用户名: 密码: 验证码:
高瓦斯低透气性煤层深孔预裂爆破强化增透效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深孔预裂爆破为高瓦斯低透气性煤层增透,进而解决高瓦斯低透气性煤层瓦斯抽采难题提供了一条新的有效的途径。本文利用理论分析、数值模拟、现场试验、实际工程应用等方法系统地研究了深孔预裂爆破技术对低透气性高瓦斯煤层增透效应和促进煤层瓦斯抽采、防止煤与瓦斯突出的作用机理,指出了煤层硬度参数、煤层埋深参数以及相同煤层性质、爆破强度、埋深条件下,爆破孔孔径、爆破孔装药耦合系数以及爆破孔与导向孔的间距对爆破效果的影响,取得了以下研究成果:
     (1)得出了爆生应力波在煤体介质中的传播和衰减规律:①随着介质弹性模量的增加,爆生应力波随传播距离的衰减越来越小;②在传播距离小于大约10m时,应力波的衰减随着延迟时间的增加而减小,在传播距离大于大约10m以后,应力波的衰减随着延迟时间的增大而增大;
     (2)煤层硬度对爆破效果的影响较大:煤层的硬度越低,煤体越容易破碎,在爆生应力波的作用下,爆孔周围的煤体被极度破碎,形成粉碎圈,起到了缓冲应力波的作用,阻止了裂隙的进一步发育,因而煤层的硬度越高,裂隙发育越充分;
     (3)在相同爆破强度下,煤层埋深对深孔预裂爆破效果的影响较小,因而对于深部煤层,同样可以运用深孔预裂爆破技术进行卸压增透;
     (4)分析得出了爆破孔径对爆破效果的影响:随着爆破孔孔径的增大,爆孔周围煤体支承应力峰值逐渐增高,峰值距离逐渐增远,但是变化幅度很小,因此,在爆破孔径发生变化的时候,爆破孔径增大,卸压半径也相应增大,爆破卸压增透半径R_α在2.7~3.5m之间变化;
     (5)得到了装药耦合系数对爆破效果的影响:当耦合系数为B_l=0.6时,由于耦合系数较小,地应力曲线具有极大极小值,在炮孔上产生了应力集中,卸压效果微乎其微;当耦合系数B_l为0.8和1.0时,产生了较长的贯穿裂隙面,因此地应力峰值距离和卸压半径都比较大,卸压效果较好。因此,装药耦合系数对地应力卸除效果有着很大的影响;耦合系数大,卸压效果较好;
     (6)获得了爆破孔与导向孔的合理间距:当爆破孔与导向孔之间的距离L在3~4m之间时,卸压半径随孔间距的增加而增加,地应力的卸除效果也随之越好。
     从试验地点的效果看,深孔松动爆破试验增透效果显著提高了煤体透气性,提高了瓦斯抽采浓度和抽采量,有效松动半径为3~3.5m,表明对于低透气性高瓦斯煤层进行深孔预裂爆破增透技术是一种积极可行的方案,为实现低透气性高瓦斯煤层高效集约开采提供了可靠的技术保障。
Deep-hole presplitting explosion provides an new and effective method to increase permeability of high gassy and low permeability coal seam, and farther solves the difficult problem of gas drainage in this high gassy and low permeability coal seam. In this dissertation, several researching methods, such as theory analysis and numerical simulation and on-field experiment as well as practical engineering application, are used to systematically study the promoting permeability effect of deep-hole presplitting explosion as well as action mechanism of promoting gas drainage and preventing coal-gas outburst. Several effect factors to effect of deep-hole presplitting explosion, such as rigidity of coal and buried height as well as diameter of explosive holes and couple coefficient of explosion and distance between explosive holes and control holes in the same rigidity of coal and buried height and explosion intensity condition, are acquired, and several new results are acquired as followings:
     (1) The propagation rules of stress wave by explosion in viscous-elastic media is acquired:①explosion generated stress waves attenuate as spreading distance;②when spreading distance is less than 10m, stress waves' attenuation becomes minishing as the augment of delay time, and after spreading distance is larger than 10m, stress waves' attenuation becomes augment as the augment of delay time;
     (2) Rigidity of coal have big effect on explosion result: less rigidity of coal, easier to be destroyed. Under explosion generated stress waves, coal around explosive holes are very easy to crush. And crush circle zone is form, which has cushioning effect, and stops further growth of cracks. So bigger rigidity of coal, more abundant the cracks grow;
     (3) Under the same explosion intensity, buried height of coal has little effect to the result of deep-hole presplitting explosion. So this technology of deep-hole presplitting explosion can also be used in deep-buried coal bed;
     (4) After analysis, diameter of explosive holes' effect to result of deep-hole presplitting explosion is acquired. As the augment of diameter of explosive holes, the peak value of supporting stress in coal around explosive holes become high, and distance of peak value becomes large, but that fluctuates within a narrow range. So, when diameter of explosive holes become large, stress relief radius also becomes large, and stress relief radius R_a fluctuates between 2.7 and 3.5m.
     (5) Powder charge couple coefficient's effect to result of explosive is acquired: when couple coefficient B_l =0.6, ground stress curve has maximum and minimum value, and stress concentration form around explosive holes, so stress relief effect is very little; when couple coefficient B_l is between 0.8 and 1.0, long perfoliate cracks are generated. So ground peak value and stress relief distance is large, and stress relief result is good. So powder charge couple coefficient has great effect to ground stress relief, and larger couple coefficient, better stress relief;
     (6) Reasonable distance between explosive holes and control holes is increased: when distance L between explosive holes and control holes is in the range of 3~4m, stress relief radius becomes large as the augment of L, and relief result of ground stress become good;
     From experiment effect of on-field experiment, permeability of coal bed is remarkably increased by deep-hole presplitting explosion, and drainage gas concentration and volume of gas flow is remarkably increased, and effective relief radius is 3~3.5m. And this shows that the technology of deep-hole presplitting explosion is a kind of feasible method to increase permeability of low permeability and high gas coal bed, and this technology provides dependable technology safeguard to effectively and intensively mine coal for low permeability and high gas coal bed.
引文
[1]周世宁,鲜学福,朱旺喜.煤矿瓦斯灾害防治理论战略研讨[M].徐州:中国矿业大学出版社,2001
    [2]苗素生,成玉琪,叶显彬冲国煤炭开发利用现状与发展洁净煤技术[J].煤炭学报,1994,19(4),333-342
    [3]中国煤炭工业部煤层气信息中心.中国煤层气开发前景联合报告[M].北京:1995
    [4]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1):24-37
    [5]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986,3:67-70
    [6]Lama RD,Bodziony J.Management of outburst in underground coal mines[J].Int.J of Coal Geology,1998,25:83-115
    [7]Cao Yunxing,He Dingdong,Glick DC.Coal and gas outbursts in footwalls of reverse faults[J].Int J Coal Geology,2001,48:47-63
    [8]J.Hanes.research into the phenomenon of outburst of coal and gas in some Australian collieries,Fifth Int.Congress on Rock Mech.,1983
    [9]宋世钊等.我国煤矿煤和瓦斯突出及其防治技术的发展.四川省第二届煤和瓦斯突出学术资料论文资料汇编,1978:132-136
    [10]赵阳升,杨栋胡,耀青等.煤矿瓦斯灾害现状与防治对策,煤矿瓦斯灾害防治理论与战略研讨[M].徐州:中国矿业出大学版社,2001:48-58
    [11]周世宁,何学秋.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报,1990,19(2).
    [12]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社,1995
    [13]梁冰,章梦涛,潘一山等.煤和瓦斯突出的固流耦合失稳理论[J].煤炭学报,1995,20(5):492-496.
    [14]章梦涛,徐曾和,潘一山.冲击地压和突出的统一失稳理论[J]。煤炭学报,1991,16(4):48-53
    [15]蒋承林,俞启香.煤与瓦斯突出的球壳失稳机理及防治技术[M].徐州:中国矿业大学出版社,1998
    [16]郑哲敏.从数量级和量纲分析看煤和瓦斯突出的机理[M].北京:北京大学出版社,1982
    [17]俞善炳,郑哲敏,谈庆明等.含气多孔介质的卸压破坏及突出的极强破坏准则[J].力学学报,1997,29(6):641-646
    [18]俞善炳.煤与瓦斯突出的基本机理,煤矿瓦斯灾害防治理论与战略研讨[M].徐州:中国矿业出大学出版社,2001:34-42
    [19]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992
    [20]于不凡.煤和瓦斯突出机理[M].北京:煤炭工业出版社,1985
    [21]李金奎.高应力软岩巷道基角深孔爆破卸压的试验研究[J].铁路建筑,2005(增刊):79-80
    [22]徐金平.松动爆破技术在综采面防治瓦斯上的运用[J].煤,2006,15(5):10-13
    [23]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999
    [24]孙茂远,黄盛初等.煤层气开发与利用手册[M].北京:煤炭工业出版社,1998
    [25]于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2000
    [26]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994
    [27]刘泽功,袁亮等.开采煤层顶板“环形裂隙圈内走向长钻孔”抽放瓦斯研究[J].中国工程科学,2004,6(5):33-38
    [28]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999
    [29]B.B.霍多特.煤与瓦斯地质[M].北京:中国工业出版社,1966
    [30]Gan H.,Nandi S P,Walker P L.Nature of porosity in American coals[J].Fuel,1992,51:272-277
    [31]郝琦.煤的显微孔隙形态特征及成因探讨[J].煤炭学报,1987,4:51-57
    [32]张慧,王晓刚等.煤的显裂隙形的成因类型及其研究意义[J].岩石矿物学,2002,21(3):278-284
    [33]曹树刚,鲜学福.煤岩固-气耦合的流变力学分析[J].中国矿业大学学报,2001,3:363-365
    [34]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业大学学报,1987,1:32-35
    [35]黄延章等.低渗透油层渗流机理[M].北京:石油工业出版社,1999,83-85
    [36]王恩志,韩小妹,黄远智.低渗岩石非线性渗流机理讨论[J].岩土力学,2003,24(增):12n-124
    [37]Louis C.Rock Hydraulics.In:Rock Mechanics,Muller L(eds.),1974
    [38]仵彦卿.裂隙岩体应力与渗流关系研究.水文地质工程地质,1995,12(22):30-35
    [39]陈祖安,伍向阳.岩渗透率随静水压力变化的关系研究[J].岩石力学与工程学报,1995,2:155-159
    [40]Bemabe Y.The efective pressure law for permeability in Chelmsford granite and Barre granite [J].Int.J.Rock Min.Sci.& Geomech,Abstr.1986,23(3):267-275
    [41]李世平.岩石渗透性实验研究与工程应用.国家自然基金项目研究报告.中国矿业大学,1992
    [42]李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率-应变方程[J].岩土工程学报,1995,17(2):13-19
    [43]Li Shiping,Wu Daxin.Effect of Confining Pressure,Pore Pressure and Specimen Dimension on Permeability of Yinzhuang sandstone[J].Int.J.Rock Mech.Min.Sci.1997,34(3/4):435-441
    [44]谭学术,鲜学福,张广洋等.煤的渗透性研究[J].西安科技学院学报,1994,1:21-25
    [45]林伯泉,周世宁.煤样瓦斯渗透率的试验研究[J].中国矿业大学学报,1987,1:21-27
    [46]许江,鲜学福.含瓦斯煤的力学特性的实验分析[J].重庆大学学报,1993,16(5):26-32
    [47]赵阳升,杨栋,郑少河等.三维应力作用下岩石裂缝水渗流物性规律的实验研究[J].中国科学(E辑),1999,29(1):82-86
    [48]煤炭工业部.防治煤与瓦斯突出细则[M].煤炭工业出版社,1995
    [49]张兴华.利用深孔控制预裂爆破强化瓦斯抽放消除回采工作面突出危险性[J].煤矿安全,2006,37(2):22-24
    [50]窑街煤电公司海石湾矿有限责任公司.深部矿井上山揭穿近水平特厚煤层防治煤与瓦斯、油气突出技术的研究.中国科技成果,347830
    [51]石必明,成新龙,任克斌.低透气性高瓦斯突出煤层快速掘进综合防突技术[J].煤炭工程,2002.11:53-55
    [52]Pal Roy,P.;Sawmliana,C.;Bhagat,N.K.;etal.Induced caving by blasting:Innovative experiments in blasting gallery panels of underground coal mines of India[J].Transactions of the Institution of Mining and Metallurgy,SectionA:Mining Technology v 112 n 1 2003.4:57-63
    [53]M.KUMAR;P.K.GHOSH;A.K.SINGH.Management of hard roof under Indian geo-mining conditions[J].Journal of Mines,Metals & Fuels,2003,51(3):143-146
    [54]S.K.Mandal;M.M.Singh;R.B.Singh.Segregation of coal by single-shot blasting of composite strata in opencastmines[J].Transactions of the Institution of Mining and Metallurgy,2001,110(1-4):69-73
    [55]B.P.Singh;P.K.Sarkar;B.Bhattaeharjee.Deep(long) hole blasting to induce caving in longwall panel-a strata control technique[J].The Indian mining & engineering journal,2001,40(10):89-96
    [56]WINSTON SCOTT.High density pressure resistant invert blasting emulsions.US:US04555276A,19851126
    [57]钮强.岩石爆破机理[M].沈阳:东北大学出版社,1991
    [58]田建胜,东兆星.周边控制爆破引起的围岩松动效益分析[J].煤炭学报,1998,23(4):352-356
    [59]张宝平,张庆明,黄风雷.爆轰物理学[M].北京:兵器工业出版社,2001
    [60]石必明,俞启香.低透气性煤层深孔预裂爆破防突作用分析[J].建井技术,2002,23(5):27-30
    [61]林柏泉.深孔控制卸压爆破及其防突作用机理的实验研究[J].阜新矿业学院学报,1995,14(3):16-21
    [62]王文龙.钻眼爆破[M].北京:煤炭工业出版社,1984
    [63]宋守志.固体介质中的应力波[M].北京:煤炭工业出版社,1989
    [64]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA 8.1进行显式动力分析[M].北京:清华大学出版社,2005
    [65]刘健,刘泽功,石必明.井筒穿过突出危险煤层时综合防突技术[J].煤炭科学技术,2006,34(11):37-40
    [66]刘健,刘泽功,石必明.低透气性突出煤层巷道快速掘进的试验研究[J].煤炭学报,2007,32(8):827-831
    [67]石必明,刘健,俞启香.型煤渗透特性试验研究[J].安徽理工大学学报,2007,27(1):5-8
    [68]蔡峰,刘泽功.高瓦斯低透气性煤层深孔预裂爆破增透数值模拟分析.煤炭学报.2007.32(5).499-503
    [69]姜连朝.ANSYS和ANSYS/FE-SAFE软件的工程应用及实例[M].江苏.南京:河海大学出版社,2006
    [70]李洁月.ANSYS工程计算应用教程[M].北京:中国铁道出版社,2003
    [71]倪栋.通用有限元分析ANSYS7.0实例精解[M].北京:电子工业出版社,2003
    [72]Liu Jian etc.Study on the law of methane seepage in the wall of drainage roadway in mining seam-group[J].Journal of Coal Science & Engineering(China),2005,11(2):54-66
    [73]Gowd T N,Rummel F.Effect of confining pressure on the fracture behaviour of a porous rock[J].Int.J Rock Mech Min Sci GeomechAbstr.,1980,17(4):225-229
    [74]孙培德.变形过程中煤样渗透率变化规律的实验研究[Jj.岩石力学与工程学报,2001,20(增):1081-1084
    [75]李永盛.单轴压缩条件下四种岩石的姗变和松弛试验研究[J].岩石力学与工程学报,1995,14(1):39-47
    [76]Kozusnikova A Changes of permeability of coal in the process of deformation.In:Frontiers of Rock Mechanics and sustainable development in the 21st century.Sijing,Binjun and Zhongkui (eds.).Swets & Zeitlinger B.V.,Lisse,The Netherlands,2001:181-183
    [77]胡耀青,赵阳升,魏锦平等.三维应力作用下煤体瓦斯渗透规律实验研究[J].西安矿业学院学报,1996,16(4):308-311
    [78]袁亮,刘泽功.淮南矿区开采煤层顶板抽放瓦斯技术的研究[J].煤炭学报,2003,28(2):149-152
    [79]刘泽功.高位巷道抽放采空区瓦斯实践[J].煤炭科学技术,2001.29(12):10-13
    [80]刘泽功,戴广龙,卢平等.顶板巷道抽放瓦斯试验与结果分析[J].煤矿安全,2001,32 (12):13-15
    [81]陈秋.温室气体与全球变暖[J].电力环境保护,2003,19(3):11-13
    [82]吕渊,徐颖.深井软岩大巷深孔爆破卸压机理及工程应用[J].煤矿爆破,2005,71(4):31-33
    [83]田会礼,周茂普.大断面岩巷中深孔爆破试验研究[J].煤炭工程,2004(9):62-64
    [84]蓝成仁.穿层深孔爆破提高瓦斯抽放量[J].煤矿安全,2003,34(8):14-16
    [85]杨军.岩石爆破分形损伤模型[D].北京:中国矿业大学北京校区,1994
    [86]金乾坤.岩石爆破破碎三维逾渗损伤模型的非线性数值模拟[D].北京:中国矿业大学北京校区,1996
    [87]杨军,金乾坤,黄风雷.岩石爆破理论模型和数值计算[M].北京:科学出版社,1999,74-85
    [88]金乾坤.脆性岩石冲击损伤数值模拟(博士后研究报告)[D].北京:北京理工大学,1998
    [89]郭文章等.节理岩体爆破研究进展.工程爆破[J],1999(4):72-77
    [90]Fa-quan Wu,Si-jing Wang.A stress-sWain relation for jointed rock mass.Int J Rock Min Sci 2001[M];38:591-598
    [91]Bringkman,J.R,An Experimental Study of the Effects of Shock and Gas Penetration in Blasting[J],in 3nd Int Symp.on Rock Frag.by Blasting,Brisbane,1990:55-66
    [92]蔡峰,刘泽功.祁南矿区8煤储层孔裂隙性试验分析研究.煤炭科学技术.2008.36(5):31-34
    [93]蔡峰,刘泽功.复杂矿井通风网络角联风路自动识别方法的研究.中国安全科学学报.2005,15(7)3-6
    [94]F.V.DONZE.Modeling Fractures in Rock Blasting.Int[J].Rock.Mech.Min.Sci.Vol.34,No.8,pp.1153-1163,1997
    [95]Kannien,M.F.,Popelar,C.H.,高等断裂力学[M].北京:北京航空学院出版社,1987
    [8]Eran Sharon,Tay Fineberg.Universal Features of the Microbranching Instability in Dynamic Fracture[l].Philosophical Magazine B,1998,Vol.78,No.2,243-251
    [96]James R.Rice.裂纹和断层动力学的新进展(译文)[J].力学进展,2001(3):447-460
    [97]Eran Sharon,Gii Cohen & Jay Fineberg.Propagating solitary waves along a rapidly moving crack front[J].Letters to Nature,2001,Vol 410,68-70
    [98]Hongliang He,Ahrens T.J.,Mechanical properties of shock-damaged rock.Int[J].Rock Mech.Min.Sci.&Geomech.Abstr.31(5).525-533,1994
    [99]卢文波,陶振宇.爆生气体驱动的裂纹扩展速度研究[J].爆炸与冲击,1994,14(3):264-268
    [100]王明洋,钱七虎.爆炸应力波通过节理裂隙带的衰减规律[J].岩土工程学报,1995(2):42-46
    [101]张志呈.岩石断裂控制爆破的裂纹扩展[J].西南工学院学报,2000(1):60-66
    [102]林鹏.含裂纹与孔洞缺陷介质的脆性破坏行为.东北大学,博士学位论文[D].2002
    [103]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997
    [104]郭田福,杨卫.平面应变脆性损伤裂纹场分析[J].固体力学学报,1996,16:132-139
    [105]杨军,金乾坤等.岩石爆破理论模型及数值计算[M].科学出版社,1999
    [106]徐颖.断层带爆炸裂隙区范围及裂纹扩展长度的研究[J].岩土力学,2000(2):81-84
    [107]齐今铎.裂隙岩体的爆破理论[J].西部探矿工程,1997(1):49-51
    [108]吴立,屠厚泽.岩体爆破破碎的微观机理[J].探矿工程,1998(5):47-49
    [109]张大林等.爆破对岩体节理裂隙的影响[J].包头钢铁学院学报,Vol.18,No.1.1999:9-11
    [110]郭文章等.节理岩体爆破数值模型及模拟[J].岩土力学,1998(3):1-9
    [111]王文龙.钻眼爆破[M].北京:煤炭工业出版社,1984
    [112]段宝福,费鸿禄.岩体性质与爆破效果的灰关联度分析[J].爆破,1998(3):20-23
    [113]吴立,张天锡.爆破冲击波特性的理论分析[J].爆破,1992(4):46-49
    [114]戴俊.岩石动力学特性与爆破理论[M].北京:冶金工业出版社,2002
    [115]宋守志.固体介质中的应力波[M].北京:煤炭工业出版社,1989
    [116]杨善元.岩石爆破动力学基础[M].北京:煤炭工业出版社,1993
    [117]张奇.工程爆破动力学分析及其应用[M].北京:煤炭工业出版社,1998
    [118]沈成康.断裂力学[M].上海:同济大学出版社,1996.3
    [119]徐颖,宗琦.地下工程爆破理论及应用[M],中国矿业大学出版社,2001
    [120]张奇.岩石爆破的粉碎区及空腔膨胀[J].爆炸与冲击.1990,10(1):1-6
    [121]刘希国,赵红平等.裂纹在冲击载荷作用下起裂的临界载荷面[J].爆炸与冲击.2001,721(3):198-204
    [122]王家来,徐颖.应变波对岩体的损伤作用和爆生裂纹传播[J].爆炸与冲击.1995,15(3):212-216
    [123]宗琦.刻槽爆破成缝规律及其动态效应[J].爆破,1997(1):1-4
    [124]朱瑞赓,李新平等.控制爆破的断裂控制与参数确定[J].爆炸与冲击,1994,14(4):314-318
    [125]陆毅中.工程断裂力学[M].西安:西安交通大学出版社,1987
    [126]E.Z.WANG,N.G.SHRIVE.Brittle Fracture in Compression:Mechanisms,Models and Criteria.Engineering[J].Fracture Mechanics.Vol.52,No.6,pp.1107-1126,1995
    [127]张志呈.试谈浅孔断裂控制爆破裂纹扩展的长度[J].西南工学院学报.1999.9(3):20-28
    [128]伊双增.断裂·损伤理论及应用[M].清华大学出版社,1992
    [129]丁遂栋,孙利民.断裂力学[M].北京:机械工业出版社,1997.8
    [130]谢和平.岩石混凝土损伤力学[M].中国矿业大学出版社,1990
    [131]张志呈.岩体爆破裂纹扩展速度实验研究[M].爆破器材,2006.6(3):1-8
    [132]范天佑.断裂理论基础[M].科学出版社,2003
    [133]杨小林,王梦恕.爆生气体作用下岩石裂纹的扩展机理[J].爆炸与冲击,2001,4 21(2):111-116
    [134]吴立,张时忠.爆炸荷载作用下材料裂纹扩展速度的实验研究[J].爆破,1998,12 15(4):1-4
    [135]John O.Hallquist.LS-DYNA Theoretical Manual[M].1998
    [136]LS-DYNA Keyword User's Manual.Livemore Software Technology Corporation.[M].Califonia,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700