用户名: 密码: 验证码:
几种大块非晶合金宏微观变形行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
块体非晶合金具有优异的物理、化学及力学性能,在基础科学和实际应用领域越来越受到人们的关注。然而块体非晶合金室温下缺乏明显的塑性变形,从而限制了其作为结构材料在实际中的应用。因此,研究非晶合金的塑性变形机理和寻找提高塑性的途径是目前研究的热点问题。本文利用微纳米压痕方法和宏观单轴压缩方法,系统地研究了多种块体非晶合金体系的宏微观塑性变形行为。重点研究了非晶合金的压力敏感性(pressure sensitivity),探讨了其压力敏感因子和硬化指数的物理本质及其影响因素;分析了具有不同压力敏感因子的非晶合金的剪切带形貌与演变规律;研究了玻璃转变温度,结构弛豫对非晶变形的影响;初步研究了非晶的挤压变形行为。主要结论如下:
     1、非晶合金的变形表现出压应力敏感性,其压力敏感程度可以用压力敏感因子来表征,压力敏感因子与非晶结构密切相关,随着非晶结构弛豫程度的提高,压力敏感因子增加,压力敏感因子大小反映了非晶在变形过程中的原子运动摩擦力的大小;
     2、在压痕变形条件下,非晶剪切带的形貌和演化与非晶的压力敏感因子密切相关。在维氏压痕和洛氏压痕变形条件下,剪切带夹角的变化随着压力敏感因子增加而减小,而在纳米压痕法变形条件下,其深度载荷曲线的曲率随压力敏感因子变化而变化。通过对压痕周围剪切带夹角的测量,可确定非晶材料的压力敏感因子;
     3、非晶合金在纳米压痕试验过程中的锯齿流变现象与合金体系的玻璃转变温度有关,具有适中玻璃转变温度的合金体系表现出显著的锯齿流变特征,而锯齿流变现象的出现不仅与加载条件有关,还与非晶的结构有关。随着非晶结构弛豫程度的增加,出现锯齿流变的临界加载速率降低;
     4、在La基、Zr基和Ni基非晶合金的纳米压痕周围,可观察到明显的材料堆积(pile-up)形貌特征,其pile-up高度与非晶合金的硬化指数有关;
     5、含原位生长晶化相的Nd基和Zr基块体非晶合金表现出较高的强度和室温塑性,其宏观塑性变形和力学性能与晶化相的尺寸、体积分数等密切相关;
     6、Zr基块体非晶的挤压变形行为对应变速率和温度有明显的依赖性,在355~415℃温度范围内,保持平稳流变所需的力从1.5KN到0.5KN,当温度为395℃,挤压速率为0.05mm/s时,保持平稳流变所需的力高达4KN。
Bulk metallic glasses (BMGs) have attracted a great attention on fundamental science and practical applications due to their promising physical, chemical and mechanical properties. However, the lack of any significant plastic deformation at room temperature of BMGs is one of the main obstacles to their application in practice. Thus, deeply understanding the macro- and micro- plastic deformation mechanisms of BMGs is always important to the improvement of the ductility of BMGs. In this thesis, by using micro- and nano- indentation methods and uniaxial compression test, the plastic deformation behavior of several BMG systems was investigated, focusing on the physical nature of the pressure sensitivity index and the strain hardening index of the BMGs. The morphology and evolution of the shear bands around the indentation obtained by the different indentation tests conditions were observed in the BMGs with the different pressure and the relationship between the pressure sensitivity index and the shear band patterns of the BMGs was set up. Moreover, the serrated flow feature at different loading conditions in several BMG systems was characterized by nanoindentation measurements, and the effect of structural relaxation on the plastic deformation behavior was investigated. Finally, the extrusion behavior of a Zr-based BMG was investigated. The primary conclusions are summarized as follows:
     1. The deformation of BMGs exhibits the pressure sensitivity which is reflected by the pressure sensitivity index. The pressure sensitivity index is strongly dependent on the structure of BMGs. With the increase of the degree of the structural relaxation, the pressure sensitivity index increased. Physically, the pressure sensitivity index reflects the atom friction.
     2. The morphology and evolution of the shear bands around the indentation correlate to the pressure sensitivity index: Under the Vickers and Rockwell indentation conditions, the include angle between two family shear bands decreases with the increase of the pressure sensitivity index, while, under the nano-indentation condition, the curvature of the load-depth curve changes with the change of the pressure sensitivity index. The pressure sensitivity index can be obtained through the measurement of the include angle between two family shear bands around the Vickers indentation.
     3. During nano-indentation test, some BMGs with the proper glass transition temperature exhibit the serrated flow feature. The appearance of the serrated flow phenomenon is not only dependent on the loading conditions, but also dependent on the structure of BMGs. With the increase of the structure relaxation degree, the critical loading rate for the appearance of the serrated flow decreases.
     4. Pile-up of materials was observed around the nano-indentation in La-, Zr- and Ni-based BMGs. The altitude of pile-up of materials related to the hardening index.
     5. The Nd- and Zr- based BMGs with the presence of the in-situ crystalline phases exhibit high strength and room-temperature ductility, compared to the monolithic BMGs. The feature of the deformation of the composites is strongly dependent on the shape and size of the crystalline phase in the BMGs.
     6. The extrusion deformation of a Zr-based BMG is strongly dependent on the temperature and the strain rate. At the temperature in the range of 355~415℃, the stress for the steady flow decreased from 1.5KN to 0.5KN with the temperature increasing. Under the temperature of 395℃and the strain rate of 0.05mm/s, the stress for the steady flow is up to 4KN.
引文
[1]惠希东,陈国良.块体非晶合金[M].北京:化学工业出版社,2007:1-23.
    [2]戴道生,韩如琪.非晶态物理[M].北京:电子工业出版社,1989:2-10.
    [3]卢博斯基博士主编,柯成等翻译.非晶态金属合金[M].北京:冶金工业出版社,1989:1-9.
    [4]Turnbull D,Cohen M H.Free-volume model of the amorphous phase:glass transition[J].J.Chem.Phys.,1961,34:120-125.
    [5]Klement W,Willens R,Duwez P.Non-crystalline structure in solidified gold-silicon alloys[J].Nature,1960,187:869-870.
    [6]Chen H S.The glass transition temperature in glassy alloys:effects of atomic sizes and the heats of mixing[J].Acta.Matall.,1974,22:897-900.
    [7]Johnson W L.Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials[J].Prog.Mater.Sci.,1986,30:81-134.
    [8]Inoue A.High-strength bulk amorphous-alloys with low critical cooling rates[J].Mater.Trans.JIM,1995,36:866-875.
    [9]Inoue A,Nakamura T,Sugita T,Zhang T,Masumoto T.Bulky La-AI-TM(TM=Transition-Metal) amorphous-alloys with high-tensile strength produced by a high-pressure die-casting method[J].Mater.Trans.JIM,1993,34:351-358.
    [10]Inoue A,Masumoto T.Mg-based amorphous-alloys[J].Mater.Sci.Eng.A,1993,173:1-8.
    [11]Inoue A,Zhang T.Frication of bulk glassy Zr_(55)Al_(10)Ni_5Cu_(30) alloy of 30 mm in diameter by a suction casting method[J].Mater.Trans.JIM,1996,37:185-187.
    [12]Inoue A,Zhang T,Masumoto T.The structural relaxation and glass-transition of La-AI-Ni and Zr-Al-Cu amorphous-alloys with a significant supercooled liquid region[J].J.Non-Cryst.Solids,1992,150:396-400.
    [13]Inoue A,Zhang T,Takeuchi A.Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe-TM-B(TM=IV-VI group transition metal) system[J].Appl.Phys.Let.,1997,71:464-466.
    [14]Shen T D,Schwarz R B.Bulk ferromagnetic glasses prepared by flux melting and water quenching[J].Appl.Phys.Let.,1999,75:49-51.
    [15]Inoue A,Koshiba M,Zhang T,Makino A.Wide supercooled liquid region and soft magnetic properties of Fe_(56)Co_7Ni_7Zr_(10)Nb(or Ta)_(10)B_(10) amorphous alloys[J].J.Appl.Phys.,1998,83:1967-1974.
    [16]Zhang T,Inoue A.Thermal and mechanical properties of Ti-Ni-Cu-Sn amorphous alloys with a wide supercooled liquid region before crystallization[J].Mater.Trans.JIM,1998,39:1001-1006.
    [17]Wang X,Yoshii I,Inoue A,Kim Y H,Kim I B.Bulk amorphous Ni_(75-x)Nb_5M_xP_(20-y)B_y(M=Cr,Mo) alloys with large supercooling and high strength[J].Mater.Trans.JIM,1999,40: 130-1136.
    [18]Peker A,Johnson W L.A highly processable metallic-glass Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5)[J].Appl.Phys.Let.,1993,63:2342-2344.
    [19]Zhang B,Zhao D Q,Pan M X,Wang W H,Greer A L.Amorphous Metallic Plastic[J].Phys.Rev.Let.,2005,94:205502-205505.
    [20]Liu Y H,Wang G,Wang R J,Zhao D Q,Pan M X,Wang W H.Super plastic bulk metallic glasses at room temperature[J].Science,2007,315:1385-1388.
    [21]Inoue A.Stabilization of metallic supercooled liquid and bulk amorphous alloys[J].Acta Mater.,2000,48:179-306.
    [22]汪卫华,王文魁.新型多组元大块非晶合金材料的发现与研究进展[J].物理,1998,27:398-403.
    [23]何国,陈国良.大体积非晶态合金材料[J].材料导报,1999,13:15-17.
    [24]Wei B C,Wang W H,Han B S.Magnetic Domain Structure of Hard Magnetic Nd_(60)Al_(10)Fe_(20)Co_(10) Bulk Metallic Glass[J].Chinese Science Bulletin,2001,40:1595-1598.
    [25]Wei B C,Wang W H,Han B S.Magnetic Domain Structure of NdAlFeCo Bulk Metallic Glass[J].Phys.Rev.B,2001,64:012406-012411.
    [26]Hasegawa N,Makino A,Inoue A,Masumoto T.Magnetic domain structure of nanocrystalline Fe-M-B(M=Zr,Nb) alloys revealed by electron microscopy[J].J.Magn.Magn.Mater.,1996,160:249-250.
    [27]Kojima A,Makino A,Horikiri H,Kawamura Y,Inoue A,Masumoto T.Soft magnetic properties of bulk nanocrystalline Fe-(Nb,Zr,Hf)-B alloys produced by extruding amorphous powders[J].J.Magn.Magn.Mater.,1996,162:95-102.
    [28]Inoue A,Zhang T.Thermal stability and glass-forming ability of amorphous Nd-Al-TM(TM =Fe,Co,Ni or Cu) alloys[J].Mater.Sci.Eng.A,1997,A226:393-396.
    [29]Wang L,Ding J,Li Y,Feng Y P,Wang X Z.Anomalous magnetic viscosity in bulk amorphous materials[J].J.Magn.Magn.Mater.,1999,206:127-134.
    [30]徐海.金属磁性材料、磁性多层膜的磁力显微镜(MFM)研究和国产MFM的研制[博士学位论文].北京:中国科学院物理研究所,1998:2-6.
    [31]Johnson W L.Fundamental aspects of bulk metallic glass formation in multicomponent alloys[J].Mater.Sci.Forum,1996,225-227:35-49.
    [32]Kokmoto O.Proc 4th Int Symposium on Passivity,1977:56-60.
    [33]Ehmler H,Heesemann A,Ratzke K,Faupel F.Mass dependence of diffusion in a supercooled metallic melt[J].Phys.Rev.Let.,1998,80:4919-4922.
    [34]Geyer U,Schneider S,Johnson W L,Qiu Y,Tombrello T A,Macht M P.Atomic difusion in the supercooled liquid and glassy states of the Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) alloy[J].Phys.Rev.Let.,1995,75:2364-2367.
    [35]Tang X P,Geyer U,Busch R,Johnson W L,Wu Y.Diffusion mechanisms in metallic supercooled liquids and glasses[J].Nature,1999,402:160-162.
    [36]Ashby M F.A first report on deformation-mechanism maps[J].Acta metall.,1972,2097:887-897.
    [37]Polk D E,Turnbull D.Flow of melt and glass forms of metallic alloys[J].Acta Metall.,1972,20:493-498.
    [38]Spaepen F,Turnbull D.A mechanism for the flow and fracture of metallic glasses[J].Scrip.Metall.,1974,8:563-568.
    [39]Ruitenberg G,Paul D H,Sommer F,Sietsma J.Pressure-induced structural relaxation in amorphous Pd_(40)Ni_(40)P_(20):The formation volume for diffusion defects[J].Phys.Rev.Let,1997,79:24-26.
    [40]Steif P S,Spaepen F,Prevost J W.Strain localization in amorphous metals[J].Acta Metall.,1982,30:447-455.
    [41]Argon A S.Plastic deformation in metallic glasses[J].Acta Metall.,1979,27:47-58.
    [42]Waniuk A,Busch R,Masuhr A,Johnson W L.Equilibrium viscosity of the Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) bulk metallic glass-forming liquid and viscous flow during relaxation,phase separation,and primary crystallization[J].Acta Mater.,1998,46:5229-5236.
    [43]Wilde G,Goerler G P,Jeropoulos K,Willnecker R,Fecht H J.Specific volume,heat capacity and viscosity of deeply undercooled Pd_(40)Ni_(40)P_(20) bulk glass forming alloy[J].Mater.Sci.Forum,1998,269-272:541-546.
    [44]Masuhr A,Waniuk T A,Busch R,Johnson W L.Time scales for viscous flow,atomic transport,and crystallization in the liquid and supercooled liquid states of Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5)[J].Phys.Rev.Let.,1999,82:2290-2293.
    [45]Busch R,Liu W,Johnson W L.Thermodynamics and kinetics of the Mg_(65)Cu_(25)Y_(10)bulk metallic glass forming liquid[J].J.Appl.Phys.,1998,83:4134-4141.
    [46]Ohsaka K,Chtmg S K,Phim W K,Peker A,Scruggs D,Johnson W L.Specific volumes of the Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) alloy in the liquid,glass,and crystalline states[J].Appl.Phys.Let.,1997,70:726-728.
    [47]Busch R,Kim Y J,Johnson W L.Thermodynamics and kinetics of the undercooled liquid and glass-transition of the Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) alloy[J].J.Appl.Phys.,1995,77:4039-4043.
    [48]Tang X P,Busch R,Johnson W L,Wu Y.Slow atomic motion in Zr-Ti-Cu-Ni-Be metallic glasses studied byNMR[J].Phys.Rev.Let.,1998,81:5358-5361.
    [49]Wright W J,Saha R,Nix W D.Deformation mechanisms of the Zr_(40)Ti_(14)Ni_(10)Cu_(12)Be_(24) bulk metallic glass[J].Mater.Trans.JIM,2001,42:642-649.
    [50]Liu C T,Heatherly L,Easton D S,Carmichal C A,Schneibel J H,Chen C H,Wright J L,Yoo M H,Horton L A,Inoue A.Test environments and mechanical properties of Zr-base bulk amorphous alloys[J].Metal.Mater.Trans.,1998,29A:1811-1820.
    [51]Bruck H A,Rosakis A J,Johnson W L.The dynamic compressive behavior of beryllium bearing bulk metallic glasses[J].J.Mater.Res.,1996,11:503-511.
    [52]Christopher A Schuh,Todd C Hufnagel,Upadrasta Ramamurty.Mechanical behavior of amorphous alloys[J].Acta Mater.,2007,55:4067-4109.
    [53]Wang W H,Done C,Shek C H.Bulk metallic glasses[J].Mater.Sci.Eng.R,2004,44: 45-89.
    [54]Christopher A S,Alan C L.Atomistic basis for the plastic yield criterion of metallic glass[J].Nat.Mater.,2003,2:449-451.
    [55]Zhang Z F,He G,Eckert J,Schultz L.Fracture Mechanisms in Bulk Metallic Glassy Materials[J].Phys.Rev.Let.,91,2003:045505-045509.
    [56]He G,Zhang Z F,Loser W.Effect of Ta on glass formation,thermal stability and mechanical properties of a Zr_(52.25)Cu_(28.5)Ni_(4.75)Al_(9.5)Ta_5 bulk metallic glass[J].Acta Mater.,2003,51:2383-2395.
    [57]Zhang Z F,Eckert J,Schultz L.Difference in compressive and tensile fracture mechanisms of Zr_(59)Cu_(20)Al_(10)Ni_8Ti_3 bulk metallic glass[J].Acta Mater.,2003,51:1167-1179.
    [58]Quinson R,Perez J.Yield criteria for amorphous glassy polymers[J].Journal of materials science,1997,32:1371-1379.
    [59]周益春.材料固体学[M].北京:科学出版社,2005:215-230.
    [60]Hufnagel T C,Cang F,Ott R T,Li J,Brennan S.Controlling shear band behavior in metallic glasses through microstructural design[J].Intermetallics,2002,10:1163-1166.
    [61]Wang G,Shen J,Sun J F,Lu Z P,Zhou B D.Tensile fracture characteristics and deformation behavior of a Zr-based bulk metallic glass at high temperatures[J].Intermetallics,2005,13:642-648.
    [62]Wang G,Shen J,Sun J F,Lu Z P.Compressive fracture characteristics of a Zr-based bulk metallic glass at high test temperatures[J].Mater.Sci.Eng.A,2005,398:82-87.
    [63]He G,Eckert J.Phase transformation and mechanical properties of Zr-base bulk glass-forming alloys[J].Mater.Sci.Eng.A,2003,352:179-185.
    [64]Murali P,Ramamurty U.Embrittlement of a bulk metallic glass due to sub-Tg annealing[J].Acta Mater.,2005,53:1467-1478.
    [65]Flores K M,Dauskart R H.Mean stress effects on flow localization and failure in a bulk metallic glass[J].Acta Mater.,2001,49:2527-2537.
    [66]Fu H M,Wang H,Zhang H F,Hu Z Q.In situ TiB-reinforced Cu-based bulk metallic glass composites[J].Scripta Mater.,2006,54:1961-1966.
    [67]Chang J J,Cho K M,Chung W S,Kim K H,Chung U C.Effects of annealing on the mechanical properties of Zr-based bulk metallic glass for use in die applications[J].Mater.Sci.Eng.A,2005,396:423-428.
    [68]Greer A L,Castellero A,Madge S V,Walker I T,Wilde J R.Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys[J].Mater.Sci.Eng.A,2004,375-377:1182-1185.
    [69]Ramamurty U,Jana S,Kawamura Y,Chattopadhyay K.Hardness and plastic deformation in a bulk metallic glass[J].Acta Mater.,2005,53:705-717.
    [70]Zhang H W,Jing X N,Subhash G,Kecskes L.Investigation of shear band evolution in amorphous alloys beneath a Vickers indentation[J].Acta Mater.,2005,53:3849-3859.
    [71]Jin H J,Wen J,Lu K.Shear stress induced reduction of glass transition temperature in a bulk metallic glass[J].Acta Mater.,2005,53:3013-3020.
    [72]Nieh T G,Wadsworth J.Homogeneous deformation of bulk metallic glasses[J].Scripta Mater.,2006,54:387-392.
    [73]Patnaik M N M,Narasimhan R,Ramamurty U.Spherical indentation response of metallic glasses[J].Acta Mater.,2004,52:3335-3345.
    [74]Narasimhan R.Analysis of indentation of pressure sensitive plastic solids using the expanding cavity model[J].Mechanics of Materials,2004,36:633-645.
    [75]Bletry M,Guyot P,Blandin J J.Free volume model:High-temperature deformation of a Zr-based bulk metallic glass[J].Acta Mater.,2006,54:1257-1263.
    [76]Frans Spaepen.Homogeneous flow of metallic glasses:A free volume perspective[J].Scripta Mater.,2006,54:363-367.
    [77]Flores K M,Dauskart R H.Mean stress effects on flow localization and failure in a bulk metallic glass[J].Acta Mater.,2001,49:2527-2537.
    [78]Hsueh C H,Bei H,Liu C T,Becher P F,George E P.Shear fracture of bulk metallic glasses with controlled applied normal stresses[J].Scripta Mater.,2008,59:111-114.
    [79]中华人民共和国国家计量检定规程汇编.硬度(力学专业)[M].北京:中国计量出版社,2001:45-60.
    [80]杨迪,李福欣.显微硬度试验[M].北京:中国计量出版社,1988:13-20.
    [8l]刘鸿文,吕荣坤.材料力学实验[M].北京:高等教育出版社,2006:83-90.
    [82]王绍铭.材料力学实验指导[M].北京:中国铁道出版社,2003:45-51.
    [83]张泰华,杨业敏,纳米压痕技术的发展和应用[J].力学进展,2002,32:349-364.
    [84]Golovin Y I,Ivolgin V I,Khonik V A,Kitagawa K,Tyurin A I.Serrated plastic flow during nanoindentation of a bulk metallic glass[J].Scripta Mater.,2001,45:947-952.
    [85]Vaidyanathan R,Dao M,Ravichandran G,Suresh S.Study of mechanical deformation in bulk metallic glass through instrumented indentation[J].Acta Mater.,2001,49:3781-3789.
    [86]Nich T G,Schuh C A.Wadsworth J,Li Y.Strain rate-dependent deformation in bulk metallic glasses[J].Intermetallics,2002,10:177-1182.
    [87]Schuh C A,Nich T G.A nanoindentation study of serrated flow in bulk metallic glasses[J].Acta Mater.,2003,51:87-99.
    [88]Schuh C A,Lund A C,Nich T G.New regime of homogeneous flow in the deformation map of metallic glasses:elevated temperature nanoindentation experiments and mechanistic modeling[J].Acta Mater,2004,52:5879-5891.
    [89]Greer A L,Walker I T.Transformations in primary crystallites in(Fe,Ni)-based metallic glasses[J].Mater.Sci.Forum,2002,386:77-88.
    [90]Kim J J,Choi Y,Surech S,Argon A S.Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature[J].Science,2002,295:654-657.
    [91]Bei H,Lu Z P,George E P.Theoretical strength and the onset of plasticity Spherical in bulk metallic glasses investigated by nanoindentation with a indenter[J].Phys.Rev.Let.,2004,93:125504-125507.
    [92]Wei B C,Zhang T H,Dong Y D,Li W H,Liu Y.Plastic deformation in Ce-based bulk metallic glasses during depth-sensing indentation [J]. Mater. Sci. Eng. A, 2007, 449451:962-965.
    
    [93] Wei B C, Zhang T H, Li W H, Dong Y D. Indentation creep behavior in Ce-based bulk metallic glasses at room temperature [J]. Mater. Trans., 2005,46: 2959-2962.
    
    [94] Li W H, Wei B C, Zhang T H, Zhang L C, Dong Y D. Mechanical behavior of Zr_(65)Al_(10)Ni_(10)Cu_(15) and Zr_(52.5)Al_(10)Ni_(10)Cu_(15)Be_(12.5) bulk metallic glasses [J]. Mater. Trans., 2005,46: 2954-2958.
    
    [95] Wei B C, Zhang T H, Li W H, Sun Y F, Yu Y, Wang Y R. Serrated plastic flow during nanoindentation in Nd-based bulk metallic glasses [J]. Intermetallics, 2004,12: 1239-1243.
    
    [96] Li W H, Keesam Shin, Lee C G, Wei B C, Zhang T H, He Y Z. The characterization of creep and time-dependent properties of bulk metallic glasses using nanoindentation [J]. Mater.Sci. Eng. A, 2008,478: 371-375.
    
    [97] Li W H, Wei B C, Zhang T H, Xing D M, Zhang L C, Wang Y R. Study of serrated flow and plastic deformation in metallic glasses through instrumented indentation [J].Intermetallics, 2007,15: 706-710.
    
    [98] Zhang L C, Wei B C, Xing D M, Zhang T H, Li W H, Liu Y. The characterization of plastic deformation in Ce-based bulk metallic glasses [J]. Intermetallics, 2007,15: 791-795.
    
    [99] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J. Mater. Res.,1992, 7: 1564-1583.
    
    [100] Pethica J B, Hutchings R, Oliver W C. Hardness measurements at penetration depths as small as 20 nm [J]. Philos. Mag., 1983,48: 593-606.
    
    [101] Pharr G M, Harding D S, Oliver W C. Cracking during nanoindentation and the measurement of fracture toughness at small scales [J]. Institute for Mechanics and Materials, 1994,36:81-82.
    
    [102] Jianghong Gong, Hezhuo Miao, Zhijian Peng. Analysis of the nanoindentation data measured with a Berkovich indenter for brittle materials: effect of the residual contact stress [J]. Acta Mater., 2004,52: 785-793.
    
    [103] Bucaille J L, Stauss S, E. Felder, Michler J. Determination of plastic properties of metals by instrumented indentation using different sharp indenters [J]. Acta Mater., 2003, 51:1663-1678.
    
    [104] Johnson K L. The correltion of indentation experiments [J]. J. Mech. Phys. Solids, 1970,18:115-126.
    
    [105] Johnson K. L. Contact Mechanics [M]. Cambridge: Cambridge University Press, 1985:108-123.
    
    [106] Tabor D. Hardness of Metals [M]. Oxford: Clarendon Press, 1951: 98-135.
    
    [107] Hill R. Mathematical Theory of Plasticity [M]. Oxford: Oxford University Press, 1950:236-241.
    
    [108] Kroner E. Elasticity theory of materials with long range cohesive forces [J]. Int. J. Solids Struct.,1967,24:581-597.
    [109]Wen P,Tang M B,Pan M X,Zhao D Q,Zhang Z,Wang W H.Calorimetric glass transition in bulk metallic glass forming Zr-Ti-Cu-Ni-Be alloys as a free-volume-related kinetic phenomenon[J].Phys.Rev.B,2003,67:212201-212205.
    [110]Haruyama O.Thermodynamic approach to free volume kinetics during isothermal relaxation in bulk Pd-Cu-Ni-P glasses[J].Intermetallics,2007,15:659-662.
    [111]Gao Y F,Yang B,Nieh T G.Thermomechanical instability analysis of inhomogeneous deformation in amorphous alloys[J].Acta Mater.,2007,55:2319-2327.
    [112]Haruyama O,Sakagami H,Nishiyama N,Inoue A.The free volume kinetics during structural relaxation in bulk Pd-P based metallic glasses[J].Mater.Sci.Eng.A,2007,449-451:497-500.
    [113]Biraja P K,Stephen C G,Palakkal A K,Katharine M F.Characterization of free volume changes associated with shear band formation in Zr- and Cu-based bulk metallic glasses [J].Intermetallics,2004,12:1073-1080.
    [114]Bobrov O P,Khonik V A,Kitagawa K,Laptev S N.Isothermal stress relaxation of bulk and ribbon Zr-based metallic glass[J].Journal of Non-Crystalline Solids,2004,342:152-159.
    [115]Tang C G,Li Y,Zeng K Y.Characterization of mechanical properties of a Zr-based metallic glass by indentation techniques[J].Mater.Sci.Eng.A,2004,384:215-223.
    [116]Trichy G R,Scattergood R O,Koch C C,Murty K L.Ball indentation tests for a Zr-based bulk metallic glass[J].Scripta Mater.,2005,53:1461-1465.
    [117]Keryvin V.Indentation of bulk metallic glasses:Relationships between shear bands observed around the prints and hardness[J].Acta Mater.,2007,55:2565-2578.
    [118]Jana S,Ramamurty U,Chattopadhyay K,Kawamura Y.Subsurface deformation during Vickers indentation of bulk metallic glasses[J].Mater.Sci.Eng.A,2004,375-377:1191-1195.
    [119]Liu L,Chan K C,Sun M,Chen Q.The effect of the addition of Ta on the structure,crystallization and mechanical properties of Zr-Cu-Ni-Al-Ta bulk metallic glasses[J].Mater.Sci.Eng.A,2007,445-446:697-706.
    [120]Kuhn U,Eckert J,Mattern N,Schultz L.ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates[J].Appl.Phys.Let.,2002,80:2478-2480.
    [121]Hays C C,Kim C P,Johnson W L.Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions[J].Mater.Sci.Eng.A,2001,304-306:650-655.
    [122]Fu H M,Wang H,Zhang H F,Hu Z Q.In situ TiB-reinforced Cu-based bulk metallic glass composites[J].Scripta Mater.,2006,54:1961-1966.
    [123]Cao Q P,L i J F,Zhou Y H,Jiang J Z.Microstructure and microhardness evolutions of Cu_(47.5)Zr_(47.5)Al_5 bulk metallic glass processed by rolling[J].Scripta Mater.,2008,59: 673-676.
    [124]Huang Y L,Bracchi A,Niermann T,Seibt M.Dendritic microstructure in the metallic glass matrix composite Zr_(56)Ti_(14)Nb_5Cu_7Ni_6Be_(12)[J].Scripta Mater.,2005,53:93-97.
    [125]Saida J,Deny A,Setyawan H,Kato H,Inoue A.Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr-Al-Ni-Pd bulk metallic glass[J].Appl.Phys.Let.,2005,87:151907-151910.
    [126]Sun Y F,Wei B C,Wang Y R,Li W H,Shek C H.Enhanced plasticity of Zr-based bulk metallic glass matrix composite with ductile reinforcement[J].J.Mater.Res.,2005,20:2386-2391.
    [127]Lee J C,Kim Y C,Ahn J P,Kim H S.Enhanced plasticity in a bulk amorphous matrix composite:Macroscopic and microscopic viewpoint studies[J].Acta Mater.,2005,53:129-141.
    [128]Lin Y H,Wang G,Pan M X,Yu P.Deformation behaviors and mechanism of Ni-Co-Nb-Ta bulk metallic glasses with high strength and plasticity[J].J.Mater.Res.,2007,22(4):869-875.
    [129]宋玉泉,管志平,马品奎,宋家旺.拉伸变形应变硬化指数的理论和实验规范[J].金属学报,2006,42(7):673-680.
    [130]常东华,周晓,魏佰友.应变硬化指数n值的测定和应用[J].理化检验-物理分册,2006,42(5):242-244.
    [131]苏洪英,吕丹,李阳,陈洪凯.应变硬化指数公式的探讨[J].2006,42(12):261-264.
    [132]方健,魏毅静,王承忠.拉伸应变硬化指数的解析测定及力学分析[J].塑性工程学报,2003,10(3):12-17.
    [133]邓薇薇,霍长义.WAW-Y5 00试验机数据采集及自动处理系统的研制与应用[J].本钢技术,2004,4:35-40.
    [134]郗学奎.镁基大块非晶的合成、形成能力、塑性流变及断裂行为研究[博士论文].北京:中国科学院物理研究所,2005:12-16.
    [135]Yang B,Riester L,Nieh T G.Strain hardening and recovery in a bulk metallic glass under nanoindentation[J].Scripta Mater.,2006,54:1277-1280.
    [136]Gao X L.Strain gradient plasticity solution for an internally pressurized thick-walled spherical shell of an elastic linear-hardening material[J].Mech.Adv.Mater.Struct.,2006,13:43-49.
    [137]Gao X L,Jing X N,Subhash G.Two new expanding cavity models for indentation deformations of elastic strain-hardening materials[J].Int.J.Solids Struct.,2006,43:2193-2208.
    [138]Mata M,Anglada M,Alcala J.A hardness equation for sharp indentation of elastic-power-law strain-hardening materials[J].Philos.Mag.,2002,A82:1831-1839.
    [139]Poole W J,Ashby M F,Fleck N A.Micro-hardness of annealed and work-hardened copper polycrystals[J].Scripta Mater.,1996,34:559-564.
    [140]Taljat B,Pharr G M.Development of pile-up during spherical indentation of elastic-plastic solids International[J].Journal of Solids and Structures,2004,41(14):3891-3904.
    [141]Xie S,George E P.Hardness and shear band evolution in bulk metallic glasses after plastic deformation and annealing[J].Acta Mater.,2008,56:5202-5213.
    [142]Lee Y H,Kim J Y,Park J S,Nahm S H,Kwon D.Characterization of inelastic deformation in metallic glass using instrumented indentation[J].Journal of Materials Processing Technology,2007,187-188:794-797.
    [143]Ai K,Dai L H.A new modified expanding cavity model for characterizing the spherical indentation behavior of bulk metallic glass with pile-up[J].Scripta Mater.,2007,56:761-764.
    [144]Laue K,Stenger H.Extrusion[M].ASM,1981:67-89.
    [145]谢建新,刘静安编.金属挤压理论与技术[M].北京:北京冶金工业出版社,2001:45-60.
    [146]王祝堂,田荣璋主编.铝合金及其加工手册[M].长沙:中南工业大学出版社,1989:209-227.
    [147]Kawamura Y,Nakamura T,Inoue A.Superplasticty in Pd_(40)Ni_(40)P_(20) metallic glass[J].Scripta Mater.,1998,39:301-306.
    [148]Wang G,Shen J,Sun J F,Huang Y J,Zou J,Lu Z P,Stachurski Z H,Zhou B D.Superplasticity and superplastic forming ability of a Zr-Ti-Ni-Cu-Be bulk metallic glass in the supercooled liquid region[J].J.Non-Crystalline Solids,2005,351:209-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700