用户名: 密码: 验证码:
综放工作面喷雾降尘理论及工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过理论分析、数值模拟、实验测试、现场应用相结合的方法,对综放工作面喷雾降尘理论及工艺技术进行了研究,形成了针对综放面的较为系统的喷雾降尘知识体系。
     通过对射流扰动控制方程及其解的分析,基于两相流的喷雾概念模型,引入了空穴、湍流和空气动力共同作用的雾化模型;基于液滴对尘粒的主动碰撞理论,对典型水雾捕尘机理进行了改进;运用显微颗粒图像分析仪和干粉激光粒度分析仪对采用滤膜法和人工法取样的综放工作面喷雾前后各生产工序产尘的粒度、粒径分布及矿尘的形状进行了测定,得到了喷雾降尘对各工序产尘的平均粒径及其分散度影响的定性变化规律。建立了基于Eulerian-Eulerian模型与Eulerian-Lagrangian模型相组合的综放工作面喷雾降尘过程气体一颗粒两相流动的流体力学数学模型;应用混合差分格式和基于同位网格的SIMPLE算法给出了气粒两相流动的数值解法;并以FLUENT软件作为计算平台对综放工作面形成全断面雾流时喷雾降尘过程的气体—粉尘—雾滴的流场进行了数值模拟。
     利用自行设计与制造的实验装置在模拟综放面实际风速的前提下,分不开启风机、开启风机无尘源、开启风机释放尘源等三种情况进行了粉尘场与雾滴场耦合关系的喷雾降尘实验。根据实验数据,得到了雾滴在上述三种不同情况时在整个模型空间内的分布规律;提出了雾流雾化效果“三场”的概念;并采用数值分析方法在雾滴捕尘基本保证粒径40~160μm范围内分[40,65]μm、[65,100]μm、[100,160]μm等三个粒径区间分别拟合了无尘液滴平均粒径D_(无尘液滴)与其捕获尘粒平均粒径ΔD之间的函数表达式;提出了针对呼吸性粉尘的雾滴最佳捕尘粒径为15~70μm;同时拟合了D_(无尘液滴)与D_(未捕获尘粒),D50_(无尘液滴)与η_(全尘)、η_(呼尘)之间的数学关系式;通过添加表面活性剂时的尘雾场耦合实验,验证了其提高降尘效果的若干定性结论。基于表面活性剂单体溶液表面张力及接触角的实测结果,根据表面活性剂复配溶液的煤尘沉降Walker实验及其反向渗透实验结论,确定了降尘剂的最优配方CZYNS-1;同时研发了表面活性剂定量泵添加工艺;通过对煤粉试片临界表面张力的测定分析、不同粒度煤粉试片及不同孔隙率煤样接触角的测定分析,完善和拓展了表面活性剂的降尘理论。
     上述的理论和实验研究结论可针对综放面不同生产工序产尘粒度的特点优选喷嘴、喷雾降尘装置的优化设计、降尘剂配方优选提供依据。最后将研究成果在兖矿集团东滩煤矿1303综放面和兴隆庄煤矿10301综放面进行了工程应用,取得了很好的降尘效果。
In this dissertation,the theories and techniques of dust prevention by water-cloud in fully mechanized and roof caving coal face are researched through the method of combining theoretical analysis,numerical simulation,experimental measuration and application on-spot. Therefore,the systematic knowledge hierarchy of dust prevention by water-cloud for fully mechanized caving face is formed.
     The atomization model about interaction of cavitation,turbulence and aerodynamic is put forward through the analysis about the control equation of jet disturbance and its solution, according to the conceptual model of spray based on two-phase flow,while the typical mechanism of dust capture by water-cloud is improved,through the active collision theory of droplet to dust particle.Using micro-particle image analyzer and dry powder laser granularity analyzer to measure the granularity,particle size distribution and form of the coal dust, sampling with the filter and manual method,which is produced in each production process in fully mechanized caving face pre and post the water-cloud is started,the qualitative regularities about the influence of spraying to average particle size and dispersity degree of coal dust produced in each production process are obtained.The basic mathematical model of fluid dynamics about the gas-particle two-phase flow is established during the process of dust prevention by water-cloud in fully mechanized and roof caving coal face,based on the combining method of Eulerian-Eulerian model and Eulerian-Lagrangian model,using hybrid difference scheme and SIMPLE algorithm on the basis of collocated grid to derive the numerical solution of the gas-particle two-phase flow,and carrying out the numerical simulation of gas-dust-droplet flow based on the computing platform of FLUENT software when spray is along the cross-section of the coal face.
     On the condition of utilizing the experimental device which is self-designed and manufactured to simulate the actual wind velocity of fully mechanized caving face,the simulative experiment of dust prevention by water-cloud in three different conditions—fan off, fan on without dust source and fan on with dust source is conducted,to research the coupling relationship between dust field and droplet field.From the experimental data,the droplets distribution regularity in the whole model space under the above three different conditions is obtained;the conception of "three fields" about the atomization effect of spray is put forward; the quantitative function expressions between D_(droplet without dust) andΔD are fitted in three intervals—[40,65]μm,[65,100]μm,[100,160]μm,which are all in the range of particle size 40-160μm that can ensure the droplet of capturing the dust basically,by using the method of numerical analysis.Furthermore,it is put forward that the optimum droplet size to capture respirable dust is 15-75μm;the quantitative mathematical formulae between D_(droplet without dust) and D_(dust not captured),formulae among D50_(droplet without dust),η_(total coal dust) andη_(respirable coal dust) are fitted; several qualitative conclusions about surfactant solution improving the effect of dust prevention by water-cloud are obtained through the coupling experiment of dust-droplet field while the surfactant is added into the water used for spray.According to the measured results of surface tension and contact angle of the single surfactant solution,the conclusions about the coal dust settling Walker experiment and the up-ward seepage experiment of the surfactant combination solution,the optimum surfactant reagent CZYNS-1 used for dedusting is defined; the technique of using volum-fixed pump to add surfactant is researched and developed. Moreover,the dedusting theory of surfactant is improved and extended through measuring and analyzing the critical surface tension of coal-dust test piece,the contact angle of coal-dust test piece in different granularity and coal simple in different porosity.
     Above-mentioned conclusions of the theoretical and experimental research can provide evidence for optimal selection of atomizing nozzles according to the characteristics of dust granularity in different production process,optimization design for devices used for dust prevention by water-cloud and confirmation of optimum surfactant reagent used for dedusting in fully mechanized and roof caving coal face.Finally,the engineering application about the research achievement is carried out in 1303 fully mechanized caving face of Dongtan mine and 10301 fully mechanized caving face of Xinglongzhuang mine in Yanzhou Mining Group, acquiring fine dedusting effect.
引文
1.国家安全生产监督管理总局.2007-2009全国煤矿企业安全事故统计与查询.www.chinasafety.gov.cn,2009.
    2.鲍含诚,李庆海等.矿山粉尘与相关疾病[M].北京:煤炭工业出版社,1999.
    3.赵益芳,赵文才,张德等.矿井防尘理论及技术[M].北京:煤炭工业出版社,1995.
    4.黄声树.我国煤矿粉尘防治技术的现状及进展[J].煤炭工程师,1998,(3):13-15.
    5.周刚,程卫民,王刚等.综掘工作面封闭式除尘工艺[J].煤矿安全,2009,40(3):22-24.
    6.ZHUGE Fumin,ZHOU Gang,CHENG Weimin,et al.Optimization design of dust prevention equipment by water-Cloud system of powered roof support in fully mechanized and roof caving coal face with annual yield of 6 million tons[A].Progress in Safety Science and Technology:Vol Ⅶ,Beijing:Science Press/Science Press USA Inc.,2008,1474-1478.
    7.程卫民,刘向升,阮国强等.煤巷锚掘快速施工的封闭控尘理论与技术工艺[J].煤炭学报,2009,34(2):203-207.
    8.刘毅,蒋仲安,蔡卫等.综采工作面粉尘运动规律的数值模拟[J].北京科技大学学报,2007,29(4):351-353.
    9.杨胜来.综采工作面粉尘分布规律及计算机模拟研究[D].北京:中国矿业大学,1995.
    10.潘大勇.掘进巷道中粉尘分布规律的实验研究和计算机模拟[D].北京:北京科技大学,2000.
    11.刘荣华,王海桥,施式亮等.压入式通风掘进工作面粉尘分布规律研究[J].煤炭学报,2002,27(3):233-236.
    12.王晓珍,蒋仲安,王善等.煤巷掘进过程中粉尘浓度分布规律的数值模拟[J].煤炭学报,2007,32(4):386-390.
    13.Nakayama S.,Uchino K.,Inoue M..Three dimensional flow measurement at heading face and application of CFD[J].Shigen-To-Sozai,1996,112(9):639-644.
    14.Tomita S..Full-scale Model Experiment on The Airflow at A Driving Face with Forcing Auxiliary Ventilation[D].Fukuoka:Kyushu University,1995.
    15.王晓瑾,薄以匀,陈晋南等.SHG-Ⅱ-z型除尘脱硫装置三维三相流场的数值模拟[J].计算机与应用化学,2006,23(3):198-201.
    16.CHENG Weimin,WANG Gang,NIE Wen,et al.Study and application of automatic spray system on blasting face in thin seam of Beisu coal mine[A].Progress in Safety Science and Technology:Vol Ⅶ,Beijing:Science Press/Science Press USA Inc.,2008,1582-1585.
    17.周刚,程卫民,宋先明等.兖州及济东煤田煤层注水实验研究[J].煤炭科学技术,2006,34(3):56-60.
    18.陆慧林,刘文铁,别如山等.增湿活化反应器内气—液滴—固三相流场的数值模拟[J].工程热物理学报,2001,22(增刊):197-200.
    19.Van Wachem B G M,Almstedt A E.Methods for multiphase computational fluid dynamics[J].Chem Eng J,2003,96(3):81-85.
    20.Housiadas C,Drossinos Y,Lazaridis M.Effect of small-scale turbulent fluctuations on rates of particle formation[J].Journal of Aerosol Science,2004,35(5):545-559.
    21.ZHANG Shengzhu,CHENG Weimin,ZHOU Gang,et al.Study on dust density measurement accuracy of fully mechanized caving face[A].Progress in Safety Science and Technology:Vol Ⅶ,Beijing:Science Press/Science Press USA Inc.,2008,1488-1492.
    22.蒋仲安,金龙哲,袁绪忠等.掘进巷道中粉尘分布规律的实验研究[J].煤炭科学技术,2001,29(3):43-45.
    23.徐景德.矿井粉尘运动规律的实验研究[D].江苏徐州:中国矿业大学,1995.
    24.史富川,康聚鼎.矿井综合防尘技术与管理[M].北京:煤炭工业出版社,1994.25.时训先,蒋仲安,褚燕燕.煤矿综采工作面防尘技术研究现状及趋势[J].中国安全生产科学技术, 2005,1(1):41-43.
    26.金龙哲.德国煤层注水防尘发展动向[J].煤炭工程师,1994,(5):46-49.
    27.程卫民,刘向升,郭允相等.综放工作面煤层混合式注水防尘技术[J].煤炭科学技术,2008,36(9):38-42.
    28.卢鉴章,王茂吉,陈治中等.煤矿安全手册 第三篇 矿井粉尘防治[M].北京:煤炭工业出版社,1992.
    29.李卫东,王连富,刘道文等.我国煤炭行业粉尘浓度监测技术的现状及发展趋势[J].矿业安全与环保,2005,32(增刊):66-67.
    30.李新东,许波云,田水承.矿山粉尘防治技术[M].陕西西安:陕西科学技术出版社,1995.
    31.CHENG Weimin,WU Lirong,ZHOU Gang,et al.Dust-laying method of coal seam water infusion on fully-mechanized caving face[A].Progress in Safety Science and Technology:Vol Ⅵ,Beijing:Science Press/Science Press USA Inc.,2006,1707-1711.
    32.叶钟元.矿尘防治[M].江苏徐州:中国矿业大学出版社,1991.
    33.陆厚根.粉体技术导论[M].上海:同济大学出版社,1998.
    34.П.А.科乌佐夫,Л.Я.斯克里亚宾娜.谭天祐译.工业粉尘理化性质的测定方法[M].北京:化学工业出版社,1988.
    35.张国权.气溶胶力学—除尘净化理论基础[M].北京:中国环境科学出版社,1987.
    36.胡荣泽.粉末颗粒和孔隙的测量[M].北京:冶金工业出版社,1982.
    37.童祜嵩.颗粒粒度与比表面测量原理[M].上海:上海科学技术文献出版社,1989.
    38.向晓东,陈宝智,张国权.粉尘分形几何特征及在除尘技术中的应用探讨[J].建筑热能通风空调,1999,18(2):14-17.
    39.Volodymyr V.K.Fractal dimension classification of aerosol particles by computer controlled scanning electron microscopy[J].Environ.Sci.Technol.,1994,28:2197-2202.
    40.XIE Y,Hopke P.K.Use of multiple fractal dimension to quantify airbone particle shape[J].Aerosol Sci.and Technol.,1994,20:161-168.
    41.Schmidt-ott A.,Wustenberg J.Equivalent diameters of non-spherical particles[J].J.Aerosol Sci.,1995,26:923-924.
    42.S.J.格雷格,K.S.W.辛著.高敬琮,刘希尧翻译.吸附、比表面与孔隙率[M].北京:化学工业出版杜1989.
    43.Robert H.Perry.Perry's Chemical Engineer's Handbook(sixth edition)[M].New York:McGraw-Hill,1984.
    44.G.A.Tyler,B.J.Thompson.Fraunhofer Holography applied to particle size analysis,a reassessment[J].Optical Acta,1976,23(9):685-687.
    45.S.L.Cartwright,P.Dunn,B.J.Thompson.Particle sizing using far-field holography:new development[J].Optical Engineering,1980,19(5):727-733.
    46.曾凡,胡永平.矿物加工颗粒学[M].江苏徐州:中国矿业大学出版社,1995.
    47.李静海,葛蔚,袁捷.颗粒流体系统的多尺度结构及其多元分解方法[J].中国科学基金,1998,国家杰出青年科学基金专刊:40-44.
    48.Beddow J.K.,Meloy T.P.Testing Characterization of Powders and Fine Particles[M].London:Hevden & Son Ltd.,1979.
    49.Beddow J.K.Particulate Science and Technology[M].New York:Chem.Pub.Co.,1980.
    50.严济民,张启元.吸附与凝聚[M].北京:科学出版社,1979.
    51.Barth H.G.Modern Methods of Particle Size Analysis[M].New York:John Wiley & Sons,1984.
    52.Koichi Linoya,Keishi Gotoh,Ko Higashitani.Powder Technology Handbook[M].New York:Marcel Dekker Inc.,1991.
    53.李启辉,吴国光,孙志强等.煤化程度与颗粒大小对煤表面Zeta电位影响研究[J].能源技术与管理,2007,(3):81-82.
    54.Dhariwal Vetal.Measurements of collection efficiency of single,charged droplets suspended in a stream of submicron particles with an electrodynamic balance[J].J.Aerosol.Sci.,1993,24(2):197-209.
    55.刘金武.HSDI柴油机雾化与排放特性瞬态多维建模和数值研究[D].湖南长沙:湖南大学,2007.
    56.魏文韫.高速气雾两相流弛豫过程相间动量传递研究[D].四川成都:四川大学,2002.
    57.文华.基于CFD的柴油机喷雾混合过程的多维数值模拟[D].湖北武汉:华中科技大学,2004.
    58.牛国庆.细水雾抑制室内火灾的理论与试验研究[D].湖南长沙:中南大学,2007.
    59.刘鸿,王家骅.超声波雾化喷嘴的试验研究[J].江苏工业学院学报,2005,17(1):31-33.
    60.吴琨,王京刚,毛益平.荷电水雾振弦栅除尘技术机理研究[J].金属矿山,2004,(8):59-62.
    61.Metzler P,WEI P,Buttner H,et al.Electrostatic enhancement of dust separation in a nozzle scrubber[J].Journal of Electrostatics,1997,42:123-141.
    62.马素平,寇子明.喷雾降尘机理的研究[J].煤炭学报,2005,30(3):297-300.
    63.黄俊.水射流除尘技术[M].陕西西安:西安交通大学出版社,1993.
    64.蒋仲安.湿式除尘机理的研究与应用[D].北京:中国矿业大学,1994.
    65.刘社育,蒋仲安,金龙哲.湿式除尘器除尘机理的理论分析[J].中国矿业大学学报,1998,27(1):47-50.
    66.曹建明.雾化液滴尺寸和速度分布函数的推导[J].交通运输工程学报,2007,7(1):34-36.
    67.郭金基,杨宗炼,邢浩旭.喷射雾化流体紊流混合降尘的机理研究[J].流体机械,1996,24(10):17-19.
    68.Gavaises M.,Arcoumanis C.Cavitation initiation,its development and link with flow turbulence in diesel injector nozzles[J].SAE Transactions,2002,111(3):561-580.
    69.Cousin J.,Nuglisch H.J.Modeling of internal flow in high pressure swirl injectors[J].SAE Transactions,2001,110(3):806-814.
    70.LIU,A.B.,Reitz R.D.Mechanism of air-assisted liquid atomization[J].Atomization and Sprays Technology,1993,3(1):55-75.
    71.Eroglu H,Chigier N.Initial drop size and velocity distributions for airblast coaxial atomizers[J].J.of Fluid Engineering,1991,113(3):453-459.
    72.Bianchi G M,Pelloni P.Modeling atomization of high-pressure diesel sprays[J].ASME Journal of Engineering for Gas Turbine and Power,2001,123:419-427.
    73.Mundo C.,Sommerfeld M.,Tropea C.On the modeling of liquid sprays impinging on surfaces[J].Atomization and Sprays Technology,1998,(8):625-652.
    74.Lee C.S.,Park S.W.An experimental and numerical study on fuel atomization characteristics of high-pressure diesel injection sprays[J].Fuel,2002,81:2417-2423.
    75.Kalaaji A.,Lopez B.Breakup length of forced liquid jets[J],Physics of Fluids,2003,15(9):2469-2479.
    76.Hwang S S,Lin Z,Reitz R D.Breakup mechanisms and drag coefficients of high speed vaporizing liquid drops[J].Atomization and Sprays Technology,1996,(6):353-376.
    77.范明豪,周华,杨华勇.高压细水雾灭火喷嘴的雾化特性研究[J].机械工程学报,2002,38(9):17-21.
    78.郭金基,张康治,王国基等.旋转液体射流雾化的计算理论与实验研究[J].中山大学学报(自然科学版),1994,33(4):1-6.
    79.LU Xi,SUN Yuedong,ZHANG Zhendong.A measuring apparatus for the atomization characteristics of electric control injector[J].Journal of University of Shanghai for Science and Technology,2004,26(2):344-347.
    80.颜士华,夏孝明,赵正均.对磁化水喷雾降尘机理的认识[J].煤炭工程师,1997,(2):28-31.
    81.Pilch M,Etdman C A.Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop[J].Int.J.Multiphase Flow,1987,13(6):741-757.
    82.周猛,庄逢辰.离心喷嘴雾化特性的理论计算[J].推进技术,1991,(4):36-41.
    83.宋军,刘永长贺萍.柴油机雾化机理及雾化特性参数的研究[J].华中理工大学学报,1996,24(4):90-93.
    84.岳晓峰,王瑾,梁亮等.油束雾化形成机理分析[J].中国公路学报,2007,20(5):117-121.
    85.王俊.射流理论基础及应用[M].北京:宇航出版社,1995.
    86.向晓东.现代除尘理论与技术[M].北京:冶金工业出版社,2002.
    87.丁泽良.新型组合式陶瓷水煤浆喷嘴的设计开发及其损坏机理研究[D].山东济南:山东大学,2004.
    88.侯凌云,侯晓春.喷嘴技术手册(第二版)[M].北京:中国石化出版社,2007.
    89.Goney,Kayhan Halil.Investigations of Internal Nozzle Multiphase Flow and Its Effects on Diesel Sprays[D].Madison:The University of Wisconsin-Madison,1999.
    90.William A.,Sirignano.Volume averaging for the analysis of turbulent spray flows[J].International Journal of Multiphase Flow,2005,31(6):675-705.
    91.Madhusarathi Nanduri.Wear Characterization of Abrasive Waterjet Nozzles and Nozzle Materials[D].Island:University of Rhode Island,1997.
    92.解茂昭.燃油喷雾场结构和雾化机理[J].力学与实践,1990,12(4):9-15.
    93.辛承梁.实用喷射技术[M].北京:北京科学出版社,1993.
    94.李德文.复合除尘机理及其应用的研究[D].北京:中国矿业大学,2003.
    95.严春吉,解茂昭.空心圆柱形液体射流分裂与雾化机理的研究[J].水动力学研究与进展,2001,16(2):200-207.
    96.曹建明,马志义.喷雾中液滴破裂机理的研究[J].车用发动机,1997,(4):11-14.
    97.王希鼎.湿式除尘机理的新探索[J].劳动保护科学技术,1998,18(3):30-32.
    98.史绍熙,林玉静,杜青等.射流参数对旋流雾化的影响[J].燃烧科学与技术,1999,5(1):1-6.
    99.史绍熙,杜青,秦建荣等.液体燃料射流破碎机理研究中的时间模式与空间模式[J].内燃机学报,1999,17(3):205-210.
    100.严春吉,殷佩海,解茂昭.液体射流在旋转气流中的雾化机理研究[J].内燃机学报,2004,22(5):425-432.
    101.WANG Yanjun,SHUAI Shijin,LEI Xiaohu,et al.Numerical simulation and experiment of gasoline high-pressure swirl spray[J].Automotive Engineering,2004,26(6):632-634.
    102.YI Shijun,XIE Maozhao,CHEN Baixin.The breakup and atomization of a viscous liquid jet[J].Acta Mechanica Sinica:English Series,1996,12(2):122-134.
    103.QIAN Yaoyi,LI Yunqing,YU Xiumin,et al.An experiment study on fuel spray on small direct injection diesel engine[J].Transactions of CSICE,2001,19(2):20-38.
    104.中国预防医学科学院卫生研究所,冶金工业部安全技术研究所.中华人民共和国国家标准-作业场所空气中粉尘测定方法(GB5748-85)[S].中华人民共和国卫生部,1986.
    105.煤炭科学研究总院重庆分院.中华人民共和国煤炭行业标准-粉尘浓度和分散度测定方法(MT79-84)[S].中华人民共和国煤炭工业部,1985.
    106.煤炭科学研究总院重庆分院,中国煤炭工业协会.中华人民共和国安全生产行业标准-煤矿井下粉尘综合防治技术规范(AQ1020-2006)[S].国家安全生产监督管理总局,2006.
    107.中国安全生产科学研究院.中华人民共和国安全生产行业标准-作业场所空气中呼吸性煤尘接触浓度管理标准(A04202-2008)[S].国家安全生产监督管理总局,2008.
    108.袁易君,任德明,胡孝勇.Mie理论递推公式计算散射相位函数[J].光散射学报,2006,17(4):366-370.
    109.S.K.Sharma,A.K.Roy.New approximate phase functions:test for nonspherical particles[J].J.Quant.Spectrosc.Radiat.Transfer.,2000,64:327-337.
    1lO.王乃宁,虞先煌.基于米氏散射及夫朗和费衍射的FAM激光测粒仪[J].粉体技术,1996,2(1):1-5.
    111.Jonsson Jocob C,Smith Georey B,Niklasson Gurmar A.Experimental and Monte Carlo analysis of isotropic multiple Mie scattering[J].Optics Communications,2004,240:9-17.
    112.于明州,金晗辉,陈丽华等.粉尘粒子运动扩散特性的大涡模拟研究[J].环境科学学报,2005,25(7):891-895.
    113.JIN F,PENG J,Bo Y Y,et al.Numerical simulation of three-dimensional two-phase flow in SHG-Ⅱ-Z desulphurization absorber[J].Computers and Applied Chemistry,2005,22(8):687-690.
    114.杨胜来.采煤工作面粉尘颗粒运动的动力学模型的探讨[J].山西矿业学院学报,1994,12(3):250-257.
    115.Martin Sommerfeld.Validation of a stochastic Lagrangian modelling aprroach for inter-particle collisions in homogeneous isotropic turbulence[J].International Journal of Multiphase Flow,2001,27(10):1829-1858.
    116.Soo S L.Multiphase Fluid Dynamics[M].Gower:Science Press,1991.
    117.Lun C K K,Savage S B,Jeffrey D J.Kinetic theories for granular flow:inelastic particles in Couette flow and slightly inelastic particles in general flow field[J].J.Fluid Mech.,1984,140:223-256.
    118.XU B H,YU A B.Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics[J].Chem.Eng.Sci.,1997,52:2785-2809.
    119.ZHOU Lixing,XU Y.Simulation of swirling gas-particle flows using an improved second-order moment two-phase turbulence model[J].Powder Technology,2001,116(2-3):178-189.
    120.ZHOU Lixing,CHEN T.Simulation of strongly swirling gas-particle flows using USM and k-ε-k_p two-phase turbulence models[J].Powder Technology,2001,114(1-3):1-11.
    121.ZHOU Lixing,GU H X.A non-linear k-ε-k_p two-phase turbulence model[J].Journal of Fluids Engineering,2003,125(1):191-194.
    122.Yuu S,Ueno T,Umekage T.Numerical simulation of the high Reynolds number slit nozzle gas-particle jet using subgrid-scale coupling large eddy simulation[J].Chem.Engng.Sci.,2001,56:4293-4307.
    123.Gore R A,Crowe C T.Effect of particle size on modulation turbulent intensity[J].Int.J.Multiphase Flow,1989,15(2):279-285.
    124.贺铸,柳朝辉,郑楚光.三维均匀各向同性两相湍流的直接模拟[J].工程热物理学报,2003,24(4):621-624.
    125.H Enwald.Eulerian two-phase flow theory applied to fluidization[J].Int.J.Multiphase Flow,1996,22(1):21-66.
    126.KUO T C,PAN C,CHENG C C.Eulerian-langrangian computation on phase distribution of two-phase bubbly flows[J].Int J Numerical Method Fluid,1997,24(6):579-593.
    127.陈义良.湍流计算模型[M].安徽合肥:中国科学技术大学出版社,1991.
    128.S Majumdar.Role of underelaxation in momentum interpolation for calculation of flow with nonstaggered grids[J].Numerical Heat Transfer,1988,13(1):125-132.
    129.吴德铭,郜冶.实用计算流体力学基础[M].黑龙江哈尔滨:哈尔滨工程大学出版社,2006.
    130.连桂森.多相流动基础[M].浙江杭州:浙江大学出版社,1989.
    131.D.G.E.Grigoriadis,J.G.Bartzis,A.Goulas.Efficient treatment of complex geometries for large eddy simulations of turbulent flows[J].Computers and Fluids,2004,33(2):201-222.
    132.Soo S L.Particulate and Continuum Multiphase Fluid Dynamics[M].London:Hemisphere Publishing Corporation,1989.
    133.施学贵,徐旭常,冯俊凯.颗粒在湍流中的运动受力分析[J].工程热物理学报,1989,10(3):320-325.
    134.岑可法,樊建人.工程气固多相流动的理论及计算[M].浙江杭州:浙江大学出版社,1990.
    135.A Adeniji-Fashold,CHEN C P.Modelling of confined turbulent fluid-particle flows using Eulerian and Lagrangian schemes[J].Int J Heat and Mass Transfer,1990,33:691-701.
    136.周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1991.
    137.王运良.气固两相双流体模型与数值计算及轴流叶轮内两相场的实验研究[D].陕西西安:两安交通大学,1994.
    138.A Berlemont,P Desjonqeres,Goueshet.Particle Lagrangian simulation in turbulent flows[J].Int J Multiphase Flow,1990,16(2):16-34.
    139.ZHOU Lixing.Two-fluid models for simulating turbulent gas-particle flows and combustion[J].Multiphase Science and Technology,1999,(11):37-57.
    140.Gidaspow D.Multiphase Flow and Fluidization:Continuum and Kinetic Theory Descriptions[M].New York:Academic Press,1994.
    141.Oesterle B.,Petitjean A.Simulation of particle-to-particle interactions in gas-solid flows[J].International Journal of Multiphase Flow,1993,19(1):199-211.
    142.Squires K D,Eaton J K.Lagrangian and Eulerian statistics obtained from direct numerical simulation of homogeneous turbulence[JJ.Phys.Fluids A.,1991,(3):130-143.
    143.Patankar N A,Joseph D D.Modeling and numerical simulation of particulate flows by the Eulerian-Lagrangian approach[J].Int.J.Multiphase Flow,2001,27(10):1659-1684.
    144.黄克智,薛明德,陆明万.张量分析[M].北京:清华大学出版社,2003.
    145.Durst F.,Milojevic D.,Schoung B.Eulerian and Lagrangian predictions of particulate two-phase flows:a numerical study[J].Appl.Math.Modelling,1984,(8):101-115.
    146.张健,周力行.气固两相流中颗粒轨道运动方程的一组解析解[J].燃烧科学与技术,2000,6(3):226-229.
    147.FAN Jianren,MA Yinliang,ZHA Xudong,et al.Prediction of dense turblent particle laden riser flow with Eulerian and Lagrangian combined model[J].Chem.Eng.Comm.,2000,179:201-218.
    148.FAN Jianren,SUN Ping,MA Yinliang,et al.On a Eulerian and Lagrangian combined model in dense particle-laden riser flow[J].Can.J.Chem.Eng.,1999,77:1113-1120.
    149.Davidso J F,Cliff R,Harrison E.The Physical Behavior of Three-phase Fluidized Beds[M].New York:Academic Press,1985.
    150.Warsito W,FAN L S.Imaging of three-phase fluidized bed based on three-phase capacitance model[J].Chemical Engineering Science,2003,58(3-6):823-832.
    151.ZHANG J P,LI Y,FAN L S.Discrete phase simulation of gas-liquid-solid fluidization systems:signal bubble rising behavior[J].Powder Technology,2000,113:310-326.
    152.闻建平,黄琳,周怀等.气液固三相湍流流动的E/E/L模型与模拟[J].化工学报,2001,52(4):343-348.
    153.王瑞金,张凯.FLUENT技术基础与应用实例[M].北京:清华大学出版社,2007.
    154.周力行,李力.炉内两相流动和煤粉燃烧的双流体轨道模型[J].工程热物理学报,2001,22(6):771-774.
    155.王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    156.张鑑,由长福,徐旭常.循环床内气固两相流中稠密颗粒间碰撞的数值模拟[J].工程热物理学报,1998,19(2):256-259.
    157.韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    158.马银亮.高浓度气固两相流的数值模拟研究[D].浙江杭州:浙江大学,2001.
    159.李炜.粘性流体的混合有限分析解法[M].北京:科学出版社,2000.
    160.盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2001.
    161.Delores M.Etter,David C.Kuncicky,Holly Moore.邱李华译.MATLAB 7及工程问题解决方案[M].北京:机械工业出版社,2006.
    162.陈沅江,吴超.表面活性剂在矿山尘毒治理中的应用及展望[J].工业安全与防尘,1998,(3):23-25.
    163.黄洪周.化工产品手册-工业表面活性剂(第四版)[M].北京:化学工业出版社,2005.
    164.刘程,米裕民.表面活性剂性质理论与应用[M].北京:北京工业大学出版社,2003.
    165.煤炭科学研究总院重庆分院,煤炭工业部科教司.中华人民共和国煤炭行业标准-矿用泡沫除尘剂性能测定方法(MT/T764-1997)[S].中华人民共和国煤炭工业部,1997.
    166.煤炭科学研究总院重庆分院,煤炭工业部煤矿安全标准化技术委员会.中华人民共和国煤炭行业标准-矿用降尘剂性能测定方法(MT506-1996)[S].中华人民共和国煤炭工业部,1996.
    167.WU Chao,Chugh.Y.P.A comprehensive survey of chemical dust suppressants in the world over the last 15years[A].Progress in Safety Science and Technology:Vol Ⅱ,Beijing:Chemical Industry Press,2000,705-719.
    168.聂容春,王杰,徐初阳.生物基表面活性剂—烷基糖苷的发展现状[J].安徽理工大学学报(自然科学版),2006,26(3):66-69.
    169.H.R.Moston.Industrial and institutional cleaners:opportunities for mulitfunctionai surfactants[A].5~(th)World Surfactants Conference,Firenze,2000,928-938.
    170.W.Warren Schmidt.Solution and performance properties of new biodegradable high-solubility surfactants[A].5~(th) World Surfactants Conference,Firenze,2000,1085-1093.
    171.张迎新,吴强.表面活性剂的强化喷雾降尘实验[J].黑龙江科技学院学报,2008,18(4):269-271.
    172.Scott M.J.,Jones M.N.The biodegradation of surfactants in the environment[J].Biochemical and Biophysical Acta,2000,1508:235-251.
    173.王雁,安秋凤.表面活性剂的安全性问题[J].日用化学品科学,2008,31(1):28-31.
    174.Daviss B.The progress of green chemistry in the field of surfactant[J].New Scientist,1999,(3):37-39.
    175.魏光平,侯凤才,王乐平等.国内外湿润型抑尘剂研究与应用[J].中国矿业,2007,16(9):90-92.
    176.沈永铜,贾勇,马中飞.聚丙烯酰胺复配物提高微细粉尘湿润效果的试验[J].能源环境保护,2007,21(2):12-14.
    177.杨静,谭允祯,王振华等.煤尘表面特性及润湿机理的研究[J].煤炭学报,2007,32(7):737-740.
    178.傅贵.煤体预湿机理与注水防尘技术研究[D].北京:中国矿业大学,1996.
    179.秦凤华,傅贵.表面活性剂水溶液降尘机理的研究[J].煤,1997,6(3):31-34.
    180.吴桂香.极性基湿润剂与矿岩类粉尘颗粒的作用机理[J].工业安全与环保,2005,31(6):1-4.
    181.N.Kosaric.Biosurfactants Production,Propertises[M].New York:Marcel Dekker.Inc,1993.
    182.李文安.绿色表面活性剂的应用及研究进展[J].安徽农业科学,2007,35(19):5691-5692.
    183.Aly M.A.,Srorr T.Biodegradation of anionic surfactants in the presence of organic contaminants[J].Wat.Res.,1998,32(3):944-947.
    184.吴超,左治兴,欧家才等.不同实验装置测定粉尘湿润剂的湿润效果相关性[J].中国有色金属学报,2005,15(10):1612-1617.
    185.Kim J.Effect of coal type on wetting by solutions of nonionic surfactant[J].International Mining and Minerals,1999,2(14):38-41.
    186.Kilau W H,John E P.Coal wetting ability of surfactant solutions and the effect of multivalent anion additions[J].Colloids and Surfaces,1987,26:217-242.
    187.Kilau H W.Wettability of coal and its relevance to the control of dust during coal mining[J].Jounal of Adhesion Science and Technology,1993,7(6):649-667.
    188.金龙哲.粘结式防尘技术的研究与应用[D].北京:中国矿业大学,1997.
    189.WU Chao,GU Desheng.High efficient dust scrubbers for continuous miner in underground[J].Jouranl of Central South University of Technology,2000,7(4):195-201.
    190.吴超.化学抑尘[M].湖南长沙:中南大学出版社,2003.
    191.闰建荣,杨亚玲,赵红芳.NaCl对阴离子/非离子复配表面活性剂的性能影响[J].云南化工,2008,35(2):4-6.
    192.金龙哲.煤层注水及粉尘检测技术的研究与应用[D].北京:北京科技大学博士后研工作报告,1999.
    193.C B戈文德莱姆,张健.表面活性剂复配体系的分析[J].日用化学品科学,2002,25(3):34-37.
    194.Scamehorn J F.An overview of phenomena involving surfactant mixtures[J].American Chemical Society Symposium Series,1986,311:1-23.
    195.Porter M R.Recent Development in Analysis of Surfactants[M].New York:Elsevier Science Publishers LTD,1991.
    196.表面活性剂和洗涤用品标准汇编编委会,中国标准出版社第二编辑室.表面活性剂和洗涤用品标准汇编[M].北京:中国标准出版社,2005.
    197.Tsubone K.The interaction of an anionic gemini surfactant with conventional anionic surfactants[J].Journal of Colloid and Interface Science,2003,261(2):524-528.
    198.Rosen M J,Sulthana S B.The interaction of alkylglycosides with other surfactants[J].Journal of Colloid and Interface Science,2001,239(2):528-534.
    199.Bergstrom M,Eriksson J C.A theoretical analysis of synergistic effects in mixed surfactant systems[J]. Langrnuir,2000,16(18):7173-7181.
    200.丁慧君.正、负离子表面活性剂与非离子表面活性剂混合水溶液的相互作用[J].高等学校化学学报,1991,(2):222-226.
    201.张雪勤,蔡怡,杨亚江.两性离子/阴离子表面活性剂复配体系协同作用的研究[J].胶体与聚合物,2002,20(3):1-4.
    202.HUO Q,Margolese D I,Ciesla U,et al.Generalized synthesis of periodic surfactant/inorganic composite materials[J].Nature,1994,368:317.
    203.付志新,郭占成.焦化过程半焦孔隙结构时空变化规律的实验研究—孔隙率、比表面积、孔径分布的变化[J].燃料化学学报,2007,35(3):273-279.
    204.田英姿,陈克复.用压汞法和氮吸附法测定孔径分布及比表面积[J].中国造纸,2004,23(4):21-23.
    205.吴澜尔,陈宇红,钱克农.碳化硅超细粉碎粉体粒度与比表面积的变化规律[J].矿业研究与开发,2002,22(3):49-52.
    206.沈钟,赵振国,王果庭.胶体与表面化学[M].北京:化学工业出版社,2008.
    207.赵世民.表面活性剂-原理·合成·测定及应用[M].北京:中国石化出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700