用户名: 密码: 验证码:
大豆渣的资源化研究—亚临界水解过程及热解过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质是存在广泛的宝贵可再生资源,合理的利用生物质废弃物,不仅可以解决废弃物污染环境的问题,而且还能更加有效地利用资源。豆渣是大豆加工过程中产生的副产物,是一种生物质废弃物,豆渣的产量巨大,每年产量大约在80万吨以上,豆渣的主要成分是粗纤维和蛋白质。如何有效的利用这两种成分,使豆渣废弃物变废为宝具有重要意义。
     氨基酸是构成蛋白质的基础结构单元,在各种生命体中具有重要的生理功能,然而,并不是所有生物都能够代谢合成20种基本氨基酸,一些基本氨基酸人体是不能合成的,因此这些氨基酸必须通过食物消化吸收,以保证人体所需要的数量。在医药、化妆品、饲料以及其它工业领域,氨基酸也具有非常重要的作用。因此,如果将豆渣废弃物中的蛋白质水解为高附加值产物氨基酸,具有非常重要的意义。
     现代社会的发展能源的消耗越来越多,化石资源煤和石油的应用,产生大量的二氧化碳,成为目前认为是造成全球气候变暖的主要原因。而且,随着社会的发展,煤和石油的用量越来越大,而已探明的煤和石油的储量越来越少,随着这些能源物质的逐渐耗尽,开发新能源和化学资源成为当前迫在眉睫的重要任务。在众多新能源的开发中,生物质能一方面因为其具有可再生性,另一方由于生物质再生过程中通过光合作用固定空气中的二氧化碳,在使用过程中不会排放多余的二氧化碳,因此,生物质能备受人们的青睐。还原性糖是生物质能源的一种前驱体,它可以通过微生物或酵母发酵,进一步转换为燃料醇。因此,如果将豆渣废弃物中的粗纤维水解为还原性糖,同样具有非常重要的意义。
     传统处理加工方法主要有酸水解、碱水解和酶解等。前两种方法需要加入酸、碱等化学物质,一方面它们不但腐蚀设备,另一方面还会产生大量的废酸和废碱,污染环境;酶法反应周期较长,一般为8到20小时,而且反应不完全,成本高。
     近年来,亚临界水作为一种环境友好的溶剂和反应介质而备受人们的关注。亚临界水价格便宜、无毒、不燃烧、不爆炸。与常温水相比,亚临界水的性质发生显著变化,尤其亚临界水的介电常数和离子积,可以通过控制温度和压力而进行改变。近临界水的离子积比常温水的离子积大三个数量级,因此,水在近临界条件下,H_2O~+和OH~-的浓度较高,已接近弱酸或弱碱,自身具有酸碱催化的功能。因此,本文采用亚临界水解技术处理豆渣废弃物,以期得到高附加值产物氨基酸和还原性糖。
     研究了利用豆渣废弃物中的蛋白质制取氨基酸的可行性,考察了反应温度、反应时间对水解产物中氨基酸种类以及总氨基酸得率的影响;考察了催化剂对二氧化碳对水解产物中氨基酸种类以及总氨基酸得率的影响;找到制取氨基酸的最佳工艺条件。根据反应的特点,建立豆渣废弃物制取氨基酸的反应动力学模型,由实验数据拟合得到反应动力学参数。实验发现豆渣蛋白质水解可得到多种氨基酸,其中精氨酸、丙氨酸、赖氨酸的含量相对较高。反应温度、反应时间对豆渣水解的影响很大,水解产物中不同种类的氨基酸的得率随反应温度、反应时间的变化规律不同。其中精氨酸的浓度随着反应温度的升高而呈现上升趋势。豆渣水解反应中通入CO_2气体,能够促进豆渣的水解。当反应温度为330℃,反应时间为30 min时,总氨基酸的最大得率为22%。在豆渣蛋白质水解过程中,有两个主要的反应,一是蛋白质水解成氨基酸,另一是生成的氨基酸进一步发生分解反应,生成其它产物。根据这一反应的特点,提出了豆渣蛋白质水解的一级不可逆连串反应动力学模型。根据这个动力学模型,拟合得到了精氨酸、丙氨酸和总的氨基酸在不同温度下的反应速度常数。当反应温度为200、220和240℃时,精氨酸的生成反应速度常数分别为0.0003、0.0007和0.0011 s~(-1),精氨酸的分解速度常数分别为0.0011、0.0022和0.0036 s~(-1);丙氨酸的生成反应速度常数分别为0.0006、0.0008和0.0011 s~(-1),丙氨酸的分解速度常数分别为0.0015、0.0033和0.0097 s~(-1);总氨基酸的生成反应速度常数分别为0.00127、0.0014和0.0017 s~(-1),总氨基酸的分解速度常数分别为0.0005、0.0011和0.0024 s~(-1)。精氨酸的生成表观活化能和指前因子分别为65.8KJ mol~(-1)和5.831×10~3 s~(-1),精氨酸的分解表观活化能和指前因子分别为59.9KJ mol~(-1)和4.669×10~3 s~(-1);丙氨酸的生成表观活化能和指前因子分别为30.6 KJ mol~(-1)和1.404 s~(-1),丙氨酸的分解表观活化能和指前因子分别为94.0 KJ mol~(-1)和3.338×10~7 s~(-1);总氨基酸的生成表观活化能和指前因子分别为14.6 KJ mol~(-1)和0.0516 s~(-1),总氨基酸酸的分解表观活化能和指前因子分别为79.1 KJ mol~(-1)和2.696×10~5 s~(-1)。
     研究了豆渣废弃物中粗纤维制取生物能源前驱体还原性糖的可行性,考察了反应温度、反应时间对水解产物中总还原性糖得率的影响;考察了催化剂对二氧化碳对水解产物中总还原性糖得率的影响;找到了制取还原性糖的最佳工艺条件。根据反应的特点,建立了豆渣废弃物制取还原性糖的反应动力学模型,由实验数据拟合得到反应动力学参数。实验发现反应温度、反应时间对豆渣水解的影响很大,在实验条件下,还原性糖的得率随着反应温度的升高而呈现上升趋势。豆渣水解反应中通入CO_2气体,能够明显促进豆渣的水解,还原性糖的得率增大。当反应体系中通入3MPa的二氧化碳、反应温度为300℃、反应时间为360 s时,总还原性糖的得率最大,最大得率为65.7%。豆渣在亚临界水中进行水解的过程中,其中的粗纤维成分转化为还原性糖。粗纤维转化为还原性糖的反应过程中,也有两个主要的反应,一是粗纤维水解成还原性糖,另一是生成的还原性糖进一步发生分解反应,生成其它产物。根据这一反应的特点,提出了豆渣纤维水解制取还原性糖的一级平行连串反应动力学模型,并根据这个动力学模型,拟合得到了还原性糖在不同温度下的反应速度常数。当反应温度为260、280和300℃时,还原性糖的生成反应速度常数分别为0.00128、0.00221和0.00450 s~(-1),还原性糖的分解速度常数分别为0.00104、0.00225和0.00273 s~(-1)。还原性糖的生成表观活化能和指前因子分别为79.7KJ mol~(-1)和7.95×10~3 s~(-1),还原性糖的分解表观活化能和指前因子分别为61.7KJ mol~(-1)和1.26×10~3 s~(-1)。利用毛细管原位反应技术和热重分析,对豆渣的热解反应进行了研究,考察了豆渣的热解特性和热解动力学。原位反应技术可以直接观察豆渣随温度变化的热解反应现象,并通过显微镜和CCD成像系统,可以实时记录反应现象。原位观察反应技术揭示了豆渣热解过程中液化油状物的产生过程。在氮气气氛中,采用热重分析仪对豆渣的热解特性进行研究,反应温度从室温至800℃,并采用三种加热速率(10、30和50℃/min)。实验发现,随着温度的升高,豆渣的热解过程主要出现三个阶段,在第一个阶段主要发生水分的挥发;主要的热解过程发生在第二个阶段,大多数有机化合物在这个阶段发生分解,大约超过60%的挥发物在这个过程中失重;第三个阶段主要是固体残渣继续缓慢分解的过程。随着加热速率的增加,最初分解温度、DTG曲线最大峰对应的温度增大。分别采用Coats-Redfern模型、Kissinger– Akahira– Sunose(KAS)模型和Flynn– Wall– Ozawa (FWO)模型对热解动力学进行研究。得到了豆渣热解反应的动力学参数活化能和指前因子。
     论文的创新点在于采用亚临界水解技术处理豆渣废弃物,得到了高附加值的产物氨基酸和还原性糖;该工艺具有简单、高效、可再生、可持续发展、反应时间短、环境友好等特征;为解决废弃物质对环境的污染,以及合理利用资源,提供了一种环境友好的新工艺方法。建立了豆渣废弃物水解制取氨基酸和还原性糖的反应动力学模型,得到了反应动力学参数,为亚临界生物质水解的动力学研究提供了新的方法。开发了毛细管原位反应技术,可原位观察豆渣废弃物的热解反应变化过程,有助于进一步理解与研究反应机理。
Biomass is vastly available and considered as a valuable renewable resource. The rational utilization of biomass wastes is important not only for the prevention of environmental issues, but also for the effective utilization of natural resources. As biomass wastes, bean dregs are the main by-product of soybean processing industry. The output of bean dregs is huge. More than 800,000 tons wastes of bean dregs are produced annually. The main components of bean dregs are crude cellulose and protein. Effective utilizing these two components and turning bean dregs waste into valuable material are of great interesting.
     Amino acids are the basic“building blocks”that combine to form proteins. They play an important physiological role in all life-forms. However, not all of the 20 standard amino acids can be metabolically synthesized by all creatures. Some of them (so-called essential amino acids) cannot be produced by the human organisms. These amino acids, therefore, have to be digested in sufficient amounts from foods. Amino acids are also important for several medical, cosmetic, and other industrial applications. Therefore, production of amino acids from bean dregs protein by hydrolysis has great significance.
     With the development of modern society, more and more energy are consumed. The use of fossil resources, such as petroleum and coal, produces a huge amount of carbon dioxide that exacerbates global warming. Reserves of petroleum and coal decrease. The dwindling supply of fossil resources calls for the immediate development of new energy and chemical resources. Among the many new energy resources developed, biomass energy is a strong candidate because biomass is a renewable resource and carbon dioxide is fixed by photosynthesis through regeneration. They do not cause additional increase in the carbon dioxide level. Reducing sugar, as a biomass energy precursor, can be further transformed to fuel alcohol in a fermentation process by means of micro-organisms or yeast. Therefore, production of reducing sugars from bean dregs cellulose by hydrolysis also has great significance.
     In conventional methods, the raw materials are split by acid, alkaline, or enzymatic hydrolysis, whereas the addition of further acidic or alkaline chemicals is necessary for the two former methods. These chemicals not only cause equipment corrosion but also lead to pollution and generation of a large amount of waste acid and waste alkali. Enzymatic process takes a long time (8-20 h) and leads to incomplete hydrolyses . The high cost of enzymes makes the process uneconomical.
     In recent years, sub-critical water has been gaining increasing attention as both an environmentally friendly solvent and attractive reaction medium for a variety of applications. It is cheap, non-toxic, non-flammable, and non-explosive. Its distinctly different behavior compared to water at ambient conditions is due to the dramatic changes in physical properties, namely dielectric strength and ionic product, which in turn can easily be altered by changing temperature and pressure. The ionic product of subcritical water is as much as three orders of magnitude higher than under ambient conditions. Under these conditions, there is a high H_3O~+ and OH~- ion concentration (equivalent to weak acid or weak base). Itself has the function of acid-base catalysis. In this paper, subcritical water hydrolysis was employed as a method for producing high value-added products (amino acids and reducing sugars) from bean dregs waste.
     The feasibility of amino acid production from bean dregs protein by hydrolysis in subcritical water was studied. It was investigated that the effect of reaction temperature, reaction time and carbon dioxide on amino acid composition and on total amino acid yield. The optimum hydrolysis technology conditions for amino acid production were obtained. According to the characteristics of reaction, the kinetic model for amino acid production from bean dregs was proposed. The kinetic parameters were obtained by fitting them to experimental results. The results show that a variety of amino acids are produced. The concentrations of arginine, lysine and alanine are relatively high. Temperature and time have a great influence on the hydrolysis reaction. The effects of reaction temperature and time on yields of different amino acids vary. The concentration of arginine increases with increase of temperature. The addition of carbon dioxide can promote the hydrolysis of bean dregs. The highest yield of total amino acids is 22% at 330℃and 30 min. Two main reactions, hydrolysis of bean dregs protein to amino acids and decomposition of amino acids to other products, were observed in the protein hydrolysis. According to the characteristics of reaction, a kinetic model to describe the hydrolysis of bean dregs protein was proposed: a single consecutive reaction. The rate constants for arginine, alanine and total amino acids for different temperatures were determined based on the kinetic model. When the reaction temperatures are 200, 220 and 240℃, the formation rate constants for arginine are 0.0003, 0.0007 and 0.0011 s~(-1) respectively and the decomposition rate constants for arginine are 0.0011, 0.0022 and 0.0036 s~(-1) respectively; the formation rate constants for alanine are 0.0006, 0.0008 and 0.0011 s~(-1) respectively and the decomposition rate constants for alanine are 0.0015, 0.0033 and 0.0097 s~(-1) respectively; the formation rate constants for total amino acids are 0.00127, 0.0014 and 0.0017 s~(-1) respectively and the decomposition rate constants for total amino acids are 0.0005, 0.0011 and 0.0024 s~(-1) respectively. The formation activation energies and pre-exponential factors for arginine are 65.8KJ mol~(-1) and 5.831×10~3 s~(-1) respectively; the decomposition activation energies and pre-exponential factors for arginine are 59.9KJ mol~(-1) and 4.669×10~3 s~(-1) respectively. The formation activation energies and pre-exponential factors for alanine are 30.6KJ mol~(-1) and 1.404s~(-1) respectively; the decomposition activation energies and pre-exponential factors for alanine are 94.0KJ mol~(-1) and 3.338×10~7 s~(-1) respectively. The formation activation energies and pre-exponential factors for total amino acids are 14.6KJ mol~(-1) and 0.0516s~(-1) respectively; the decomposition activation energies and pre-exponential factors for total amino acids are 79.1KJ mol~(-1) and 2.696×10~5 s~(-1) respectively.
    
     The feasibility of reducing sugar (a biomass energy precursor) production from bean dregs cellulose by hydrolysis was studied. It was investigated that the effect of reaction temperature, reaction time and carbon dioxide on reducing sugar yield. The optimum hydrolysis technology conditions for reducing sugar production were obtained. According to the characteristics of reaction, the kinetic model for reducing sugar production from bean dregs was proposed. The kinetic parameters were obtained by fitting them to experimental results. Temperature and time have a great influence on the hydrolysis reaction. Under the experimental conditions, the yield of reducing sugar increases with increase of temperature. The addition of carbon dioxide can promote the hydrolysis of bean dregs and leads to an increase in reducing sugar yield. The highest yield of total reducing sugars is 65.7% at 300℃, 360 s and 3MPa (CO_2). The crude cellulose is converted into reducing sugars in the hydrolysis of bean dregs. Two main reactions, hydrolysis of crude cellulose to reducing sugars and decomposition of reducing sugars to other products, were also observed in the hydrolysis. According to the characteristics of reaction, a kinetic model to describe the hydrolysis of bean dregs cellulose was proposed: a parallel and consecutive reaction. The rate constants for total reducing sugars for different temperatures were determined based on the kinetic model. When the reaction temperatures are 260, 280 and 300℃, the formation rate constants for total reducing sugars are 0.00128, 0.00221 and 0.00450 s~(-1) respectively and the decomposition rate constants for total reducing sugars are 0.00104, 0.0022 5and 0.00273 s~(-1) respectively. The formation activation energies and pre-exponential factors for total reducing sugars are 79.7KJ mol~(-1) and 7.95×10~3s~(-1) respectively; the decomposition activation energies and pre-exponential factors for total amino acids are 61.7KJ mol~(-1) and 1.26×10~3 s~(-1) respectively.
     Bean dregs pyrolysis reaction was studied using an in-situ visualization capillary technique and thermogravimetric analysis. Pyrolysis characteristics and kinetics were investigated. The in-situ technique enables us to observe directly the processes and temperature of bean dregs transformation during pyrolysis reaction. Reaction phenomena in real-time can be recorded by a CCD camera monitoring system. In-situ visualization of reaction revealed that how oil is generated and expulsed concurrently from bean dregs during pyrolysis. Pyrolysis characteristics were investigated under a highly purified N_2 atmosphere using a thermogravimetric analyzer from room temperature to 800℃at different heating rates of 10, 30, and 50℃/min. The results show that three stages can be distinguished during the heating process. The moisture is removed in the first stage; the second stage is the main pyrolysis process and most of the organic materials are decomposed in this stage (the mass loss of this stage is more than 60% of total volatiles); and the solid residual slowly decomposed in the third stage. The initial temperature of pyrolysis and the temperature at which the pyrolysis rate reaches the peak value shift to the higher temperature as the heating rate increasing. The kinetic parameters (activation energy, pre-exponential factor) were obtained by Coats-Redfern method, Kissinger-Akahira-Sunose method and Flynn-Wall-Ozawa method.
     The innovation of this paper is as follows: High value-added products (amino acids and reducing sugars) were produced from bean dregs waste by hydrolysis in subcritical water. This method is simple, efficient, renewable, sustainable, and safe for environment. This technological process provides a new solution for the disposal of waste pollution and for the rational utilization of resources. The kinetic models for amino acid and reducing sugar production from bean dregs waste by hydrolysis were established. The kinetic parameters were obtained. The kinetic results may provide a new method for study on kinetics of biomass hydrolysis in subcritical water. The in-situ visualization capillary technique was developed. The technique enable us to observe directly the processes of bean dregs transformation during pyrolysis reaction. The technique is useful in helping us understand and study mechanisms.
引文
[1] Bobleter, O. Hydrothermal degradation of polymers dervied from plants [J]. Progr Polym Sci, 1994, 19: 797-841.
    [2] Rogalinski T,Liu K, Albrecht T, Brunner G. Hydrolysis kinetics of biopolymers in subcritical water [J]. J of Supercritical Fluids, 2008, 46: 335–341.
    [3] Rogalinski T, Liu K, Albrecht T, et al. Hydrolysis kinetics of biopolymers in subcritical water [J]. J. of Supercritical Fluids, 2008, 46: 335–341.
    [3] Kruse A, Dinjus E. Hot compressed water as reaction medium and reactant: Properties and synthesis reactions [J]. J. of Supercritical Fluids, 2007, 39: 362–380.
    [4] Cheng H, Zhu X, Zhu C, et al. Hydrolysis technology of biomass waste to produce amino acids in sub-critical water [J]. Bioresource Technology, 2008, 99: 3337–3341
    [5] Katritzky A R, Nichols D A, Siskin M, et al. Reactions in high-temperature aqueous media [J]. Chem. Rev., 2001, 101: 837–892.
    [6] Goto M, Obuchi R, Hirose T, et al. Hydrothermal conversion of municipal organic waste into resources [J]. Bioresour. Technol, 2004, 93: 279–284.
    [7] Esteban M B, Garc?a A J, Ramos P, et al. Kinetics of amino acid production from hog hair by hydrolysis in sub-critical water [J]. J. of Supercritical Fluids, 2008, 46: 137–141.
    [8] Sereewatthanawut I, Prapintip S, Watchiraruji K, et al. Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis [J]. Bioresource Technology, 2008, 99: 555–561.
    [9] Rogalinski T, Ingram T, Brunner G. Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures [J]. J. of Supercritical Fluids, 2008, 47: 54–63
    [10] Lamoolphak W, De-Eknamkul W, Shotipruk A. Hydrothermal production and charaterization of protein and amino acids from silk waste [J]. Bioresource Technology, 2008, 99: 7678–7685
    [11] Klingler D, Berg J, Vogel H. Hydrothermal reactions of alanine and glycine in sub- and supercritical water [J]. J. of Supercritical Fluids, 2007 43:112–119
    [12] Sato N, Quitain A T, Kang K, et al. Reaction kinetics of amino acid decomposition inhigh-temperature and high-pressure water [J]. Ind. Eng. Chem. Res., 2004, 43: 3217-3222
    [13] Ingram T, Rogalinski T, Bockemühl V, et al. Semi-continuous liquid hot water pretreatment of rye straw [J]. J. of Supercritical Fluids, 2009, 48: 238–246.
    [14] Shaw R W, Brill T B, Clifford A A, et al. Supercritical water- a medium for chemistry [J]. Chem.Eng.News, 1991, 69 (51): 26-39.
    [15] Akiya N, Savage P E. Roles of water for chemical reactions in high-temperature water [J]. Chem. Rev., 2002, 102(8): 2725-2750.
    [16] Kalinichev A G, Churakov S V. Thermodynamics and structure of molecular clusters in supercritical water [J]. Fluid Phase Equilib., 2001, 183: 271-278.
    [17] Guàrdia E, MartíJ. Density and temperature effects on the orientational and dielectric properties of supercritical water [J]. Physical Review E, 2004, 69 (011502): 1-11.
    [18] Sato T, Haryu E, Adschiri T, et al. Non-catalytic recovery of phenol through decomposition of 2-isopropylphenol in supercritical water [J]. Chem. Eng. Sci., 2004, 59:1247-1253
    [19] Arita T, Nakahara K, Nagami K, et al. Hydrogen generation from ethanol in supercritical water without a catalyst [J]. Tetrahedron Letters, 2003, 44:1083-1086
    [20]王文钊.纤维素热重分析及热解动力学研究[D].重庆大学硕士论文, 2008.
    [21]朱道飞,生物质在超临界水中液化转化的实验研究[D],昆明理工大学硕士论文,2004.
    [22]孙立.新能源技术的发展与展望(三).山东能源.1997,(5):38-40.
    [23]程洪斌,近临界水中生物质及其废弃物水解制备氨基酸的工艺及动力学研究[D],上海大学博士论文,2007.
    [24]姜录,胡飞.豆渣酸水解工艺条件的研究[J].食品研究与开发,2008, 29(2): 97-99.
    [25]祝团结,郑为完.大豆豆渣的研究开发现状与展望[J].食品研究与开发,2004, 25(4): 25-28.
    [26]戴小阳,罗泽民,豆渣的有效利用[J],湖南农业科学, 1996 1 28-29.
    [27]陈霞,杨香久,豆渣的综合开发利用[J],食品研究与开发,1996 17(3) 43-44.
    [28]胡德亮,徐容,郭常高,豆奶生产中下脚料的综合利用现状及趋势[J].食品工业, 2001, 4: 41-43.
    [29]高金燕,徐江林,从大豆豆渣中提取大豆异黄酮的初步研究[J],中国食品添加剂, 2003,5: 16-18
    [30]任平国,徐启红,醇沉法提取豆渣中可溶性膳食纤维的研究[J],中国油脂, 2009, 34(3): 61-63.
    [31]朱会霞,孙金旭,大豆豆渣膳食纤维的制备条件研究[J].中国酿造,2008, 201: 78-80.
    [32]孙云霞.豆渣中水溶性膳食纤维提取方法的研究[J],食品研究与开发, 2003, 24(3): 34-35.
    [33]姜爱莉,贺红军,孙承锋.大豆膳食纤维的提取工艺[J],食品工业, 2004, 1: 46-47.
    [34]邓应华,宁正祥,许克勇.豆渣溶解特性的研究[J],食品工业科技, 2008, 29(3): 117-119.
    [35]周德红,郑为完,祝团结,杨静.酶法水解豆渣制备水溶性膳食纤维及其作为微胶囊壁材的研究[J],食品与发酵工业, 2005, 31(5): 55-58.
    [36]李文佳,林亲录,苏小军.从豆渣中制取大豆膳食纤维的研究[J],农产品加工(学刊), 2010, 6: 51-53.
    [37]李静,邓泽元,刘晶晶.豆渣中粗伸展蛋白提取[J].南昌大学学报(理科版), 2004, 28(3): 259-261.
    [38]周德红,郑为完,祝团结.酶法水解豆渣制备水解蛋白工艺[J],南昌大学学报(工科版), 2005, 27(2): 74-76.
    [39]任海伟,王常青,苏槟楠.双酶法水解黑豆豆渣制备可溶性蛋白[J],农产品加工(学刊), 2007, 5: 39-41.
    [40]丁玉萍,王雪丽,王学英.利用豆渣生产水解植物蛋白[J],食品工业科技, 1997, 4: 24-25.
    [41] Gorhuty Y E, Kalinichev A G. Hydrogen Bonding in Supercritical Water. Experimental Result [J]. Journal of Physical Chemistry, 1995, 99: 5336-5340.
    [42] Naoko Akiya, Phillip E Savage, Roles of water for chemical reactions in high-temperature water [J], Chem Rev, 2002, 102: 2725-2750.
    [43]韩恩厚.超临界水环境中材料的腐蚀研究现状[J],腐蚀科学与防护技术, 1999, 11(1): 53-56
    [44] Kalinichev A G, Henzinger K. Geochimica Cosmochimica Acta [J], 1995, 59: 641-89.
    [45]周建,陆小华,王延儒等。超临界水的分子动力学模拟[J],物理化学学报,1999, 15(11):107-1022.
    [46] Hear L, Gallagher J S. Kell G S. NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Comput er Programs for Vapor and Liquid States of water in SI-Units. National Standard Reference Data, US National Bureau of Standards, Gaithersburgh, MD, 1984.
    [47]靳洪允,亚临界水的应用研究及进展[J].湿法冶金, 2005, 24(2): 66-68.
    [48] Uematsu M, Frank E U. Static dielectric constant of water and steam [J]. J. Phys. Chem. Ref. Data, 1980, 9: 1291-1306.
    [49] Hermann Weing?rtner, Ernst Ulrich Franck. Supercritical water as a solvent [J], Angew. Chem. Int. Ed. 2005, 44: 2672-2692.
    [50]田宜灵,冯季军,秦颖等.超临界水的性质及其在化学反应中的应用[J],化学通报, 2002, 6: 396-402.
    [51]陈克宇.超临界流体的应用[J],四川化工与腐蚀控制, 1998, 1(4) : 28-31.
    [52] Marshall W L, Franck E U. Ion product of water substance, 0-1000℃, 1-10000 bars new international formulation and its background[J], J Phys Chem Ref Data, 1981, 10(2): 295-304.
    [53]彭英利,马承愚.超临界流体技术与应用[M].北京:化学工业出版社, 2005: 53-66.
    [54]杨馗,徐明仙,林春绵.超临界水的物理化学性质[J],浙江工业大学学报, 2001, 29(4): 386-390.
    [55] Krammer Petra, Vogel Herbert. Hydrolysis of esters in subcritical and supercritical water [J]. Journal of Supercritical Fluids, 2000, 16: 189-206.
    [56] Kronholm J, Kaipala J, Hartone K, et al. Pressurized hot water extraction coupled with supercritical water oxidation in remediation of sand and soil containing PAHs [J]. Journal of Supercritical Fluids, 2002, 23: 123-134.
    [57] Pongnaravane B, Goto M, Sasaki M, et al. Extraction of anthraquinones from roots ofMorinda citrifolia by pressurized hot water: antioxidant activity of extracts [J]. Journal of Supercritical Fluids, 2006, 37: 390-396.
    [58] Doncheva D, Brunner G. Cleaning of animal-derived bone material for implantation by combined extraction/reaction process of organic matrix wih subcritical water and characterisation of hydrolysates, in: Proceedings of Fifth International Symposium on High Pressure Process Technology and Chemical Engineering, Segovia, Spain, June 24-27, 2007.
    [59] Tanksale A, Beltramini J N, Lu G M. A review of catalytic hydrogen production processes from biomass [J]. Renewable and Sustainable Energy Reviews, 2010, 14: 166–182.
    [60] Calzavara Y, Joussot-Dubien C, Boissonnet G, Sarrade S. Evaluation of biomass gasification in supercritical water process for hydrogen production [J]. Energy Conversion and Management, 2005, 46: 615–631.
    [61] Kruse A, Gawlik A. Biomass conversion in water at 330-410°C and 30-50 MPa. Identification of key compounds for indicating different chemical reaction pathways [J]. Ind Eng Chem Res, 2003, 42: 267-279.
    [62] Onwudili J A, Williams P T. Role of sodium hydroxide in the production of hydrogen gas from the hydrothermal gasification of biomass [J]. International Journal of Hydrogen Energy, 2009, 34: 5645-5656.
    [63] Muangrat R, Onwudili J A, Williams P T. Alkali-promoted hydrothermal gasification of biomass food processing waste: A parametric study [J]. International Journal of Hydrogen Energy, 2010, 35: 7405-7415.
    [64] Muangrat R, Onwudili J A, Williams P T. Influence of NaOH, Ni/Al2O3 and Ni/SiO2 catalysts on hydrogen production from the subcritical water gasification of model food waste compounds [J]. Applied Catalysis B: Environmental, 2010, 100: 143–156.
    [65] Chareonlimkun A, Champreda V, Shotipruk A, Laosiripojana N. Reactions of C5 and C6-sugars, cellulose, and lignocellulose under hot compressed water (HCW) in the presence of heterogeneous acid catalysts [J]. Fuel, 2010, 89: 2873–2880.
    [66] Yamaguchi A, Hiyoshi N, Sato O, Bando KK, Osada M, Shirai M. Hydrogen productionfrom woody biomass over supported metal catalysts in supercritical water [J]. Catalysis Today, 2009, 146: 192–195.
    [67] Yin S, Dolan R, Harris M, Tan Z. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil [J]. Bioresource Technology, 2010, 101: 3657–3664.
    [68] Xiu S, Shahbazi A, Shirley V, Cheng D. Hydrothermal pyrolysis of swine manure to bio-oil: Effects of operating parameters on products yield and characterization of bio-oil [J]. Journal of Analytical and Applied Pyrolysis, 2010, 88: 73–79.
    [69] Mazaheri H, Lee KT, Bhatia S, Mohamed AR. Subcritical water liquefaction of oil palm fruit press fiber for the production of bio-oil: Effect of catalysts [J]. Bioresource Technology, 2010, 101: 745–751.
    [70] Qian Y, Zuo C, Tan J, He J. Structural analysis of bio-oils from sub-and supercritical water liquefaction of woody biomass [J]. Energy, 2007, 32: 196–202.
    [71] Karag?z S, Bhaskar T, Muto A, Sakata Y. Hydrothermal upgrading of biomass: Effect of K2CO3concentration and biomass/water ratio on products distribution [J]. Bioresource Technology, 2006, 97: 90–98.
    [72] Duan P, Savage PE. Hydrothermal liquefaction of a microalga with heterogeneous catalysts [J]. Ind Eng Chem Res, 2010, DOI:10.1021/ie100758s
    [73] Penninger J M L, Kersten R J A, Baur H C L. Reactions of diphenylether in supercritical water– mechanism and kinetics [J]. Journal of Supercritical Fluids, 1999, 16: 119-132.
    [74] Takeshita Y, Kato K, Takahashi K, et al. Basic study on treatment of waste polyvinyl chloride plastics by hydrothermal decomposition in subcritical and supercritical regions [J]. Journal of Supercritical Fluids, 2004, 31: 185-193.
    [75] Fang Z, Smith Jr R L, Inomata H, Arai K. Phase behavior and reaction of polyethylene terephthalate water systems at pressures up to 173MPa and temperature up to 490℃[J]. Journal of Supercritical Fluids, 1999, 15: 229-243.
    [76] Fang Z, Smith Jr R L, Inomata H, Arai K. Phase behavior and reaction of polyethylene insupercritical water at pressures up to 2.6GPa and temperatures up to 670℃[J]. Journal of Supercritical Fluids, 2000, 16: 207-216.
    [77] Chen J, Liu G, Jin L, et al. Catalytic hydrolysis of waste nylon 6 to produceε-caprolactam in sub-critical water [J]. Journal of Analytical and Applied Pyrolysis, 2010, 87: 50-55.
    [78] Smith Jr R L, Fang Z, Inomata H, Arai K. Phase behavior and reaction of nylon 6/6 in water at high temperatures and pressures [J]. Journal of Applied Polymer Science, 2000, 76: 1062-1073.
    [79] Chen J, Zhang H, Zheng H, et al. In situ visualization of transformation of organic matter in water at high pressures and temperatures [J]. J. Anal. Appl. Pyrolysis, 2006, 76: 260-264.
    [80]戴航,黄卫红,钱晓良等.超临界水氧化法水处理技术进展[J].化工环保, 2001, 21(2): 79-83.
    [81]马承愚,姜安玺,彭英利等.超临界水氧化法中试装置的建立和考察[J].化工进展, 2003, 22(10): 1102-1104.
    [82]张平,王景昌,张晓冬等.超临界水氧化法进行废水处理的研究进展[J].环境保护科学, 2003, 29: 15-17.
    [83] Baur S, Schmidt H, Kr?mer A, et al. The destruction of industrial aqueous waste containing biocides in supercritical water– development of the SUWOX process for the technical application [J]. Journal of Supercritical Fluids, 2005, 33: 149-157.
    [84] Park T, Lim J S, Lee Y W, et al. Catalytic supercritical water oxidation of wastewater from terephthalic acid manufacturing process [J]. Journal of Supercritical Fluids, 2003, 26: 201-213.
    [85] S?güt O O, Akgün M. Treatment of textile wastewater by SCWO in a tube reactor [J]. Journal of Supercritical Fluids, 2007, 43: 106-111.
    [86] Jin F, Kishita A, Moriya T, et al. Kinetics of oxidation of food wastes with H2O2 in supercritical water [J]. Journal of Supercritical Fluids, 2001, 19: 251-262.
    [87]朱宪,姬文琦,田玲等.超临界水氧化法降解炸药废水的工艺优化与动力学研究[J].高校化学工程学报, 2009, 23(6): 1058-1063.
    [88] Goto M, Nada T, Ogata A, et al. Supercritical water oxidation for the destruction of municipal excess sludge and alcohol distillery wastewater of molasses [J]. Journal of Supercritical Fluids, 1998, 13: 277-282.
    [89] Portela J R, Nebot E, Martinez de la Ossa M. Generalized kinetic models for supercritical water oxidation of cutting oil wastes [J]. Journal of Supercritical Fluids, 2001, 21: 135-145.
    [90] Thornton Th D, Savage Ph E. Phenol oxidation in supercritical water [J]. Journal of Supercritical Fluids, 1990, 3: 240-248.
    [91] Oshima Y, Hori K, Toda M, et al. Phenol oxidation kinetics in supercritical water [J]. Journal of Supercritical Fluids, 1998, 13: 241-246.
    [92] Matsumura Y, Urase T, Yamamoto K, et al. Carbon catalyzed supercritical water oxidation [J]. Journal of Supercritical Fluids, 2002, 22: 149-156.
    [93] Lee D, Gloyna E F, Li L. Efficiency of H2O2 and O2 in supercritical water oxidation of phenol [J]. Journal of Supercritical Fluids, 1990, 3: 249-255.
    [94] Lee A, Nunoura T, Matsumura Y, et al.Comparison of the effects of the addition of NaOH on the decomposition of 2-chlorophenol and phenol in supercritical water and under supercritical water oxidation conditions [J]. Journal of Supercritical Fluids, 2002, 24: 239-250.
    [95] Pérez I V, Rogaka S, Branion R. Supercritical water oxidation of phenol and 2,4-dinitrophenol [J]. Journal of Supercritical Fluids, 2004, 30: 71-87.
    [96] Lee S, Park K C, Mahiko T, et al. Supercritical water oxidation of polychlorinated biphenyls based on the redox reactions promoted by nitrate and nitrite salts [J]. Journal of Supercritical Fluids, 2006, 39: 54-62.
    [97] Jin F, Cao J, Enomoto H, et al. Review: identification of oxidation products and oxidation pathways of high molecular weight dicarboxylic acids under hydrothermal condition [J]. Journal of Supercritical Fluids, 2006, 39: 80-88.
    [98] Jin F, Cao J, Enomoto H, et al. Oxidation reaction of high molecular weight dicarboxylic acids in sub- and supercritical water [J]. Journal of Supercritical Fluids, 2008, 44: 331-340.
    [99] Aymonier C, Beslin P, Jolivalt C, et al. Hydrothermal oxidation of a nitrogen-containing compound: the fenuron [J]. Journal of Supercritical Fluids, 2000, 17: 45-54.
    [100] Onwudili J A, Williams P T. Reaction mechanisms for the hydrothermal oxidation of petroleum derived aromatic and aliphatic hydrocarbons [J]. Journal of Supercritical Fluids, 2007, 43: 81-90.
    [101] Fang Z, Koziński J A. A study of rubber liquefaction in supercritical water using DAC-stereomicroscopy and FT-IR spectrometry [J]. Fuel, 2002, 81: 935-945.
    [102]朱宪,王彬,张彰等.苯甲醛清洁生产工艺技术研究进展[J].化工进展, 2005, 24(2): 109-116.
    [103]王倩,朱宪.近临界水中甲苯氧化成苯甲醛的工艺研究[J].高校化学工程学报, 2005, 19(4): 503-506.
    [104]余春江,骆仲泱,方梦祥等.一种改进的纤维素热解动力学模型[J].浙江大学学报(工学版), 2002, 36(5): 509-515.
    [105] Haensel A, Comouth A, Lorenz P, et al. Pyrolysis of cellulose and lignin [J]. Applied Surface Science, 2009, 255: 8183-8189.
    [106]赖艳华,吕明新,马春元等.秸秆类生物质热解特性及其动力学研究[J].太阳能学报, 2002, 23(2): 203-206.
    [107]王君,陈明强,张明旭等.三种生物质的热解动力学研究[J].哈尔滨工业大学学报, 2009, 41(7): 180-183.
    [108]蔡均猛,易维明,何芳等.坚果壳类生物质慢速热解动力学分析[J].农业工程学报,2006, 22(1): 119-122.
    [109]林木森,蒋剑春.生物质热解特性研究[J].化学工业与工程技术, 2009, 30(2): 23-25.
    [110]肖军,沈来宏,王泽明等.生物质加压热重分析研究[J].燃料科学与技术, 2005, 11(5): 415-420.
    [111] Park Y-H, Kim J, Kim S-S, et al. Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor [J]. Bioresource Technology, 2009, 100: 400-405.
    [112]邢其毅,徐瑞秋,周政等.基础有机化学[M].北京:高等教育出版社, 2005: 1007-1009.
    [113] Sereewatthanawut I, Prapintip S, Watchiraruji K, et al. Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis [J]. Bioresource Technology, 2008, 99: 555-561.
    [114] Lasch J, Koelsch R, Kretschmer K. Continuous production of protein hydrolysates in immobolized enzyme reactors [J]. Acta Biotechnol, 1987, 7(3): 227-235.
    [115]朱宪,程洪斌,朱宁.近临界水中鱼肉水解制备氨基酸的反应动力学[J].化学工程, 2008, 36(4): 31-33.
    [116]朱宪,朱宁,王振武等.近临界水中薯蓣皂苷的水解反应[J].化学反应工程与工艺, 2006, 22(6): 502-506.
    [117]朱宪,王振武,郭晓亚.近临界水中薯蓣皂苷水解生成薯蓣皂苷元的工艺研究[J].高校化学工程学报, 2007, 21(1): 122-125.
    [118] Esteban M B, García A J, Ramos P, et al. Kinetics of amino acid production from hog hair by hydrolysis in sub-critical water [J]. Journal of Supercritical Fluids, 2008, 46: 137-141.
    [119] Quitain A T, Sato N, Daimon H, et al. Production of valuable materials by hydrothernal treatment of shrimp shells [J]. Ind Eng Chem Res, 2001, 40: 5885-5888.
    [120] Rogalinski T, Herrmann S, Brunner G. Production of amino acids from bovine serum albumin by continuous sub-critical water hydrolysis [J]. Journal of Supercritical Fluids,2005, 36: 49-58.
    [121] Sato N, Quitain A T, Kang K, et al. Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water [J]. 2004, Ind Eng Chem Res, 2004, 43: 3217-3222.
    [122] Mitsuru S, Momoko F. Kinetics and mechanism of cellobiose hydrolysis and retro-aldol condensation in subcritical and supercritical water [J]. Industrial and Engineering Chemistry Research, 2002, 41(6): 6642-6649.
    [123] Brunner G. Near critical and supercritical water Part I Hydrolytic and hydrothermal processes [J]. J of Supercritical Fluids.2009, 47: 373–381.
    [124] Kimitaka M, Takashi S. Proton concentration of supercritical water and high-concentrated carbon dioxide mixture using UV-vis spectroscopy [J]. Fluid Phase Equilibria, 2007, 257: 177-182.
    [125] Kang K, Quitain A T, Daimon H. Optimization of amino acids production from waste fish entrails by hydrolysis in sub- and supercritical water[J]. Canadian Journal of Chemical Engineering. 2001, 79 (1): 65-70.
    [126] Sasaki M, Kabyemela B, Malaluan R. Cellulose hydrolysis in subcritical and supercritical water [J]. Journal of Supercritical Fluids. 1998, 13: 261-268.
    [127]傅献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社, 2004: 739-744.
    [128] Abdelmoez W, Nakahasi T, Yoshida H. Amino acid transformation and decomposition in saturated subcritical water [J]. Ind Eng Chem Res, 2007, 46: 5286-5294.
    [129] Klingler D, Berg J, Vogel H. Hydrothermal reactions of alanine and glycine in sub- and supercritical water [J]. Journal of Supercritical Fluids, 2007, 43: 112-119.
    [130] Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Analytical Chemistry, 1959, 31: 426-428.
    [131]赵凯,许鹏举,古广烨. 3,5-二硝基水杨酸比色法测定还原糖含量的研究[J],食品科学, 2008, 29(8): 534-536.
    [132]杨艳,马耀宏,杨俊慧等.甘蔗中还原糖快速测定技术的研究[J].山东科学, 2009,22(4): 24-27.
    [133]王俊刚,张树珍,杨本鹏等. 3,5-二硝基水杨酸(DNS)法测定甘蔗茎节总糖和还原糖含量[J].甘蔗糖业, 2008, 5: 45-49.
    [134]马艳华.纤维素在近临界水中催化反应及动力学研究[D].上海大学博士论文, 2010.
    [135]吕秀阳,追田章义,铃木基之.纤维素在近临界水中的分解动力学和产物分布[J].化工学报, 2001, 52(6): 556–559.
    [136] Sasaki M, Kabyemela B, Malaluan R, et al. Cellulose hydrolysis in subcritical and supercritical water [J]. Journal of Supercritical Fluids, 1998, 13: 261-268.
    [137] Wade JR L G.有机化学[M].北京:高等教育出版社, 2004, 1072-1075.
    [138] Jollet V, Chambon F, Rataboul F, et al. Non-catalyzed and Pt/γ-Al2O3-catalyzed hydrothermal cellulose dissolution conversion: influence of the reaction parameters and analysis of the unreacted cellulose [J]. Green Chemistry, 2009, 11: 2052-2060.
    [139] Chang Chun, Ma Xiaojian, Cen Peilin. Kinetic studies on wheat straw hydrolysis to levulinic acid [J]. Chinese Journal of Chemical Engineering, 2009, 17(5): 835-839.
    [140] Chang Chun, Ma Xiaojian, Cen Peilin. Kinetics of levulinic acid formation from glucose decomposition at high temperature [J]. Chinese Journal of Chemical Engineering, 2006, 14(5): 708-712.
    [141]宋春财,胡浩权,朱盛维,等.生物质秸秆热重分析及几种动力学模型结果比较[J].燃料化学学报, 2003, 31(4): 311-316.
    [142]王章霞,陈明强,王君,等.稻壳热解特性及其动力学研究[J].安徽理工大学学报(自然科学版), 2009, 29(1): 43-46.
    [143] Cordero T, Marquez F, Rodriguez-Mirasol J, et al. Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis [J]. Fuel, 2001, 80: 1567-1571.
    [144] Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of biomass [J]. EnergyConversion & Management, 2000, 41: 633-646.
    [145] Zhong C, Wei X. A comparative experimental study on the liquefaction of wood [J]. Energy, 2004, 29: 1731-1741.
    [146] Maiti S, Purakayastha S, Ghosh B. Thermal characterization of mustard straw and stalk in nitrogen at different heating rates [J]. Fuel, 2007, 86: 1513-1518.
    [147] Juntgen H. Review of the kinetic of pyrolysis and hydropyrolysis in relation to chemical constitution of coal [J]. Fuel, 1984, 63: 731-737.
    [148] Zou S, Wu Y, Yang M, et al. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer [J]. Bioresource Technology, 2010,101: 359-365.
    [149]于娟,章明川,沈轶,等.生物质热解特性的热重分析[J].上海交通大学学报, 2002, 36(10): 1475-1478.
    [150] Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data [J]. Nature, 1964, 201: 68-69.
    [151] Lu C, Song W, Lin W. Kinetics of biomass catalytic pyrolysis [J]. Biotechnology Advances, 2009, 27: 583-587.
    [152] Sorum L, Gronli M G, Hustad J E. Pyrolysis characteristics and kinetics of municipal solid wastes [J]. Fuel, 2001, 80: 1217-1227.
    [153] Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Analytical Chemistry, 1957, 29:1702-1706.
    [154] Flynn J H, Wall A L. A quick direct method for determination of activation energy from thermogravimetric data [J]. Polymer Letters, 1966, 4: 323-328.
    [155] Ozawa T. A new method of analyzing thermogravimatric data [J]. Bulletin of the Chemical Society of Japan, 1965, 38(1): 1881-1886.
    [156] Doyle C. Kinetic analysis of thermogravimetric data [J]. J Appl Polym Sci, 1961, 5: 285-292.
    [157] Aboulkas A, EI Harfi K, EI Bouadili A. Thermal degradation behaviors of polyethylene and polypropylene. PartⅠ: Pyrolysis kinetics and mechanisms [J]. Energy Conversion and Management, 2010, 51: 1363-1369.
    [158] Vyazovkin S. Computational aspects of kinetic analysis. Part C. The ICTAC kinetics project-the light at the end of the tunnel [J]. Thermochimica Acta, 2000, 355: 155-163.
    [159] Shih Y F. Kinetic study of degradation process macromol [J]. Chem Phys, 2005, 206: 383-392.
    [160] Shih Y F, Jeng R J. Thermal degradation behaviour and kinetic analysis of unsaturated polyester-based composites and IPNs by conventional and modulated thermogravimetric analysis [J]. Polymer Degradation and stability, 2006, 91: 823-831.
    [161]杜海清,王晶,白雪峰.木质类生物质热解过程的热重分析研究[J].黑龙江大学自然科学学报, 2008, 25(1): 85-89.
    [162]王昶,徐敬,贾青竹.植物生物质热解特性及动力学研究[J].天津科技大学学报, 2007, 22(1): 8-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700