善了预膨胀固井理论模型。建立了采用预膨胀固井技术时以及水泥浆凝固后生产过程中套管应力计算力学模型,由力学模型分析了预膨胀固井技术保护套管的力学机理。通过实际油井数据计算了油井分别采用常规固井、不同预热温度的半预热固井和不同预压压力的预压固井时套管在整个生产过程中的应力和状态,由计算结果分析了防止套管热破坏的比较合理的预热温度和预压压力范围。并根据力学模型设计了不同井深、不同注汽温度下的N-80套管的预压压力值。
     最后根据稠油热采实际生产情况、简化的研究模型以及预膨胀固井理论要求,设计了室内模拟预膨胀固井实验平台,并进行了水泥浆性能测试、实验用铝管性能测试以及相应的模拟常规固井、半预热固井、预压固井和注蒸汽/生产过程等实验。对比了采用不同固井方式时铝管在实验前后的内径变化情况,分析了预膨胀固井技术对套管变形的影响。
Heavy oil is an important constituent of hydrocarbon resources. In China, it takes up 20% to 25% of the total with proven reserves of over 1.3 billion tons. Technologies of heavy oil recovery include steam drive, steam stimulation, in-situ combustion, etc., and steam stimulation is adopted the mostly in China. However, after several rounds of steam injection, casing failure often occurs, which causes huge economic losses. Based on analysis of current situations of casing failure and preventive measures at home and abroad, this paper carries out a comprehensive study of pre-expansion cementing technology in preventing casing failure in thermal recovery wells.
     The paper first introduces methods of heavy oil recovery and the wellbore configuration of steam injection thermal recovery wells. Based on analysis of the stress and damage of casing, it is found that the main cause of casing failure of steam injection thermal recovery wells is continuous thermal stress on the section at oil reservoir. Therefore, the research model of present study is simplified as a combination of casing at oil reservoir section, cement sheath and the formation.
     By analyzing the interaction model of the casing and the formation with strata stress in an initial state, respective formula for the external pressure on casing is derived under conditions of rigid formation, elastic formation and creep formation. Based on the thick cylinder plane stress theory, a mechanical model of stress calculation is established for casing in the state of free expansion during the cementing process. By adopting the thick cylinder plane strain theory, the study specifically establishes a mechanical model for stress calculation of casing during the production process of steam injection thermal recovery wells. According to the compatibility equation of displacement between casing, cement sheath and the formation, calculating methods are elaborated for the external pressure on the casing in different formations. The study also figures out the effective stress intensity of casing during the production process and analyzes the mechanical mechanism of casing failure in thermal recovery wells by Mises yield criterion.
     Based on aforementioned work, the study improves the theoretical model of pre-expansion cementing. It also establishes mechanical models of stress calculation on the casing at different stages and under different formation conditions with pre-expansion cementing technology. With these models the mechanical mechanism of casing protection is further analyzed. Apart from theoretical analysis, by adopting data from actual oil wells, the study also calculates respectively the stress and state of casing during the whole production process with conventional cementing, half pre-heating cementing with different temperatures, and pre-pressurization cementing with different stress. The results help in deriving appropriate ranges of pre-heating temperature and pre-pressurization stress for prevention of casing failure.
     Finally, to verify the rationality of the theory, an indoor simulation of pre-expansion cementing experimental platform is designed according to the simplified research model and requirements of pre-expansion cementing theory. Performance tests of the cement slurry and the experimental Al pipe are carried out as well as corresponsive simulated production experiments including conventional cementing, half pre-heating cementing, pre-pressurization cementing and steam injection.
引文
1艾池.套管损坏机理及理论模型与模拟计算[D].大庆:大庆石油学院, 2003: 3-7, 16-20.
    2刘子晋.大庆油田套管损坏因素的探讨[J].大庆石油地质与开发, 1982, 1(2): 134-144.
    3宋冶,史交齐.西气东输工程的质量核心是气井用油、套管及完井工程质量[A].首届全国套损治理研讨会论文集[C].西安:中国石油天然气集团公司石油管力学和环境行为重点实验室, 2002: 1-6.
    4黄道宇.江汉油田套损井调查与分析[J].江汉石油科技, 2006, 16(4): 39-42.
    5张顺世,王俊民.青海油田套损现状及综合治理技术[J].青海石油, 2009, 27(4): 1-5.
    6李卫忠.曙光油田超稠油井套管损坏的机理和防治[J].钻采工艺, 2003, 26(2): 55-57.
    7余雷,薄岷.辽河油田热采井套损防治新技术[J].石油勘探与开发, 2005, 32(1): 108-114.
    8龚伟安.关于套管抗挤强度的若干问题[J].石油矿场机械, 1977, 7(2): 31-48.
    9韩建增.套管抗挤强度研究[D].成都:西南石油学院, 2001: 1-5.
    10练章华,韩建增,董事尔,等.基于数值模拟的复杂地层套管破坏机理研究[J].天然气工业, 2002, 22(1): 48-51.
    11于桂杰.长效地应力机制下套管应力与抗挤强度理论研究[D].东营:中国石油大学(华东), 2009: 9.
    12龚伟安.论非均匀壁厚椭圆套管的抗挤强度计算[J].石油矿场机械, 1977, 7(5): 41-52.
    13龚伟安.套管损坏与套管受力状态[J].石油钻采工艺, 1983, 5(2): 39-41.
    14赵怀文.关于管的挤压理论(一)[J].石油矿场机械, 1978, 8(4): 24-36.
    15赵怀文.关于管的挤压理论(二)—管的弹塑性稳定计算法[J].石油矿场机械, 1978, 8(5): 28-40.
    16赵怀文.关于套管的抗挤强度[J].石油大学学报(自然科学版), 1979, 3(2): 24-40.
    17赵怀文.关于管的挤压理论(三)—椭圆管弹性及弹塑性稳定性质[J].石油矿场机械, 1979, 9(1): 1-20.
    18赵怀文.论当前工程中实用的套管抗挤计算方法[J].石油矿场机械, 1980, 10(4): 1-11.
    19仇伟德,赵怀文.套管的挤压分析[J].石油学报, 1995, 16(2): 99-107.
    20刘子晋.油水井套管损坏的地质条件研究[J].大庆石油地质与开发, 1990, 9(4): 57-63.
    21宋治.油层套管损坏的原因分析及预防措施[J].石油钻采工艺, 1985, 7(1): 9-22.
    22李子丰,杨敏嘉,李邦达.油井套管损坏机理分析[J].石油钻采工艺, 1985, 7(4): 47-53.
    23窦益华.油田套管损坏机理及防治措施[J].焊管, 1989, 12(4): 1-5.
    24张永良,周祖辉,黄荣樽.大庆泥岩的蠕变模式及其曲线拟合[J].华东石油学院学报, 1985, 9(3): 30-39.
    25周祖辉,黄荣樽,庄锦江.软弱岩层的蠕变及其与油井套管岩压外载的关系[J].岩石力学与工程学报, 1986, 5(2): 115-118.
    26邓金根,黄荣樽.流变地层中套管外载的计算方法[J].石油勘探技术, 1994, 22(4): 41-45.
    27闫相祯,杨恒林.泥岩蠕变导致套管变形损坏机理分析[J].钻采工艺, 2003, 26(3): 65-68.
    28赵洪山,管志川.油层出砂引起采油套管损坏的力学分析[J].中国石油大学学报(自然科学版), 2006, 30(5): 53-57.
    29赵洪山,管志川.严重出砂井中采油套管损坏的力学分析[J].石油钻采工艺, 2005, 27(5): 85-89.
    30杨启明,耿兆华,张戈,等.疏松砂岩地层出砂因素对套管损坏机理探讨[J].钻采工艺, 2004, 27(6): 70-72.
    31林付利,陈勉,张广清,等.油藏压实、出砂引起的射孔段套损机理分析[J].石油钻采工艺, 2007, 29(2): 49-51.
    32王娟,张建峰,景永红.疏松砂岩地层出砂对套管损坏的研究[J].石油矿场机械, 2007, 36(7): 15-18.
    33张先普,陈继明,张效羽,等.我国油田套管损坏的原因探讨[J].石油钻采工艺, 1996, 18(5): 7-12.
    34舒干,李现东,赵志超,等.套管损坏机理研究[J].江汉石油学院学报, 1999, 21(1): 60-63.
    35崔孝秉,宋治,岳伯谦,等.注水开发油田套管损坏的机理研究[J].石油学报, 1993, 14(3): 93-101.
    36王旱祥,颜廷杰,李增亮.射孔对套管强度的影响[J].石油机械, 2000, 28 (5): 42-45.
    37向绪金,余爱明.射孔对套管强度的影响研究[J].江汉石油学院学报, 2002, 24(2): 86-87.
    38王林发.套管损坏的地质因素分析[J].大庆石油地质与开发, 1989, 8(1): 53-57.
    39代丽,徐守余.油水井套管损坏的地质因素综合研究[J].地质灾害与环境保护, 2005, 6(3): 33-34.
    40黄毓林,戴祖福.套管腐蚀的预防及治理工艺技术[J].石油钻采工艺, 1995, 17(2): 76-80.
    41何治武,赵文.油井水泥环界面对套管腐蚀的影响及预防措施[J].钻采工艺, 1997, 21(3):31-36.
    42赵洪山.稠油热采井套管柱损坏机理及预防措施研究[D].东营:中国石油大学, 2007: 1-8, 12.
    43 Lepper G. B. Production casing performance in a thermal field[C]. SPE 39246, 1998: 1-6.
    44张永贵.注蒸汽热采井套管强度理论与试验研究[D].秦皇岛:燕山大学, 2008: 57-76.
    45王兆会,高德利.热采井套管损坏机理及控制技术研究进展[J].石油钻探技术, 2003, 31(5): 16-18.
    46 Kuzyukov A. N.. How hydrogen effects operability of chemical and petrochemical equipment made of carbon and low alloy steel [J]. International journal of hydrogen energy, 2002, (27): 813-817.
    47 Siddiqui R A.. Hydrogen embrittlement in 0.31% carbon steel used for petrochemical applications [J]. Journal of materials processing technology, 2005, (17): 430-435.
    48 Halal A. S., Mitchell R. F., Wagner R.. Multi-string casing design with wellhead movement [C]. SPE 37443, 1997: 1-10.
    49 Mason C. J.. The drilling and casing running enigma [C]. SPE 100749, 2006: 1-12.
    50 Watson, T., Getzlaf, D., Griffith, J. E.. Specialized cement design and placement procedures prove successful for mitigating casing vent flows-case histories [C]. SPE 76333, 2002: 1-6.
    51 Tsuru Eiji, Kohyama Fujimasa, Yazaki Yoichi, et al.. Investigation of service performance of casing pipe in thermal well environment and its application to critical design of thermal wells [J]. Nippon Steel Technical Report, 1990 (47): 30-36.
    52 Willhite G. P.. Design criteria for completion of steam injection wells [J]. JPT, 1967, 19(1): 15-21.
    53 Kazush Maruyam, Masao Ogasawara, Yasusuke Inoue, et al. An experimental study of casing performance under thermal cycling condition [C]. SPE 18776, 1990: 1-10.
    54 G.B. Lepper. Production casing performance in a thermal field [J]. JCPT, 1998, 38(10): 1-6.
    55 Willhite G P.. Overall heat transfer coefficients in steam and hot water injection wells [J]. JCPT, 1982, 22(3): 82-88.
    56 G Maharaj. Thermal well casing failure analysis [C]. SPE 36143, 1996: 1-12.
    57 Joao C.R. Placido, Ademar P. Jr., Luiz A.B.F. Paulo, et al. Stress analysis of casing string submitted to cyclic steam injection [C]. SPE 38978, 1997: 1-9.
    58 Wagg B., XIE J., Solanki S.. Evaluating casing deformation mechanisms in primary heavy oilproduction [C]. SPE 54116, 1999: 1-7.
    59 Inciarte G., Nieto L., Petroleos de Venezuela, et al.. Analysis of collapse failures on production tubing during steam injection process assisted by computer simulations [C]. SPE 81155, 2003: 1-10.
    60 Fredfich J. T.. Reservoir compaction, surface subsidence and casing damage [J].JPT, 1998. 50(1): 68-70.
    61 Boukhelifa L.. Evaluation of cement systems for oil and gas well zonal isolation in a full-scale annular geometry [C]. SPE 87195, 2004: 2-4.
    62 Dan T. Mueller. Characterizing casing-cement-formation interactions under stress conditions [C]. SPE 90450, 2004: 26-29.
    63 Goodwin, K. J., Crook, R, J.. Cement sheath stress failure [C]. SPE 28115, 1992: 291-296.
    64 Abdulrazag Y. Zekri, Omar Chaalal. Thermal stress of carbonate rocks: An experimental approach [C]. SPE 68777, 2001: 1-14.
    65 Crolet J. L., Bonis M R.. How to pressurize autoclaves for corrosion testing under carbon dioxide and hydrogen sulfide pressure [J]. Corrosion, 2000, 56(2): 167-182.
    66 Kunio Nishioke. An experimental study on the critical collapsing pressure of a seamless steel tube for well casing under external pressure [J]. Reprinted from the sumitomo search, 1976, 15(5): 60-64.
    67赵正琪.注汽井套管的受力与变形[J].石油学报, 1982, 3(1): 69-75.
    68李宾元.热力采油中套管的应力分析[J].西南石油学院学报, 1985, 7(1): 31-40.
    69张允真,贾忠慧,张翠娥,等.注蒸汽井的温度场及其套管的热应力[J].石油钻采工艺, 1992, 9(4): 59-63.
    70刘坤芳,张兆银,孙晓明,等.注蒸汽井套管热应力分析及管柱强度设计[J].石油钻探技术, 1994, 22(4): 36-50.
    71李子丰,吴德华,黄跃芳,等.套管柱和注汽管柱热弹性力学分析[J].石油钻采工艺, 1995, 17(6): 62-69.
    72李子丰,马兴瑞,黄文虎,等.热采井套管柱力学分析[J].工程力学, 1998, 15(2): 19-26.
    73 Wu Jiang. Casing temperature and stress analysis in steam-injection wells [C]. SPE 103882, 2006: 1-12.
    74赵洪山,管志川,闫振来,等.注蒸汽井套管的热应力数值分析[J].石油机械, 2009, 37(7): 10-15.
    75崔孝秉,曹玲,张宏,等.注蒸汽热采井套管损坏机理研究[J].石油大学学报(自然科学版), 1997, 21(3): 57-64.
    76毛东风,崔孝秉,张宏.热采井首次注蒸汽后井筒应力分析[J].石油矿场机械, 1998, 27(2): 21-24.
    77李孝生.注蒸汽对套管强度的影响[J].石油机械, 1992, 20(4): 12-20.
    78张毅,翟勇,姜泽菊,等.注汽工艺管柱对热采井套损的影响[J].石油机械,2004,32(2): 26-29.
    79高德利,王兆会,高宝奎.热采井套管的材料温度效应及应力分析研究[J].石油机械, 2004, 32(特刊): 47-51, 56.
    80王兆会,马兆忠.热采井温度对套管性能的影响及预应力值计算方法[J].钢管, 2007, 36(4): 24-27.
    81 Holst P. H., Flock D. L.. Wellbore behavior during saturated steam injection [J]. JCPT, 1966, 5(5): 184-188.
    82 Lin Tang, Pinya Luo. The effect of the thermal stress on wellbore stability [C]. SPE 39505, 1998: 1-11.
    83李静,林承焰,杨少春,等.稠油开发井套管损坏机理与强度设计问题分析[J].石油矿场机械, 2009, 38(1): 9-13.
    84杨平阁,付玉红.辽河油田热采井套损机理分析与治理措施[J].石油钻采工艺, 2003, 25(S): 72-76.
    85 Yu Zhonghong, Wang Liyang, Liu Dawei. Investigation on Production Casing in Steam-Injection Wells and the Application in Oilfield [J]. Journal of Hydrodynamics, 2009, 21(1): 77-83.
    86彭顺龙,杨凌云.预应力固井[J].石油钻采工艺, 1983, 1(1) : 13-22.
    87叶蜚庭,郭再耕,林培刚.套管预应力固井的新方法[J].石油钻采工艺, 1983, 1(5) : 31-35.
    88吴疆,郝俊芳.热采井套管预应力固井法的探讨[J].石油钻采工艺, 1985, 2(3) : 39-45.
    89钻井手册(甲方)编写组.钻井手册(甲方)上册[M].北京:石油工业出版社, 1990: 20-37.
    90万仁溥.采油技术手册(第八分册)稠油热采技术[M].北京:石油工业出版社, 1996: 269-344.
    91李葆青,张复彦.基础固井地锚提拉套管预应力技术[J].石油钻采工艺, 1990, 7(4): 23-28.
    92王新东,牛建梅,周克铜.地锚预应力固井在硬地层中的应用[J].石油钻井工程, 1997, 4(4): 26-32.
    93张桂林.可复位式预应力固井地锚的研究与应用[J].石油钻探技术, 2000, 28(3): 36-38.
    94王兆会,高德利,周克刚.克拉玛依稠油热采井DM型系列地锚预应力固井技术[J].石油钻探技术, 2004, 32(4): 47-49.
    95牟忠信,张明昌.组合式套管预应力地锚工具的研制与应用[J].石油机械, 2005, 33(2): 44-45.
    96叶永彪,吕瑞典.预应力固井中新型地锚的设计[J].内蒙古石油化工, 2005, 15(11): 99-100.
    97肖武锋,张君亚,牛桂丽,等.预应力固井用弹簧式水力促动底部循环地锚[J].石油机械, 2007, 35(3): 36-38.
    98杨秀娟,杨恒林,闫相祯,等.热采井套管三轴预应力设计分析[J].石油矿场机, 2004, 33(1): 1-5.
    99王兆会,高宝奎,高德利.注汽井套管热应力计算方法对比分析[J].天然气工业, 2005, 25(3): 93-95.
    100宋洵成,赵洪山,管志川.稠油热采井套管的预应力分析[J].石油钻采工艺, 2006, 28(4): 64-68.
    101管志川,赵洪山.注汽井套管的三轴预应力设计[J].工程力学, 2007, 24(4): 188-192.
    102李子丰,李天降,阳鑫军,等.热采井半预热固井技术[J].石油钻采工艺, 2004, 26(5): 16-20.
    103 Michael S. Bruno. Geomechanical and decision analyses for mitigating compaction-related casing damage [C]. SPE 79159, 2002: 1-7.
    104 Swapan Das. Application of thermal recovery processes in heavy oil carbonate reservoirs[C]. SPE 105392, 2007: 1-12.
    105 J. Wu, M.E. Gonzalez, N. Hosn. Steam injection casing design [C]. SPE 93833, 2005: 1-10.
    106 D. Bour. Cyclic steam well design-a new approach to solve an old problem of cement sheath failure in cyclic steam wells [C]. SPE 93868, 2005: 1-12.
    107卢小庆,方华,张冬梅,等.高强度热采井专用套管TP100H的开发[J].钢铁, 2001, 36(10): 30-33.
    108杨立强. TP100H套管在超稠油热采井中的应用[J].特种油气藏, 2002, 9(6): 48-50.
    109卢小庆,李勤,李春香.高强度稠油热采井专用套管TP110H的开发[J].钢管, 2007, 36(5): 14-19.
    110卢小庆,郦江洪,马兆中,等.稠油热采井专用套管TP90H的开发[J].天津冶金, 2004, (6): 7-9.
    111宗卫兵,张传友,沈淑君,等.非API标准规格TP120TH稠油热采井专用套管的开发[J].天津冶金, 2005, 11(1): 15-19.
    112孙迎春,贾耀惠.热应力补偿器在超稠油开发中的应用[J].特种油气藏, 2002, 9(6): 51-54.
    113李敏,林蓉.热应力补偿器在稠油热采井完井中的应用[A].中国石油学会2005东部油田钻井新技术研讨会论文集[C].大连, 2005: 123-127.
    114孙雪冬.套管热应力补偿器在稠油热采井中的研究与应用[J].中国石油和化工, 2005, 12(11): 52-55.
    115周先军,綦耀光. JKB-Ⅰ型井口热胀补偿器热应力有限元分析[J].石油矿场机械, 2007, 36(10): 38-40.
    116韩显卿.提高石油采收率基础[M].北京:石油工业出版社, 1993: 113, 157-160.
    117刘文章.稠油注蒸汽热采工程[M].北京:石油工业出版社, 1997: 21-23.
    118张义堂.热力采油提高采收率技术[M].北京:石油工业出版社, 2006: 2, 15-30.
    119 J. C. De Souza. Twenty years of steam injection in heavy-oil fields [C]. SPE 94808, 2005: 1-8.
    120 T. N. Nasr, O. R. Ayodele. Thermal techniques for the recovery of heavy oil and bitumen [C]. SPE 97488, 2005: 1-9.
    121 Gary R. Greaser, J. Raul Ortiz. New thermal recovery technology and technology transfer for successful heavy oil development [C]. SPE 69731, 2001: 1-8.
    122 G Maharaj. Thermal well casing failure analysis [C]. SPE 36143, 1996: 1-12.
    123 B. A. Slevinsky. A model for analysis of injection-well thermal fractures [C]. SPE 77568, 2002: 1-11.
    124 Smith R J, Alinsangan N S, Talebi S. Microseismic response of well casing failures at a thermal heavy oil operation [C]. SPE 78203, 2002: 1-14.
    125 S. Gozde, HS. Chhina. An analytical cyclic steam stimulation model for heavy oil reservoirs [C]. SPE 18807, 1989: 1-10.
    126陈庭根,管志川.钻井工程理论与技术[M].山东:石油大学出版社, 2000: 249-267.
    127宋治,冯耀荣.油井管与管柱技术及应用[M].北京:石油工业出版社, 2007: 146-147.
    128李子丰.油气井杆管柱力学及应用[M].北京:石油工业出版社, 2008: 175.
    129殷有泉,陈朝伟,李平恩.套管-泥环-地层应力分布的理论解[J].力学学报, 2006, 38(6): 835-842.
    130殷有泉,李志明,张广清.蠕变地层套管载荷分析研究[J].岩石力学与工程学报, 2004, 24(14): 2381-2384.
    131李志明,张颜福,王计平,等.蠕变地层中套管的附加载荷[J].石油钻采工艺, 1999, 21(5): 10-13,41.
    132李平恩,殷有泉,苏先樾.流变地层地应力场中套管载荷的理论解[J].北京大学学报(自然科学版), 2007, 43(1): 11-16.
    133殷有泉,蔡永恩,陈朝伟.非均匀地应力场中套管载荷的理论解[J].石油学报, 2006, 27(4): 133-138.
    134李子丰,张永贵,阳鑫军.蠕变地层与油井套管相互作用力学模型[J].石油学报, 2009, 30(1): 129-131.
    135王仲茂.油田油水井套管损坏的机理及防治[M].北京:石油工业出版社, 1994: 25, 63, 72.
    136徐芝纶.弹性力学(第三版)[M].北京:高等教育出版社, 1990: 72-85.
    137徐秉业.弹性与塑性力学[M].北京:机械工业出版社, 1981: 248-258.
    138 Hardin, John. Strength of oil well cements at downhole pressure-temperature conditions [C]. SPE 34526, 1965: 1-13.
    139 E. Eremenko, S. Kochanova, M. Kourenko. Simulation of a sector model of the heavy oil thermal recovery [C]. SPE 89470, 2004: 1-14.
    140 Li Zifeng. Casing cementing with half warm-up for thermal recovery wells [J]. Journal of Petroleum Science and Engineering, 2008, 61(2-4): 94-98.
    141李子丰,阳鑫军,王兆运,等.防止热采井套管热破坏的预压固井技术[J].工程力学, 2008, 25(6): 219-224.
    142李子丰,阳鑫军,王兆运,等.防止热采井套管热破坏的预膨胀固井技术[J].固体力学学报, 2009, 30(2): 162-169.
    143阳鑫军,李子丰,王兆运,等.热采井预膨胀固井模拟实验[J].工程力学, 2010, 27(6): 223-227.
    144王兆运.热采井预膨胀固井模拟实验研究[D].秦皇岛:燕山大学, 2008: 46-59.
    145中国科学院兰州化学物理研究所.硅油[M].兰州:甘肃人民出版社, 1997: 190-194.
    146黎启柏.液压元件手册[M].北京:冶金工业出版社, 1999: 102-110.
    147田新民.热采井预膨胀固井水泥浆优化设计[D].秦皇岛:燕山大学, 2008: 23-50.
    148谢应权,彭志刚,冯茜.超高温油井水泥缓凝剂PQ的室内研究[J].钻井液与完井液, 2003, 20(6): 36-37.
    149姚晓,邓敏,唐明述.油井水泥浆流变模型研究进展[J].南京化工大学学报, 1999, 21(4):73-78.
    150苏如军,李清忠.高温缓凝剂GH-9的研究与应用[J].钻井液与完井液, 2005, 22(增刊): 89-92.
    151刘秀成,袁沛,周亚军.浅层稠油固井技术[J].钻井液与完井液, 2005, 22(2): 44-46.
    152张云锋,陈良德.油井水泥高温稳定剂的应用[J].钻井液与完井液, 1993, 10(3): 58-61.
    153朱成银,范志勇,洪霞.热采井固井水泥添加剂研究[J].断块油气田, 2004, 11(3): 75-76.
    154陈道元,李韶利,杨昌勇,等. M83S油井水泥降失水剂的性能评价[J].钻井液与完井液, 2004, 21(6): 12-14.
    155 Hal Grant J. W, Rutledge John M, Roger H. Christy field limitations of liquid-additive cementing systems [C]. SPE 18619, 1998: 1-19.
    156 Robert Pollard, Jeff Hibbeler. New cement additive improves slurry properties and save cost [C]. SPE 28773, 2001: 1-16.
    157 Davison J. M., Clary S, Saasen A, et al. Rheology of various drilling fluid systems under deepwater drilling conditions [C]. SPE 56632, 2003: 1-9.
    158 Rudi Rubiandini R. S. New additive for improving shearbond strength in high temperature and pressure cement [C]. SPE 62750, 2003: 1-15.
    159 Frigaard I. A., Pelpenko S. Effective and ineffective strategies for mud removal and cement slurry design [C]. SPE 80999, 2006: 1-16.
    160何世明,刘崇建,刘昌魁,等.温度压力对水泥浆流变性的影响规律研究[J].石油钻采工艺, 1999, 21(6): 7-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700