用户名: 密码: 验证码:
Zr基块体金属玻璃变形行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属玻璃因为其优异的性能可以作为结构材料、功能材料在众多尖端领域有着极其重要的应用前景。然而,由于其有限的玻璃形成能力和室温塑性,金属玻璃的实际应用受到严重地制约。本文以Zr基金属玻璃为对象,研究了添加合金元素对其玻璃形成能力以及变形能力的影响,并设计了一系列实验研究了块体金属玻璃的变形行为。
     研究了Al、Fe和Ag的添加对Zr_35Ti_(30)Cu_(7.5)Be_(27.5)合金玻璃形成能力的影响。结果显示,当添加Al和Ag的含量为1at.%以及Fe的含量为2at.%、3at.%、5at.%和7at.%时,Zr_(35-x)Ti_(30)Cu_(7.5)Be_(27.5)M_x(M=Al、Fe和Ag)玻璃形成体系的临界尺寸均由15 mm大幅度提高到20 mm以上。同时,热力学判据(ΔT_x或γ或T_(rg))可以有效地表征Zr_(35-x)Ti_(30)Cu_(7.5)Be_(27.5)M_x(M=Al、Fe和Ag)玻璃形成体系的非晶形成能力。
     研究了Zr_(35-x)Ti_(30)Cu_(7.5)Be_(27.5)M_x(M=Al、Fe和Ag)块体金属玻璃的室温单轴压缩性能,结果表明,Al含量为1.5at.%时,块体金属玻璃(直径为3 mm)的不可恢复应变达到了15.3%,而且具有非常优异的变形能力。通过SEM对块体金属玻璃的断裂形貌进行了观察,发现Fe含量为10at.%以及Ag含量为7at.%和10at.%的样品断口类似于准解理断裂。利用TEM手段对Zr_(35-x)Ti_(30)Cu_(7.5)Be_(27.5)M_x(M=Al、Fe和Ag)块体金属玻璃进行了微观结构表征,Al含量为1.5at.%和2at.%、Fe含量为1at.%和2at.%以及所有添加Ag的块体金属玻璃均发生了液相分离现象。
     研究了纳米尺度下退火温度对Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5)块体金属玻璃变形行为的影响,结果表明553 K弛豫态玻璃试样的变形能力要好于铸态和693 K晶化态试样的塑性变形能力。
     剪切带的形成和扩展是金属玻璃进行室温变形的主要途径。利用在块体金属玻璃压缩试样上做标记的方法,通过FESEM手段测量了压缩过程中剪切带的滑移位移。结果表明,无论是变形能力较差的Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5)还是变形能力优异的Zr_(64.13)Cu_(15.75)Ni_(10.12)Al_(10)块体金属玻璃,单轴压缩条件下剪切带沿着加载方向上的位移之和分别达到了各自不可回复应变总量的95.32%和93.89%。
     最后,为了进一步理解剪切带在金属玻璃变形过程中的作用,本文设计了新颖的压缩-拉伸混合实验,对比研究了剪切带对块体金属玻璃和304不锈钢拉伸强度的影响。结果表明,压缩过程中产生的剪切带极大地降低了块体金属玻璃的抗拉强度,相反,304不锈钢的屈服强度和拉伸强度则几乎没有变化。同时结合TEM和SEM结果,讨论了块体金属玻璃中剪切带的演变规律。
Metallic glasses can be used as structural and advanced functional materials in many fields and have extremely important applications due to their excellent properties. However, the practical applications of metallic glasses are severely constrained because of their limited glass forming ability (GFA) and plasticity. In the dissertation, we studied the effects of minor addition on the GFA and deformability of a Zr-based bulk metallic glass (BMG). Additionally, a series of experiments were designed to study the deformation behavior of BMGs.
     The effects of alloying elements Al, Fe and Ag on the GFA of Zr_35Ti_(30)Cu_(7.5)Be_(27.5) alloy were discusssed. It was found that 1at.% Al (or Ag) or 2, 3 , 5 and 7at.% Fe addition can greatly improve the GFA of Zr_35Ti_(30)Cu_(7.5)Be_(27.5) alloy and the critical size were increased from 15 mm to larger than 20 mm. Meanwhile, the thermodynamic criterion (ΔT_x orγor T_(rg)) were effective in evaluating the GFA of Zr_(35-x)Ti_(30)Cu_(7.5)Be_(27.5)M_x(M=Al, Fe and Ag) glass forming systems.
     The uniaxial compression performance of Zr_(35-x)Ti_(30)Cu_(7.5)Be_(27.5)M_x (M=Al, Fe and Ag) BMGs were studied. The results indicated that BMG (3 mm in diameter) containing 1.5at.% Al showed a irreversible strain of 15.3% and excellent deformability.
     The morphologies of the fractured samples were examined by scanning electron microscopy (SEM). Different from conventional vein-like pattern, the fracture morphology of BMGs containing 10at.% Fe, 7 and 10at.% Ag was similar to that of quasi-cleavage fracture. The microstructures of Zr_(35-x)Ti_(30)Cu_(7.5)Be_(27.5)M_x (M=Al, Fe and Ag) BMGs were investigated by using transmission electron microscopy (TEM). It was found that TEM bright field images of BMGs of Zr_(35-x)Ti_(30)Cu_(7.5)Be_(27.5)Al_x (x=1.5 and 2), Zr_(35-x)Ti_(30)Cu_(7.5)Be_(27.5)Fe_x (x=1 and 2) and Zr_(35-x)Ti_(30)Cu_(7.5)Be_(27.5)Ag_x (x=1, 2, 3, 5 and 7) were composed of phases with brighter and darker contrasts, indicating phase separation occurred during sodification.
     Nanoindentation experiments were carried out to study the influence of annealing temperatures on deformation behavior of Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) BMG. The results showed that the deformability of the sample annealed at 553 K was significantly better than that of the as-cast samples and the ones annealed at 693 K.
     The deformation of metallic glasses was mainly caused by the formation and propagation of shear bands. In the current work, the sliding displacements of shear bands under compression were measured precisely by field emission scanning electron microscopy (FESEM). From the FESEM observations, the sliding displacements of shear bands accounts for 95.32% and 93.89% of the total irreversible strain for Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) BMG and Zr_(64.13)Cu_(15.75)Ni_(10.12)Al_(10) BMG, respectively.
     For further understanding the role of shear bands played during deformation in BMGs, innovative and reliable compression-tension experiment was designed. We comparatively studied the influence of the shear bands formed during compression on the tensile strength of Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) BMG and the 304 stainless steeel. It was found that while the tensile strength of Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) BMG decreased remarkably after precompression, the yielding and tensile strength of the 304 stainless steel remain nearly the same as that without pre-compression. The evolution of shear bands in BMGs was also discussed.
引文
1 J. Kramer, Noconducting modification of metals, Ann. Phy., 1934, 19: 37-64.
    2 J. Kramer, Der amorphe Zustand der Metalle, Z. Phy., 1937, 106: 675-701.
    3 A. Brenner, D.E. Couch, E.K. Williams, J. Res, Nat. Bur. Stand., 1950, 44: 109.
    4 D. Turnbull, Kinetics of Solidification of Supercooled Liquid Mercury Droplets J. Chem. Phys., 1952, 20: 411-424.
    5 D. Turnbull, The liquid state and the liquid-solid transition, Metall. Soc, AIME Tran., 1961, 221: 422-439.
    6 W.J. Klement, R.H. Willens, P. Duwez, Non-crystalline structure in solidified gold-silicon alloys, Nature, 1960, 187: 869-870.
    7 H.S. Chen, Glassy metals, Rep. Prog. Phys., 1980, 43: 353-356.
    8 H.S. Chen, Thermodynamic considerations on the formation and stability of metallic glasses, Acta Metall., 1974, 22: 1505-1511.
    9 A.L. Drehman, A.L. Greer, D. Turnbull, Bulk formation of a metallic glass: Pd40Ni40P20, Appl. Phys. Lett., 1982, 41: 716-717.
    10 W.H. Kui, A.L. Greer, D. Turnbull, Formation of bulk metallic glass by fluxing, Appl. Phys. Lett., 1984, 45: 615-617.
    11 A.L. Greer, Confusion by design, Nature, 1993, 366: 303-304.
    12 A. Inoue, High strength bulk amorphous alloys with low critical cooling rates, Mater. Trans. JIM, 1995, 36: 866-875.
    13 A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater., 2000, 48: 279-306.
    14 A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto, Mg-Cu-Y Amorphous Alloys With High Tensile Strength Produced by a High-Pressure Die Casting Method, Mater. Trans. JIM, 1992, 33: 937-945.
    15 A. Inoue, T. Zhang, T. Masumoto, Al-La-Ni Amorphous Alloys with a Wide Supercooled Liquid Region, Mater. Trans., 1989, 30: 965-972.
    16 A. Inoue, T. Zhang, T. Masumoto, Preparation of 16 mm diameter rod of amorphousZr65Al7.5Ni10Cu17.5 alloy, Mater. Trans. JIM, 1993, 34: 1234-1237.
    17 W.L. Johnson, Bulk glass-forming metallic alloys: Science and Technology, Mater. Res. Sci. Bull., 1999, 24: 42-56.
    18 P. Perker, W.L. Johnson, A highly processable metallic glass Zr_(41.2)Ti_(13.8)Cu_(12.5_Ni_(10.0)Be_(22.5), Appl. Phys. Lett., 1993, 63: 2342-2344.
    19 W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Mater. Sci. Eng. R., 2004, 44: 45-59.
    20 W.H. Wang, Roles of minor additions in formation and properties of bulk metallic glasses, Prog. Mater. Sci., 2007, 52: 540-596.
    21 A. Inoue, Bulk Amorphous Alloys, in: Switzerland:Trans Tech Publications, 1998, pp. 1-7.
    22李然,相似原子对块体非晶合金玻璃形成能力的影响,北京航空航天大学博士论文, 2007.
    23 A. Inoue, W. Zhang, T. Zhang et al., Thermal and Mechanical Properties of Cu-Based Cu-Zr-Ti Bulk Glassy Alloys, Mater. Trans., 2001, 42: 1149-1151.
    24 E.S. Park, D.H. Kim, Effect of atomic configuration and liquid stability on the glass-forming ability of Ca-based metallic glasses, Appl. Phys. Lett., 2005, 86: 201912.
    25 F.Q. Guo, S.J. Poon, G.J. Shiflet, CaAl-based bulk metallic glasses with high thermal stability, Appl. Phys. Lett., 2004, 84: 37-39.
    26 J. Schroers, B. Lohwongwatana, W.L. Johnson et al., Gold based bulk metallic glass, Appl. Phys. Lett., 2005, 87: 061912.
    27 H. Ma, L.L. Shi, J. Xu et al., Discovering inch-diameter metallic glasses in three-dimensional composition space, Appl. Phys. Lett., 2005, 87: 181915.
    28 Q.J. Chen, J. Shen, D.L. Zhang, H.B. Fan, J.F. Sun, D.G. McCartney, A new criterion for evaluating the glass-forming ability of bulk metallic glasses Mater. Sci. Eng. A, 2006, 433: 155-160.
    29 D. Turnbull, "Under what conditions can a glass be formed?" Contemp. Phys., 1969, 10: 473-488.
    30 A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, Formation and mechanical properties of Cu–Hf–Ti bulk amorphous alloys, J. Mater. Res., 2001, 16: 2836-2844.
    31 Z.P. Lu, C.T. Liu, A new glass-forming ability criterion for bulk metallic glass, Acta. Mater., 2002, 50: 3501-3512.
    32 X.H. Du, J.C. Huang, C.T. Liu, Z.P. Lu, New criterion of glass forming ability for bulk metallicglasses, J. Appl. Phys., 2007, 101: 086108.
    33 K. Mondal, B.S. Murty, On the parameters to assess the glass forming ability of liquids J. Non-Cryst Solids, 2005, 351: 1366-1371.
    34 G.J. Fan, H. Choo, P.K. Liaw, A new criterion for the glass-forming ability of liquids J. Non-Cryst Solids, 2007, 353: 102-107.
    35 Z.Z. Yuan, S.L. Bao, Y. Lu, D.P. Zhang, L. Yao, A new criterion for evaluating the glass-forming ability of bulk glass forming alloys J. Alloys compd., 2008, 459: 251-260.
    36 A. Hruby, Evaluation of glass-forming tendency by means of DTA, Czech. J. Phys., Sect. B, 1972, 22: 1187-1193.
    37 Z.L. Long, H.Q. Wei, Y.H. Ding, P. Zhang, G.Q. Xie, A. Inoue, A new criterion for predicting the glass-forming ability of bulk metallic glasses, J. Alloys compd., 2009, 475: 207-219.
    38 M.H. Cohen, D. Turnbull, Molecular transport in liquids and glasses, J. Chem. Phys., 1959, 31: 1164-1169.
    39 D. Turnbull, M.H. Cohen, Free-volume model of the amorphous phase: glass transition, J. Chem. Phys., 1961, 34: 120-125.
    40 Z.P. Lu, Y. Li, S.C. Ng, Reduced glass transition temperature and glass forming ability of bulk glass forming alloys, J. Non-cryst. Solids, 2000, 270: 103-114.
    41 M. Ouchetto, B. Elouadi, S. Parke, Study of Lanthanide zinc phosphate glasses by differential thermal analysis, Phys. Chem. Glasses, 1991, 32: 22-28.
    42 A. Inoue, T. Zhang, T. Masumoto, Glass-forming ability of alloys, J. Non-cryst. Solids, 1993, 156-158: 473-480.
    43 T.A. Waniuk, J. Schroers, W.L. Johnson, Critical cooling rate and thermal stability of Zr-Ti-Cu-Ni-Be alloys, Appl. Phys. Lett., 2001, 78: 1213-1215.
    44 A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems, Acta Mater., 2001, 29: 2645-2652.
    45 A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, Formation and mechanical properties of Cu-Hf-Ti bulk glassy alloys, J. Mater. Res., 2001, 26: 2836-2844.
    46 Z.P. Lu, C.T. Liu, Glass formation criterion for various glass-forming systems, Phys. Rev. Lett., 2003, 91: 115515.
    47 C.A. Angell, Formation of glasses from liquids and biopolymers, Science, 1995, 267: 1924-1926.
    48 C.A. Angell, Spectroscopy simulation and scattering, and the medium range order problem in glass, J. Non-Crys. Solids, 1985, 73: 1-3.
    49 R. Bohmer, N.K. L., C.A. Angell, D.J. Plazek, Nonexponential relaxations in strong and fragile glass forming liquids, J. Chem. Phys., 1993, 99: 4201-4210.
    50 C.A. Angell, CHARLES AUSTEN ANGELL Biography, J. Chem. Phys. B, 1999, 103: 3977-3978.
    51 A.P. Sokolov, E. Rossler, A. Kisliuk, D. Quitmann, Dynamics of strong and fragile glass formers: Differences and Correlation with low-temperature properties, Phys. Rev. Lett., 1993, 71 (13): 2062-2065.
    52 D.M. Zhu, Correlation between density of tunneling states and fragility of glasses, Phys. Rev. B, 1996, 54: 6287-6291.
    53 E.S. Park, J.H. Na, D.H. Kim, Correlation between fragility and glass-forming ability/plasticity in metallic glass-forming alloys, Appl. Phys. Lett., 2007, 91: 031907.
    54 H. Tanaka, Relationship among glass-forming ability, fragility, and short-range bond ordering of liquids J. Non-Crys. Solids, 2005, 351: 678-690.
    55 V.N. Novikov, A.P. Sokolov, Poisson’s ratio and the fragility of glass-forming liquids, Nature (London), 2004, 432: 961-963.
    56 W.H. Wang, Correlations between elastic moduli and properties in bulk metallic glasses, J. Appl. Phys., 2006, 99: 093506.
    57汪卫华,董闯,石灿鸿,大块非晶合金,科学观察, 2007, 2: 37.
    58 Y. Zhang, A.L. Greer, Thickness of shear bands in metallic glasses, Appl. Phys. Lett., 2006, 89: 071907.
    59 L.Q. Xing, Y. Li, K.T. Ramesh, J. Li, T.C. Hufnagel, Enhanced plastic strain in Zr-based bulk amorphous alloys, Phys. Rev. B, 2001, 64: 180201.
    60 Z.F. Zhang, J. Eckert, L. Schultz, Difference in compressive and tensile fracture mechanisms of Zr_(59)Cu_(20_Al_(10_Ni_8Ti_3 bulk metallic glass, Acta Mater., 2003, 51: 1167-1179.
    61 R.D. Conner, Y. Li, W.D. Nix, W.L. Johnson, Shear band spacing under bending of Zr-based metallic glass plates Acta Mater., 2000, 52: 2429-2434.
    62 W.H. Li, T.H. Zhang, M.X. Pan, B.C. Wei, Y.R. Wang, Y.D. Dong, Instrumented indentation study of plastic deformation in bulk metallic glasses, J. Mater. Res., 2006, 21: 75-81.
    63 K. Yoshimi, H. Kato, J. Saida, A. Inoue, Characteristics of Shear Bands and Fracture Surfaces of Zr65Al7.5Ni10Pd17.5 Bulk Metallic Glass, Mater. Trans., 2005, 46: 2870-2874.
    64 Y.H. Liu, G. Wang, M.X. Pan, P. Yu, D.Q. Zhao, W.H. Wang, Deformation behaviors and mechanism of Ni–Co–Nb–Ta bulk metallic glasses with high strength and plasticity J. Mater. Res., 2007, 22: 869-875.
    65 W.H. Jiang, F.X. Liu, P.K. Liaw, H. Choo, Shear strain in a shear band of a bulk-metallic glass in compression, Appl. Phys. Lett., 2007, 90: 181903.
    66 Y.F. Shi, M.B. Katz, H. Li, M.L. Falk, Evaluation of the disorder temperature and free-volume formalisms via simulations of shear banding in amorphous solids, Phys. Rev. Lett., 2007, 98: 105505.
    67 E. Ma, Nanocrystalline materials: Controlling plastic instability, Nat. Mater., 2003, 2: 7-8.
    68 C. Fan, R.T. Ott, T.C. Hufnagel, Metallic glass matrix composite with precipitated ductile reinforcement, Appl. Phys. Lett., 2002, 81: 1020.
    69 C.C. Hays, C.P. Kim, W.L. Johnson, Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in-situ formed ductile phase dendrite dispersions, Phys. Rev. Lett., 2000, 84: 2901-2904.
    70 M.E. Siegrist, J.F. L(O|¨)ffler, Bulk metallic glass–graphite composites, Scripta Mater., 2007, 56: 1079-1082.
    71 A. Inoue, N. Nishiyama, Theme Article - New Bulk Metallic Glasses for Applications as Magnetic-Sensing, Chemical, and Structural Materials, MRS Bullet., 2007, 32: 651.
    72 J.-C. Lee, Y.-C. Kim, J.-P. Ahn, H.-C. Kim, S.-H. Lee, B.-J. Lee, Deformation-induced nanocrystallization and its influence on work hardening in a bulk amorphous matrix composite, Acta Mater., 2004, 52: 1525-1533.
    73 J.M. Park, H.J. Chang, K.H. Han, W.T. Kim, D.H. Kim, Enhancement of plasticity in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses, Scripta Mater., 2005, 53: 1-6.
    74 D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M.D. Demetriou, W.L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility, Nature, 2008, 451: 1085-1089.
    75 J.M. Park, J. Jayaraj, D.H. Kim, N. Mattern, G. Wang, J. Eckert, Tailoring of in situ Ti-based bulk glassy matrix composites with high mechanical performance, Intermetallics, 2010, 18:1908-1911.
    76 J.W. Qiao, S. Wang, Y.L. Zhang, P. K., G.L. Chen, Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification, Appl. Phys. Lett., 2009, 94: 151905.
    77 F. Szuecs, C.P. Kim, W.L. Johnson, MECHANICAL PROPERTIES OF Zr_(56.2)Ti_(13.8)Nb_(5.0)Cu_(6.9)Ni_(5.6)Be_(12.5) DUCTILE PHASE REINFORCED BULK METALLIC GLASS COMPOSITE, Acta Mater., 2001, 49: 1507-1513.
    78 G. He, J. Eckert, W. L(o|¨)ser, H. Schultz, Novel Ti-base nanostructure–dendrite composites with enhanced plasticity, Nat. Mater., 2003, 2: 33-37.
    79 H. Choi-Yim, R.D. Conner, F. Szuecs, W.L. Johnson, Processing, microstructure and properties of ductile metal particulate reinforced Zr_(57)Nb_5Al_(10)Cu_(15.4)Ni_(12.6) bulk metallic glass composites, Acta Mater., 2002, 50: 2737-2745.
    80 R.D. Conner, R.B. Dandliker, W.L. Johnson, Mechanical properties of tungsten and steel fiber reinforced Zr_(41.25)Ti_(13.75)Cu_(12.5)Ni_(10)Be_(22.5) metallic glass matrix Acta Mater., 1998, 40: 6089-6102.
    81 R.D. Conner, R.B. Dandliker, V. Scruggs, W.L. Johnson, Dynamic deformation behavior of tungsten fiber/metallic glass matrix composites, Inter. J. Impact Eng., 2000, 24: 435-444.
    82 H. Choi-Yim, J. Schroers, W.L. Johnson, Microstructures and mechanical properties of tungsten wire/particle reinforced Zr_(57)Nb_5Al_(10)Cu_(15.4)Ni_(12.6) metallic glass matrix composites, Appl. Phys. Lett., 2002, 80: 1906.
    83 B. Clausen, S.-Y. Lee, E.üstündag, C.C. Aydiner, R.D. Conner, M.A.M. Bourke, Compressive yielding of tungsten fiber reinforced bulk metallic glass composites Scripta. Mater., 2003, 49: 123-128.
    84 H.F. Zhang, H. Li, W.A. M., H.M. Hu, B.Z. Ding, Z.Q. Hu, Synthesis and characteristics of 80 vol.% tungsten (W) fibre/Zr based metallic glass composite, Intermetallics, 2009, 17: 1070-1077.
    85 J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, J. Eckert, "work-Hardenable" Ductile Bulk Metallic Glass, Phys. Rev. Lett., 2005, 94: 205501.
    86 S.-W. Lee, M.-Y. Huh, E. Fleury, J.-C. Lee, Crystallization-induced plasticity of Cu–Zr containing bulk amorphous alloys, Acta Mater., 2006, 54: 349-355.
    87 E.S. Park, J.S. Kyeong, D.H. Kim, Phase separation and improved plasticity by modulated heterogeneity in Cu-(Zr, Hf)-(Gd, Y)-Al metallic glasses, Scripta Mater., 2007, 87: 49-52.
    88 J. Pan, L. Liu, K.C. Chan, Enhanced plasticity by phase separation in CuZrAl bulk metallic glass with micro-addition of Fe, Scripta Mater., 2009, 60: 822-825.
    89 J. Schroers, W.L. Johnson, Ductile Bulk Metallic Glass, Phys. Rev. Lett., 2004, 93: 255506.
    90 K.B. Kim, J. Das, S. Venkataraman, S. Li, J. Eckert, Work hardening ability of ductile Ti_(45)Cu_(40)Ni_(7.5)Zr_5Sn_(2.5) and Cu_(47.5)Zr_(47.5)Al_5 bulk metallic glasses, Appl. Phys. Lett., 2006, 89: 071908.
    91 F.Q. Guo, H.J. Wang, S.J. Poon, G.J. Shiflet, Appl. Phys. Lett., 2005, 86: 091907.
    92 J. Saida, A.D.H. Setyawan, H. Kato, A. Inoue, Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr-Al-Ni-Pd bulk metallic glass, Appl. Phys. Lett., 2005, 87: 151907.
    93 Y.L. Ren, R.L. Zhu, J. Sun, J.H. You, K.Q. Qiu, Phase separation and plastic deformation in an Mg-based bulk metallic glass, J. Alloys Compd., 2010, 493: 42-46.
    94 K.F. Yao, F. Ruan, Y.Q. Yang, N. Chen, Superductile bulk metallic glass, Appl. Phys. Lett., 2006, 88: 122106.
    95 K.B. Kim, J. Das, S. Venkataraman, S. Yi, J. Eckert, Appl. Phys. Lett., 2006, 89: 071908.
    96 Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, Super Plastic Bulk Metallic Glasses at Room Temperature, Science, 2007, 315: 1385-1387.
    97 G. Chen, H. Bei, Y. Cao, A. Gali, C.T. Liu, G.E. P., Enhanced plasticity in a Zr-based bulk metallic glass composite with in situ formed intermetallic phases, Appl. Phys. Lett., 2009, 95: 081908.
    98 Y. Wu, Y.H. Xiao, G.L. Chen, C.T. Liu, Z.P. Lu, Bulk Metallic Glass Composites with Transformation-Mediated Work-Hardening and Ductility, Adv. Mater., 2010, XX: 1-4.
    99柳延辉,室温超大塑性锆基块体金属玻璃,中科院物理研究所博士论文, 2007.
    100 F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metall., 1977, 25: 407-415.
    101 M.H. Cohen, G.H. Grest, Liquid-glass transition, a free-volume approach, Phys. Rev. B, 1979, 20: 1077-1098.
    102 P.G. Debenedetti, F.H. Stillinger, Supercooled liquids and the glass transition, Nature, 2001, 410: 259-267.
    103 A.S. Argon, Plastic deformation in metallic glasses, Acta Metall., 1979, 27: 47-58.
    104 R. Huang, Z. Suo, J.H. Prevost, W.D. Nix, Inhomogeneous deformation in metallic glasses, J. Mech. Phys. Solids, 2002, 50: 1011-1027.
    105 H.J. Leamy, H.S. Chen, T.T. Wang, Plastic flow and fracture of metallic glass, Metall. Trans., 1972, 3: 699-708.
    106 C.T. Liu, S. Heatherly, D.C. Eason, C.A. Carmichael, J.H. Schneilel, C.H. Chen, J.L. Wright, M.H. Yoo, J.A. Horton, A. Inoue, Test environments and mechanical properties of Zr-base bulk amorphous alloys Metall. Mater. Trans., 1998, 29A: 1811-1820.
    107 H.A. Bruck, A.J. Rosakis, W.L. Johnson, The dynamic compressive behavior of beryllium bearing bulk metallic glasses, J. Mater. Res., 1996, 11: 503-511.
    108 W.J. Wright, R.B. Schwarz, W.D. Nix, Localized heating during serrated plastic flow in bulk metallic glasses, Mater. Sci. Eng. A, 2001, 319-321: 229-232.
    109 J.J. Kim, Y. Choi, S. Suresh, A.S. Argon, Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature, Science, 2002, 295: 657-657.
    110 K.M. Flores, R.H. Dauskardt, Mean stress effects on flow localization and failure in a bulk metallic glass, Acta Mater., 2001, 49: 2527-2534.
    111 J.J. Lewandowski, A.L. Greer, Temperature rise at shear bands in metallic glasses, Nat. Mater., 2006, 5: 15-18.
    112 Q.H. Li, M. Li, Atomic scale characterization of shear bands in an amorphous metal, Appl. Phys. Lett., 2006, 88: 241903.
    113 L.H. Dai, Y.L. Bai, Basic mechanical behaviors and mechanics of shear banding in BMGs, Int. J. Impact Eng. , 2008, 35: 704-716.
    114 L.H. Dai, M. Yan, L.F. Liu, Y.L. Bai, Adiabatic shear banding instability in bulk metallic glasses, Appl. Phys. Lett. , 2005, 87: 141916.
    115 Y.F. Gao, B. Yang, T.G. Nieh, Thermomechanical instability analysis of inhomogeneous deformation in amorphous alloys, Acta Mater., 2007, 55: 2319-2327.
    116 P. Thamburaja, R. Ekambaram, Coupled thermo-mechanical modelling of bulk-metallic glasses: Theory, finite-element simulations and experimental verification, J. Mech. Phys. Solids, 2007, 55: 1236-1273.
    117 R. Ekambaram, P. Thamburaja, N. Nikabdullah, On the evolution of free volume during the deformation of metallic glasses at high homologous temperatures, Mech. Mater. , 2008, 40:487-506.
    118 H.W. Zhang, G. Subhash, S. Maiti, Local heating and viscosity drop during shear band evolution in bulk metallic glasses under quasistatic loading, J. Appl. Phys. , 2007, 102: 043519.
    119 H.W. Zhang, S. Maiti, G. Subhash, Evolution of shear bands in bulk metallic glasses under dynamic loading, J. Mech. Phys. Solids, 2008, 56: 2171-2187.
    120 F. Spaepen, Must shear bands be hot ?, Nature Mater., 2006, 5: 7-8.
    121 G. Sunny, F. Yuan, V. Prakash, J. Lewandowski, Design of Inserts for Split-Hopkinson Pressure Bar Testing of Low Strain-to-Failure Materials, Exp. Mech. , 2007, 49: 479-490.
    122 B. Yang, C.T. Liu, T.G. Nieh, M.L. Morrison, P.K. Liaw, R.A. Buchanan, Localized heating and fracture criterion for bulk metallic glasses, J. Mater. Res., 2006, 21: 915-922.
    123 D.E. Grady, Properties of an adiabatic shear-band process zone, J. Mech. Phys. Solids, 1992, 40: 1197-1215.
    124 H. Neuh(a|¨)user, Scripta Metall., 1978, 12: 471-474.
    125 A.Y. Vinogradov, V.A. Khonik, Kinetics of shear banding in a bulk metallic glass monitored by acoustic emission measurements, Philos Mag., 2004, 84: 2147-2166.
    126 B. Yang, M.L. Morrison, P.K. Liaw, R.A. Buchanan, G. Wang, C.T. Liu, M. Denda, Dynamic evolution of nanoscale shear bands in a bulk-metallic glass, Appl. Phys. Lett. , 2005, 86: 141904.
    127 H. Choi-Yim, R. Busch, W.L. Johnson, The effect of silicon on the glass forming ability of the Cu_(47)Ti_(34)Zr_(11)Ni_8 bulk metallic glass forming alloy during processing of composites, J. Appl. Phys., 1998, 83: 7993-7997.
    128 C.T. Liu, M.F. Chisholm, M.K. Miller, Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy, Intermetallics, 2002, 10: 1105-1112.
    129 Z.P. Lu, C.T. Liu, A. Carmichael, W.D. Porter, S.C. Deevi, Bulk glass formation in an Fe-based Fe-Y-Zr-M (M= Cr, Co, Al)-Mo-B system, J. Mater. Res., 2004, 19: 921-929.
    130 Z.P. Lu, C.T. Liu, W.D. Porter, Role of yttrium in glass formation of Fe-based bulk metallic glasses, Appl. Phys. Lett., 2003, 83: 2581-2583.
    131 D.J. Sordelet, X. Yang, E.A. Rozhkova, M.F. Besser, M.F. Kramer, Influence of oxygen content in phase selection during quenching of Zr_(80)Pt_(20) melt spun ribbons, Intermetallics, 2004, 12: 1211-1217.
    132 A. Wiest , G. Duan, M.D. Demetriou, L.A. Wiest, A. Peck, G. Kaltenboeck, B. Wiest, W.L. Johnson, Zr–Ti-based Be-bearing glasses optimized for high thermal stability and thermoplastic formability, Acta Mater., 2008, 56: 2625-2630.
    133 P. Yu, H.Y. Bai, M.B. Tang, W.L. Wang, Excellent glass-forming ability in simple Cu_(50)Zr_(50)-based alloys J. Non-Cryst Solids, 2005, 351: 1328-1332.
    134 W.H. Wang, M.X. Pan, D.Q. Zhao, Y. Hu, H.Y. Bai, Enhancement of the soft magnetic properties of FeCoZrMoWB bulk metallic glass by microalloying, J. Phys.: Condens. Matter., 2004, 16: 3719-3723.
    135 S. Li, W.H. Wang, A bulk metallic glass based on heavy rare earth gadolinium, J. Non-Cryst Solids, 2005, 351: 2568-2571.
    136 D.Q. Zhao, Y. Zhang, M.X. Pan, W.H. Wang, Formation ZrNiCuAl Bulk Metallic Glasses with low purity elements, Mater Trans JIM, 2000, 41: 1427-1431.
    137 B. Zhang, D.Q. Zhao, M.X. Pan, W.H. Wang, A.L. Greer, Amorphous Metallic Plastic, Phys Rev Lett, 2005, 94: 205502.
    138 T. Zhang, T. Yamamoto, A. Inoue, Formation, Thermal Stability and Mechanical Properties of (Cu_(0.6)Zr_(0.3)Ti_(0.1))_(100-x)M_x (M=Fe, Co, Ni) Bulk Glassy Alloys, Mater. Trans. , 2002, 43: 3222-3226.
    139 Z. Zhang, W.H. Wang, Microstructure- and property-controllable NdAlNiCuFe alloys by varying Fe content, J. Mater. Res., 2005, 20: 314-319.
    140 J. Eckert, J. Das, K.B. Kim, F. Baier, M.B. Tang, W.H. Wang, Z.F. Zhang, High strength ductile Cu-base metallic glass, Intermetallics, 2006, 14: 876-881.
    141 Q.K. Jiang, X.D. Wang, X.P. Nie, G.Q. Zhang, H. Ma, H.-J. Fecht, J. Bendnarcik, H. Franz, Y.G. Liu f, Q.P. Cao, J.Z. Jiang, Zr–(Cu,Ag)–Al bulk metallic glasses, Acta Mater., 2008, 56: 1785-1796.
    142 J.H. Xia, J.B. Qiang, Y.M. Wang, Q. Wang, C. Dong, Ternary bulk metallic glasses formed by minor alloying of Cu_8Zr_5 icosahedron Appl. Phys. Lett., 2006, 88: 101907.
    143 H.G. Kang, E.S. Park, W.T. Kim, D.H. Kim, H.K. Cho, Fabrication of bulk Mg-Cu-Ag-Y glassy alloy by squeeze casting, Mater. Trans. JIM, 2000, 41: 846-849.
    144 D. Schreiber, Elastic Constants and Their Measurement, (McGraw-Hill, New York, 1973).
    145 E.P. Papadakis, Ultrasonic phase velocity by the pulse-echo-overlap method incorporatingdiffraction phase corrections, J. Acoust. Soc. Am. , 1967, 42: 1045-1051.
    146 A. Inoue, A. Nishiyama, K. Amiya, T. Zhang, T. Masumoto, Ti-based amorphous alloys with a wide supercooled liquid region, Mater. Lett. , 1994, 19: 131-135.
    147 O.N. Senkov, Correlation between fragility and glass-forming ability of metallic alloys, Phys. Rev. B, 2007, 76: 104202.
    148 G. Duan, M.L. Lind, K. De Blauwe, A. Wiest, W.L. Johnson, Thermal and elastic properties of Cu–Zr–Be bulk metallic glass forming alloys, Appl. Phys. Lett. , 2007, 90: 211901.
    149 V.N. Novikov, A.P. Sokolov, Poisson’s ratio and the fragility of glass-forming liquids, Nature, 2004, 431: 961-963.
    150 T. Egami, Universal Criterion for Metallic Glass Formation, Mater. Sci. Eng. A, 1997, 226-228: 261-267.
    151 W.H. Wang, P. Wen, R.J. Wang, Relation between glass transition temperature and Debye temperature in bulk metallic glasses, J. Mater. Res., 2003, 18: 2747-2751.
    152 J.J. Lewandowski, W.H. Wang, A.L. Greer, Intrinsic plasticity or brittleness of metallic glasses Phil. Mag. Lett., 2005, 85: 77-87.
    153 J.J. Lewandowski, M. Shazly, A.S. Nouri, Intrinsic and extrinsic toughening of metallic glasses, Scripta Mater, 2006, 54: 337-341.
    154 D.V. Louzguine-Luzgin, A. Vinogradov, A.R. Yavari, S. Li, G. Xie, A. Inoue, On the deformation and fracture behaviour of a Zr-based glassy alloy, Philos. Mag., 2008, 88: 2979-2987.
    155 J. Fineberg, S.P. Gross, M. Marder, H.L. Swinney, Instability in the propagation of fast cracks, Phys. Rev. B, 1992, 45: 5146-5154.
    156 T.H. Courtney, Mechanical Behavior of Materials, 2nd ed., McGraw-Hill, Boston, 2000.
    157 E.S. Park, H.J. Chang, J.Y. Lee, D.H. Kim, Improvement of plasticity by tailoring combination of constituent elements in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses, J. Mater. Res., 2007, 22: 3440-3447.
    158 B.P. Kanungo, S.C. Glade, P.A. Kumar, K.M. Flores, Characterization of Free Volume Changes Associated with Shear Band Formation in Zr- and Cu-Based Bulk Metallic Glasses, Intermetallics, 2004, 12: 1073-1080.
    159 T. Ichitsubo, Microstructure of Fragile Metallic Glasses Inferred from Ultrasound-AcceleratedCrystallization in Pd-Based Metallic Glasses, Phys. Rev. Lett. , 2005, 95: 245501.
    160 G. Wang, Y.N. Han, X.H. Xu, F.J. Ke, B.S. Han, W.H. Wang, Ductile to brittle transition in dynamic fracture of brittle bulk metallic glass, J. Appl. Phys., 2008, 103: 093520.
    161 G. Wang, D.Q. Zhao, H.Y. Bai, M.X. Pan, A.L. Xia, B.S. Han, X.K. Xi, Y. Wu, W.H. Wang, Nanoscale Periodic Morphologies on the Fracture Surface of Brittle Metallic Glasses, Phys. Rev. Lett., 2007, 98: 235501.
    162 G.E. Dieter, Mechanical Metallurgy McGraw-Hill, New York, 1988.
    163 M.Q. Jiang, Z. Ling, J.X. Meng, L.H. Dai, Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage, Phil. Mag., 2008, 88: 407-426.
    164 C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys Acta. Mater., 2007, 55: 4067-4109.
    165 X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, Y. Wu, J.J. Lewandowski, Fracture of Brittle Metallic Glasses: Brittleness or Plasticity, Phys. Rev. Lett. , 2005, 84: 125510.
    166 B. Lawn, Fracture of brittle solids, Cambridge University Press, Cambridge, 1993.
    167 J.R. Rice, N. Levy, The physics of strength and plasticity, MIT Press, Cambridge, 1969.
    168 E. Pitts, J. Greiller, The flow of thin liquid films between rollers, J. Fluid Mech., 1961, 11: 33-50.
    169 K.M. Flores, R.H. Dauskardt, J. Mater. Res., 1999, 14: 638.
    170 M.E. Newman, Power laws, Pareto distributions and Zipf's law, J. Contemp Phys., 2005, 46: 323-351.
    171 L. Li, T. Lin, C. Dong, J.J. Lin, Phys. Rev. B, 2007, 74: 172201.
    172 H.J. Chang, W. Yook, E.S. Park, J.S. Kyeong, D.H. Kim, Synthesis of metallic glass composites using phase separation phenomena, Acta. Mater., 2010, 58: 2483-2491.
    173 H.J. Chang, E.S. Park, Y.S. Jung, M.K. Kim, D.H. Kim, The effect of Zr addition in glass forming ability of Ni–Nb alloy system, J. Alloys Compd., 2007, 434-435: 156-159.
    174 M.H. Lee, J.Y. Lee, D.H. Bae, W.T. Kim, D.J. Sordelet, D.H. Kim, A development of Ni-based alloys with enhanced plasticity, Intermetallics 2004, 12: 1133-1137.
    175 E.S. Park, H.J. Chang, D.H. Kim, Mg-rich Mg–Ni–Gd ternary bulk metallic glasses with high compressive specific strength and ductility, J. Mater. Res., 2007, 22: 334-338.
    176 E.S. Park, D.H. Kim, Design of bulk metallic glasses with high glass forming ability and enhancement of plasticity in metallic glass matrix composites, Metal Mater. Int., 2005, 11: 19-27.
    177 D.S. Sung, O.J. Kwon, E. Fleury, K.B. Kim, J.C. Lee, D.H. Kim et al., Enhancement of the glass forming ability of Cu?Zr?Al alloys by Ag addition, Metal Mater. Int., 2004, 10: 575-579.
    178 N. Mattern, T. Gemming, J. Thomas, J. Goerigk, H. Franz, J. Eckert, Phase separation in Ni–Nb–Y metallic glasses, J. Alloys Compd., 2010, 495: 299-304.
    179 B.J. Park, H.J. Chang, D.H. Kim, W.T. Kim, K. Chattopadhyay, T.A. Abinandanan et al., Phase Separating Bulk Metallic Glass: A Hierarchical Composite, Phys. Rev. Lett., 2006, 96: 245503.
    180 C.A. Schuh, T.G. Nieh, A nanoindentation study of serrated flow in bulk metallic glasses, Acta Mater., 2003, 51: 87-99.
    181 R. Vaidyanathan, M. Dao, G. Ravichandran, S. Suresh, Study Of Mechanical Deformation In Bulk Metallic Glass Through Instrumented Indentation, Acta Mater., 2001, 49: 3781-3789.
    182 G. Li, Z.J. Zhan, L.M. Wang, L.M. Cao, L.L. Sun, D.Y. Dai, J. Zhang, W.K. Wang, Gravity effect on microstructure of Zr41Ti12.5Cu13Ni10Be22.5 bulk amorphous forming alloy Chin. Sci. Bull., 2001, 61: 961-963.
    183 W.H. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, Y.S. Yao, Microstructural transformation in a Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass under high pressure, Phys. Rev. B, 2000, 62: 11292-11295.
    184 M. Heilmaier, J. Eckert, The synthesis and properties of Zr-based metallic glasses and glass-matrix composites, J. JOM, 2000, 52: 43-47.
    185 J.G. Wang, B.W. Choi et al, Nano-scratch behavior of a bulk Zr-10Al-5Ti-17.9Cu-14.6Ni amorphous alloy, J. Mater. Res., 2000, 15: 913-922.
    186 T.G. Nieh, J. Wadsworth, Homogeneous deformation of bulk metallic glasses, Scripta Mater. , 2006, 54: 387-392.
    187 F.F. Wu, Z.F. Zhang, F. Jiang, J. Sun, J. Shen, S.X. Mao, Multiplication of shear bands and ductility of metallic glass, Appl. Phys. Lett. , 2007, 90: 191909.
    188 T.C. Hufnagel, P. El-Deiry, R.P. Vinci, Development of shear band structure during deformation of a Zr_(57)Ti_5Cu_(20)Ni_8Al_(10) bulk metallic glass, Scripta Mater. , 2000, 43: 1071-1075.
    189 W.J. Wright, R. Saha, W.D. Nix, Deformation mechanisms of the. Zr_(40)Ti_(14)Ni_(10)Cu_(12)Be_(24) bulkmetallic glass, Mater. Trans., 2001, 42: 642-649.
    190 C. Nagel, K. R(a|¨)tzke, E. Schmidtke, F. Faupel, W. Ulfert, Positron-annihilation studies of free-volume changes in the bulk metallic glass Zr_(65)Al_(7.5)Ni_(10)Cu_(17.5) during structural relaxation and at the glass transition, Phys. Rev. B, 1999, 60: 9212-9215.
    191 H.M. Chen, X.H. Du, J.C. Huang, J.S.C. Jang, T.G. Nieh, Analysis of plastic strain and deformation mode of a Zr-based two-phase bulk metallic glass in compression, Intermetallics, 2009, 17: 330-335.
    192 X.H. Du, J.C. Huang, H.M. Chen, H.S. Chou, Y.H. Lai, K.C. Hsieh, J.S.C. Jang, P.K. Liaw, Phase-separated microstructures and shear-banding behavior in a designed Zr-based glass-forming alloy, Intermetallics, 2009, 17: 607-613.
    193 Y.Q. Cheng, Z. Han, Y. Li, E. Ma, Cold versus hot shear banding in bulk metallic glass, Phys. Rev. B, 2009, 80: 134115-134116.
    194 G. Wang, K.C. Chan, L. Xia, P. Yu, J. Shen, W.H. Wang, Self-organized intermittent plastic flow in bulk metallic glasses, Acta Mater., 2009, 57: 6146-6155.
    195 T.C. Hufnagel, T. Jiao, Y. Li, L.Q. Xing, K.T. Ramesh, Deformation and failure of Zr_(57)Ti_5Cu_(20)Ni_8Al_(10) bulk metallic glass under quasi-static and dynamic compression, J. Mater. Res., 2002, 17: 1441-1445.
    196 A.V. Sergueeva, N.A. Mara, J.D. Kuntz, E.J. Lavernia, A.K. Mukherjee, Shear band formation and ductility in bulk metallic glass, Phil. Mag., 2005, 85: 2671-2687.
    197 P.E. Donovan, W.M. Stobbs, Shear bands formation, Acta Metal., 1982, 29: 1419-1436.
    198 H. Bei, S. Xie, E.P. George, Softening Caused by Profuse Shear Banding in a Bulk Metallic Glass, Phys. Rev. Lett. , 2006, 96: 105503.
    199 B. Yang, P.K. Liaw, G. Wang, M. Morrison, C.T. Liu, R.A. Buchanan, Y. Yokoyama, In-situ thermographic observation of mechanical damage in bulk-metallic glasses during fatigue and tensile experiments, Intermetallics, 2004, 12: 1265-1274.
    200王礼立,于同希,李永池,冲击动力学进展[M],中国科学技术大学出版社,合肥, 1992.
    201 Y.L. Bai, B. Dodd, Adiabatic Shear Localization: Occurrence, Theories and Applications, Oxford, Pergamon, 1992.
    202 S.P. Timothy, I.M. Hutchings, The structure of adiabatic shear bands in a titanium alloy Acta Metallurgica, 1984, 33: 667-676.
    203 R. Dormeval, Materials at high strain rates, Elsevier Science Publishing co., INC, New York, 1987.
    204 J. Li, F. Spaepen, T.C. Hufnagel, Nanometre-scale defects in shear bands in a metallic glass, Phil. Mag. A, 2002, 82: 2623-2630.
    205 W.H. Jiang, G.J. Fan, H. Choo, P.K. Liaw, Ductility of Zr-Based Bulk Metallic Glass with Different Specimen Geometries, Mater. Lett. , 2006, 60: 3537-3540.
    206 Z.F. Zhang, J. Eckert, L. Schultz, Difference in Compressive and Tensile Fracture mechanisms of Zr_(59)Cu_(20)Al_(10)Ni_8Ti_3 Bulk Metallic Glass Acta Mater., 2003, 51: 1167-1179.
    207 M.Q. Jiang, Z. Ling, J.X. Meng, L.H. Dai, Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage, Phil. Mag. , 2008, 88: 407-426.
    208 http://en.wikipedia.org/wiki/Plasticity_(physics).
    209 F. Spaepen, D. Turnbull, A mechanism for the flow and fracture of metallic glasses, Scripta Metall., 1974, 8: 563-568.
    210 Y.H. Liu, C.T. Liu, W.H. Wang, A.S. Inoue, T. , M.W. Chen, Thermodynamic origins of shear band formation and the universal scaling law of metallic glass strength, Phys. Rev. Lett. , 2009, 103: 065504.
    211 E. Pekarskaya, C.P. Kim, W.L. Johnson, In-situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite, J. Mater. Res., 2001, 16: 2513-2518.
    212 B. Yang, P.K. Liaw, G. Wang, M. Morrison, C.T. Liu, R.A. Buchanan, Y. Yokoyama, In-situ thermographic observation of mechanical damage in bulk-metallic glasses during fatigue and tensile experiments, Intermetallics, 2004, 12: 1265-1274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700