用户名: 密码: 验证码:
流体饱和多孔介质弹性波方程正反演方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流体饱和多孔介质(Fluid-Saturated Porous Media)是由包含固相和液相的双相介质组成。Biot流体饱和多孔介质理论认为,地下介质是由弹性多孔固体及充满孔隙空间的具有粘滞性的可压缩流体组成。与单相弹性介质比较,流体饱和多孔介质更接近实际地层介质,流体饱和多孔介质弹性波方程中包含了更多描述地层性质的参数,故在地球物理勘探、地震工程等领域有广泛应用。因此,深入研究流体饱和多孔介质弹性波方程的正反演方法不仅有较高的理论价值也有着广泛的工程意义。
     小波分析是近年来国际上公认的前沿研究领域,它既包含有丰富的数学理论,又是工程应用中强有力的方法和工具,给许多相关领域带来了崭新的思想。同伦方法是求解非线性算子方程的一种大范围收敛的方法,在许多领域有着十分重要的应用。水平集方法是一种新颖的求解几何曲线演化的方法,将曲线演化转化成一个纯粹的求偏微分方程数值解问题。本文将小波分析理论结合传统算法进行正演模拟,将小波多尺度方法、同伦方法和水平集方法引入反演过程中,开展了一系列兼有计算量小、抗噪能力强、收敛范围广、程序易于实现的数值反演方法研究。
     首先,以Biot流体饱和多孔介质理论为基础,充分利用紧支撑正交小波良好的特性和有限差分法操作简单、程序易于执行的优点,设计了小波有限差分法。针对二维地震勘探模型,模拟了弹性波在均匀介质和双层介质中的传播,给出了相应的地震记录,为随后的介质参数反演研究奠定了坚实的基础。
     其次,将可以不断提高分辨率的小波多尺度反演思想引入到参数反演过程中,结合大范围收敛的同伦方法,并对同伦参数的选取进行了改进,设计了小波自适应同伦反演方法。利用该方法求解地震勘探中二维流体饱和多孔介质弹性波方程反问题,数值模拟结果和抗噪性实验均表明了方法的有效性。
     随后,针对分布式参数识别问题,引入了水平集方法,并将正则化作用于水平集函数,重新初始化过程保证了水平集函数在演化过程中的稳定性。通过数值实验,我们验证了水平集正则化方法对含有噪声数据的反演问题具有很好的效果。
     最后,将小波自适应同伦反演方法引入时间推移地震勘探算法研究中,设计了局域化反演算法,通过使用小波自适应同伦法对基础模型反演成像,可以划定一个包含油藏储层的求解区域,在此相对较小的区域内使用自适应同伦法进行监测模型反演。局域化反演算法不仅提高了计算的精度,还减少了计算量,节省了计算时间。
Fluid-saturated porous media are two-phase media composed of the solid and?uid. Biot theory considered that the subsurface solid is a porous elastic solid con-taining a compressible viscous ?uid. Compared with the single-phase medium theory,?uid-saturated porous media theory can describe the subsurface media more preciselyand the fluid-saturated porous medium elastic wave equation can describe more in-formation than ever. So, fluid-saturated porous media theory can be used widely ingeophysics exploration and earthquake engineering. Therefore, further research of theforward and inverse methods has theory and engineering significance for the elasticwave equation in fluid-saturated porous media.
     Wavelet analysis is an international forward research field in recent years. It notonly contains abundant mathematical theories, but also is a powerful method and toolin engineering and it brings new ideas to many fields. The homotopy method is awidely convergent method for solving the nonlinear operator equation and also hasimportant applications in many fields. Level set method has become an novel toolfor the computation of evolving boundaries and interfaces. Instead of tracking thesurfaces, we solve the resulting partial differential equation. Therefore, in this thesiswe compose the wavelet analysis and finite-difference method into the forward simu-lation. Then we draw the wavelet analysis, the adaptive homotopy method and levelset method into the inversion process, and carry out a series of studies of numericalinversion methods, which have the abilities of saving computational costs, noise sup-pression, global convergence and easy realization of the procedure consequently.
     Firstly, based on the Biot theory, a wavelet finite-difference method is proposedby combing the good properties of wavelet analysis and traditional finite-differencemethod. For the wavelet multi-resolution method, it owns a quick decomposition andreconstruction algorithm and the finite-difference method is simple and may be read-ily implemented. This algorithm is applied to simulate the propagation of 2-D elasticwave in fluid-saturated porous media for the homogenous and two-layer models. Theresulting synthetic seismograms are shown.
     Secondly, the principle of wavelet multi-scale inversion is introduced to the gen- eral estimation problem. Basing on this principle and the homotopy method modifiedthe homotopy parameter adaptively, we design a wavelet adaptive homotopy inversionmethod. Numerical simulations are carried out for the inverse problem of two dimen-sional elastic wave equation in fluid-saturated porous media in seismic prospecting.The numerical results and tests of noise suppression indicate the method’s effective-ness
     Thirdly, apply a level set regularization method to the inverse problem for 2-Dwave equation in Fluid-saturated media. we utilized the level set function to presentthe discontinuous parameter, and the regularization functional is applied to the levelset function. Numerical experiments show that the method can recover coefficientswith rather complicated geometry of noise in the observation data.
     Finally, the wavelet adaptive homotopy method is introduced to the time-lapseseismic inversion. we design a local inversion algorithm. According to the inversionresults of base model, we can obtain a small domain containing the oil reservoir, thenin this domain we apply the adaptive homotopy method to inverse the monitor model.The results show that this algorithm can improve the precision and decrease the runtime.
引文
1 M. A. Biot. Theory of Propagation of Elastic Waves in a Fluid-Saturated PorousSolid. I. Low-Frequency Range. J. Acoust. Soc. Am. 1956, 28(2):168~178
    2 M. A. Biot. Theory of Propagation of Elastic Waves in a Fluid-Saturated PorousSolid. II. Higher-Frequency Range. J. Acoust. Soc. Am. 1956, 28(2):179~191
    3 M. A. Biot. General Theory of Three-Dimensional Consolidation. J. Appl.Phys. 1941, 12(2):155~164
    4 M. A. Biot. Theory of Elasticity and Consolidation for a Porous AnisotropicSolid. J. Appl. Phys. 1955, 26(2):182~185
    5 M. A. Biot. Theory of Deformation of a Porous Viscoelastic Anistropic Solid.J. Appl. Phys. 1956, 27(5):459~467
    6 M. A. Biot, D. G. Willis. The Elastic Coefficients of the Theory of Consolida-tion. J. Appl. Mech.-Trans. ASME. 1957, 24:594~601
    7 M. A. Biot. Mechanics of Deformation and Acoustic Propagation in PorousMedia. J. Appl. Phys. 1962, 33(4):1482~1498
    8 M. R. Halpern, P. Christiano. Dynamic Impedance of a Poroelastic Subgrade.3rd ASCE Engineering Mechanics Division Speciality Conference. Universityof Texas, Austin, New York, 1979:805~808
    9 M. R. Halpern, P. Christiano. Response of Poroelastic Halfspace to Steady StateHarmonic Surface Tractions. Int. J. Numer. Anal. Methods Geomech. 1986,10(6):609~632
    10 S. J. Hong, R. S. Sandhu, W. E. Wolfe. On Grag’s Solution of Biot’s Equationsfor Wave Propagation in a One-Dimensional Fluid-Saturated Elastic PorousSolid. Int. J. Numer. Anal. Methods Geomech. 1988, 12(6):627~637
    11 M. S. Hiremath, R. S. Sandhu, L. W. Morland. Analysis of One-DimensionalWave Propagation in a Fluid-Saturated Finite Soil Column. Int. J. Numer. Anal.Methods Geomech. 1988, 12(2):121~139
    12 A. H. D. Cheng, D. E. B. T. Badmus. Intergral Equations for Dynamic Poroe-lasticity in Frequency Domain with BEM Solution. J. Eng. Mech.-ASCE. 1991,117(5):1136~1157
    13 S. Paul. On the Displacements Produced in a Porous Elastic Half-Space byan Impulsive Line Load (Non-dissipative Case). Pure Appl. Geophys. 1976,114(4):605~614
    14 S. Paul. On the Disturbance Produced in a Semi-Infinite Poroelastic Mediumby a Surface Load. Pure Appl. Geophys. 1976, 114(4):615~627
    15 R. D. Boer, R. Ehlers, Z. Liu. One-Dimensional Transient Wave Propagationin Fluid-Saturated Incompressible Porous Media. Arch. Appl. Mech. 1993,63(1):59~72
    16 M. Schanz, A. H. D. Cheng. Transient Wave Propagation in a One-DimensionalPoroelastic Column. Acta Mech. 2000, 145(1-4):1~18
    17 J. Dominguez. An Integral Formulation for Dynamic Poroelasticity. J. Appl.Mech. 1991, 58(2):588~591
    18 T. H. Wiebe, H. Antes. A Time Domain Integral Formulation of DynamicPoroelasticity. Acta. Mech. 1991, 90(1-4):125~137
    19 J. Chen. Time Domain Fundamental Solution to Biot’s Complete Equations ofDynamic Poroelasticity. II. Three-Dimensional Solution. Int. J. Solids Struct.1994, 31(2):169~202
    20 J. Chen. Time Domain Fundamental Solution to Biot’s Complete Equationsof Dynamic Poroelasticity. I. Two-Dimensional Solution. Int. J. Solids Struct.1994, 31(10):1447~1490
    21 S. Hassanzadeh. Acoustic Modeling in Fluid Saturated Porous Media. Geo-physics. 1991, 56:424~435
    22 X. Zhu, G. A. McMechan. Finite-Difference Modeling of the Seismic Responseof Fluid-saturated, Porous, Elastic Media Using Biot Theory. Geophysics. 1991,56:328~339
    23郭建.双相介质中P波波场的有限差分模拟.石油地球物理勘探. 1992,27(2):182~199
    24 N. Dai, A. Vafidis, E. R. Kanasewich. Wave Propagation in Heterogeneous,Porous Media: A Velocitystress, Finite-Difference Method. Geophysics. 1995,60(2):327~340
    25 T. Ozdenvar, G. A. McMechan. Algorithms for Staggered-grid Computa-tions for Poroelastic, Elastic, Acoustic, and Scalar Wave Equations. Geophys.Prospect. 1997, 45(3):403~420
    26王秀明,张海澜,王东.利用高阶交错网格有限差分法模拟地震波在非均匀孔隙介质中的传播.地球物理学报. 2003, 46(6):842~849
    27张会星,何兵寿,宁书年.双相介质中纵波方程的高阶有限差分解法.物探与化探. 2004, 28(4):307~309
    28石玉梅.流体饱和多孔隙介质中弹性波运动方程的解-伪谱法.西南石油学院学报. 1995, 17(1):34~37
    29 O. C. Zienkiewicz, T. Shiomi. Dynamic Behaviour of Saturated Porous Media:The Generalized Biot Foumulation and its Numerical Solution. Int. J. Numer.Anal. Methods Geomech. 1984, 8(1):71~96
    30 B. R. Simon, O. C. Zienkiewicz, D. K. Paul. An Analytical Solution for theTransient Response of Saturated Porous Elastic Solids. Int. J. Numer. Anal.Methods Geomech. 1984, 8(4):381~398
    31 A. N. Yiagos, J. Prevost. Two-Phase Elasto-Plastic Seismic Response of EarthDams: Applications. Soil. Dyn. Earthq. Eng. 1991, 10(7):371~381
    32张洪武,何扬,李锡夔.饱和多孔介质半无限域渗流分析中的非反射边界法.岩土工程学报. 1990, 12(4):49~56
    33张洪武,钟万勰,钱令希.饱和土动力固结分析中的变分原理.岩土工程学报. 1992, 14(4):20~29
    34郭宝琦,董晓丽,包洪洋.流体饱和多孔隙固体中波动方程的数值模拟.哈尔滨工业大学学报. 1994, 26(5):5~7
    35徐文骏,郭建.流体饱和多孔介质中弹性波的数值模拟.地球物理学报.1994, 37(2):424~433
    36 M. Yazdchi, N. Khalili, S. Vallippan. Non-linear Seismic Behaviour of ConcreteGravity Dams Using Coupled Finite Element-Boundary Element Technique.Int. J. Numer. Methods Eng. 1999, 44(1):101~130
    37 N. Khalili, M. Yazdchi, S. Vallippan. Wave Propagation Analysis of Two-PhaseSaturated Porous Media Using Coupled Finite-Infinite Element Method. SoilDyn. Earthq. Eng. 1999, 18(8):533~553
    38邵秀民,蓝志凌.流体饱和多孔介质波动方程的有限元解法.地球物理学报. 2000, 43(2):264~278
    39 J. H. Prevost. Wave Propagation in Fluid-Saturated Porous Media: An EfficientFinite Element Procedure. Soil Dyn. Earthq. Eng. 1985, 4(4):183~202
    40 T. N. Narasimhan, P. A. Witherspoon. An Integrated Finite Difference Methodfor Analyzing Fluid Flow in Porous Media. Water Resour. Res. 1976,12(1):57~64
    41 M. Pedercini, A. T. Patera, M. E. Cruz. Variational Bound Finite Element Meth-ods for Threedimensional Creeping Porous Media and Sedimentation Flows.Int. J. Numer. Meth. Fl. 1998, 26(2):145~175
    42严波,刘占芳,张湘伟.流体饱和多孔介质中波传播问题的有限元分析.应用数学与力学. 1999, 20(12):1235~1244
    43严波,刘占芳,张湘伟.两相多孔介质拟静态问题的一种有限元解法.重庆大学学报. 2000, 23(1):41~44
    44 C. G. Zhao, W. H. Lia, J. T. Wang. An Explicit Finite Element Method for BiotDynamic Formulation in Fluid-Saturated Porous Media and its Application to aRigid Foundation. J. Sound Vibr. 2005, 282(3-5):1169~1181
    45 I. Daubechies. Orthonormal Based of Compactly Supported Wavelets. Com-mun. Pure Appl. Math. 1988, 41(7):906~996
    46 V. Comincioli, G. Naldi, T. Scapolla. A Wavelet-Based Method for NumericalSolution of Nonlinear Evolution Equations. Appl. Numer. Math. 2000, 33(1-4):291~297
    47 J. R. L. D. Mattos, E. P. Lopes. A Wavelet Galerkin Method Applied to PartialDifferential Equations with Variable Coefficients Electron. Electron. J. Diff.Eqns. 2003, Conf.(10):211~225
    48 W. Dahmen. Wavelet Methods for Pdes-Some Recent Developments. J. Com-put. Appl. Math. 2001, 128(1-2):133~185
    49 H. Harbrecht, R. Schneider. Wavelet Galerkin Schemes for Boundary Inte-gral Equations-Implementation and Quadrature. SIAM J. Sci. Comput. 2006,
    27(4):1347~1370
    50 O. V. Vasilyev, C. Bowman. Second-Generation Wavelet Collocation Methodfor the Solution of Partial Differential Equations. J. Comput. Phys. 2000,165(2):660~693
    51 G. N?vdal, T. Mannseth, K. Brusdal, et al. Multiscale Estimation with SplineWavelets, with Application to Two-Phase Porous Media Flow. Inverse Probl.2000, 16(2):315~332
    52 J. X. Ma, J. J. Xue. A Study of the Construction and Application of aDaubechies Wavelet-Based Beam Element. Finite Elem. Anal. Des. 2003,39(10):965~975
    53何凯涛, H. J. Zhang.小波多分辨分析方法在波动方程正演模拟中的应用.地球物理学进展. 2001, 16(2):73~80
    54袁修贵,李远禄.基于小波的一维线性波动方程的数值解法.数学理论与应用. 2003, 23(1):11~14
    55马坚伟,朱亚平.多尺度有限差分方法求解波动方程.计算力学学报.2002, 19(4):379~383
    56马坚伟,杨慧珠.插值小波自适应求解层状介质波传问题.工程力学.2003, 20(1):86~90
    57张钦礼,牛莉.一维波动方程的小波解法.华北航天工业学院学报. 2001,11(1):45~49
    58张新明,刘克安,刘家琦.流体饱和多孔隙介质二维弹性波方程正演模拟的小波有限元法.地球物理学报. 2005, 48(5):1156~1166
    59刘克安,郭惠娟.双相介质中参数的非线性反演.哈尔滨建筑大学学报.1996, 29(2):115~120
    60刘克安,刘宏伟.双相介质二维波动方程孔隙率反演的扰动方法.哈尔滨建筑大学学报. 1996, 29(4):80~84
    61刘克安,管叶君.二维双相介质波动方程孔隙率反演的时卷正则迭代法.石油地球物理勘探. 1996, 31(3):410~414
    62刘克安,刘宏伟,郭保琦.双相介质二维波动方程三参数同时反演的时卷正则迭代法.石油地球物理勘探. 1997, 32(5):615~622
    63 P. L. Stoffa. Nonlinear Multiparameters Optimization Using Genetic Al-gorithms: Inversion of Plane-Wave Seismograms. Geophysics. 1991,56(11):1794~1810
    64杨文采.地球物理反演的遗传算法.石油物探. 1995, 34(1):116~122
    65刘维国,全大勇.双相介质中孔隙率反演的一种方法.哈尔滨工业大学学报. 1998, 30(4):1~3
    66魏培君,章梓茂,韩华.流体饱和多孔隙介质参数反演的模拟退火算法.工程力学. 2002, 19(3):128~131
    67魏培君,章梓茂,韩华.双相介质参数反演的混沌搜索方法.计算力学学报. 2002, 19(4):398~402
    68 C. Bunks, F. M. Saleck, S. Zaleski, et al. Multiscale Seismic Waveform Inver-sion. Geophysics. 1995, 60(5):1457~1473
    69 E. L. Miller, A. S. Willsky. Multiscale Approach to Sensor Fusion and theSolution of Linear Inverse Problem. Appl. Comput. Harmon. Anal. 1995,2:127~147
    70 M. Pessel, D. Gibert. Multiscale Electrical Impedance Tomography. J. Geophys.Res. 2003, 108(B1):EPM6.1~EPM6.12
    71梅发国,高彦伟,郭华.频域波动方程的多重网格法.世界地质. 2002,21(4):385~389
    72师学明,王家映,张胜业,等.多尺度逐次逼近遗传算法反演大地电磁资料.地球物理学报. 2000, 43(1):122~130
    73李清仁,张向君,易维启,等.波动方程多尺度反演.石油地球物理勘探.2005, 40(3):273~276
    74马坚伟,杨慧珠,朱亚平.地震波形多尺度反演的一点讨论.地球物理学进展. 2000, 15(4):55~61
    75徐义贤,王家映.大地电磁的多尺度反演.地球物理学报. 1998,41(5):704~711
    76裴正林,余钦范.小波变换多尺度地震走时层析成像方法.地球物理学报.1999, 20(增刊):830~835
    77裴正林,余钦范,牟永光.小波多尺度井间地震波形遗传进化层析成像方法.石油地球物理勘探. 2002, 23(3):237~242
    78孟鸿鹰,刘贵忠.小波变换多尺度地震波形反演.地球物理学报. 1999,42(2):241~248
    79 H. S. Fu, B. Han. A Wavelet Multiscale Method for the Inverse Prob-lems of a Two-Dimensional Wave Equation. Inverse Probl. Sci. Eng. 2004,12(6):643~656
    80 M. Mehra, N. K. R. Kevlahan. An Adaptive Multilevel Wavelet Solver for El-liptic Equations on an Optimal Spherical Geodesic Grid. SIAM J. Sci. Comput.2008, 30(6):3073~3086
    81 X. M. Zhang, C. Y. Zhou, J. Liu, et al. The Wavelet Multiscale Method for In-version of Porosity in the Fluid-Saturated Porous Media. Appl. Math. Comput.2006, 180(2):419~427
    82 X. M. Zhang, J. Q. Liu, K. A. Liu. Porosity Inversion of 1-D Two-phase Mediumwith Wavelet Multiscale Method. ACTA Phys. Sin. 2008, 57(2):654~660
    83 X. M. Zhang, C. Y. Zhou, J. Liu, et al. Multiparameter Identification of Fluid-Saturated Porous Medium with the Wavelet Multiscale Method. J. Porous Me-dia. 2009, 12(3):255~2642
    84 H. B. Keller, D. J. Perozzi. Fast Seismic Ray Tracing. SIAM J. Appl. Math.1983, 43(4):981~992
    85 D. W. Vasco. Singularity and Branching: A Path-Following Formalism forGeophysical Inverse Problems. Geophysics. J. Int. 1994, 119(3):809~830
    86 D. W. Vasco. Regularization and Trade-Off Associated with Nonlinear Geo-physical Inverse Problems: Penalty Homotopies. Inverse Probl. 1998,14(4):1033~1052
    87 M. D. Jegen, M. E. Everett, A. Schultz. Using Homotopy to Invert GeophysicalData. Geophysics. 2001, 66(6):1749~1760
    88韩波,匡正,刘家琦.反演地层电阻率的单调同伦法.地球物理学报. 1991,34(4):256~261
    89 B. Han, M. L. Zhang, J. Q. Liu. A Widely Convergent Generalized Pulse-Spectrum Technique for the Coefficient Inverse Problems of Differential Equa-tions. Appl. Math. Comput. 1997, 81(2):97~112
    90冯国峰,韩波,刘家琦.二维波动方程约束反演的大范围收敛广义脉冲谱方法.地球物理学报. 2003, 46(2):365~370
    91刘舒考,刘雯林,郑晓东,等.同伦神经优化理论及其在地震反演中的应用.石油地球物理勘探. 1998, 33(6):758~768
    92韩华,章梓茂,汪越胜,等.双相介质波动方程孔隙率反演的同伦法.力学学报. 2003, 35(2):235~239
    93韩华,章梓茂,魏培君.二维双相介质多参数反演的同伦法.岩石力学与工程学. 2004, 23(18):3144~3151
    94韩华,章梓茂,魏培君.用同伦方法反演流体饱和孔隙介质的参数.岩石力学与工程学. 2004, 23(1):129~136
    95 G. Bao, J. Liu. Numerical Solution of Inverse Scattering Problems withMulti-Experimental Limited Aperture Data. SIAM J. Sci. Comput. 2003,25(3):1102~1117
    96张丽琴,王家映,严德天.一维波动方程波阻抗反演的同伦方法.地球物理学报. 2004, 47(6):1111~1117
    97张丽琴,王家映,严德天.利用同伦反演方法进行岩性油气藏研究.天然气工业. 2005, 25(8):38~40
    98 H. S. Fu, B. Han, G. Q. Gai. A Wavelet Multiscale-Homotopy Method for theInverse Problem of Two-Dimensional Acoustic Wave Equation. Appl. Math.Comput. 2007, 190(1):576~582
    99 B. Han, H. S. Fu, H. Liu. A Homotopy Method for Well-Log Constraint Wave-form Inversion. Geophysics. 2007, 72(2):R1~R7
    100 S. Osher, J. A. Sethian. Fronts Propagating with Curvature Dependent Speed:Algorithms Based on Hamilton-Jacobi Formulations. J. Comput. Phys. 1988,79:12~49
    101 M. G. Crandall, P. L. Lions. Viscosity Solutions of Hamilton-Jacobi Equations.Trans. Am. Math. Soc. 1983, 277(1):1~42
    102 D. L. Chopp. Computing Minimal Surfaces via Level Set Curvature Flow. J.Comput. Phys. 1993, 106(1):77~91
    103 M. Sussman, P. Smereka, S. Osher. A Level Set Approach for Comput-ing Solutions to Incompressible Two Phase Flow. J. Comput. Phys. 1994,
    114(1):146~159
    104 C. Burstedde, A. Kunoth. Fast Iterative Solution of Elliptic Control Problemsin Wavelet Discretization. J. Comput. Appl. Math. 2006, 196(1):299~319
    105 S. H. Ha, S. Cho. Topological Shape Optimization of Heat Conduction Prob-lems Using Level Set Approach. Numer. Heat Tranf. B-Fundam. 2005,48(1):67~88
    106 F. de Gournay. Velocity Extension for the Level-Set Method and Multi-ple Eigenvalues in Shape Optimization. SIAM J. Control Optim. 2006,45(1):343~367
    107 O. Dorn, R. Villegas. History Matching of Petroleum Reservoirs Using a LevelSet Technique. Inverse Probl. 2008, 24(3):035015(29pp)
    108 M. K. B. H. Miled, E. L. Miller. A Projection-based Level-set Approach to En-hance Conductivity Anomaly Reconstruction in Electrical Resistance Tomog-raphy. Inverse Probl. 2007, 23(6):2375~2400
    109 M. Burger, C. Stocker, A. Voigt. Finite Element-Based Level Set Methods forHigher Order Flows. J. Sci. Comput. 2008, 35(2-3):77~98
    110 H. W. Li, X. C. Tai, S. I. Aanonsen. Reservoir Description by Using a PiecewiseConstant Level Set Method. J. Comput. Math. 2008, 26(3):365~377
    111 K. V. D. Doel, U. M. Ascher. Dynamic Level Set Regularization forLarge Distributed Parameter Estimation Problems. J. Comput. Phys. 2007,23(3):1271~1288
    112 K. V. D. Doel, U. M. Ascher. On Level Set Regularization for Highly Ill-posed Distributed Parameter Estimation Problems. J. Comput. Phys. 2006,216(2):707~723
    113 F. Santosa. A Level-Set Approach for Inverse Problems Involving Obstacles.ESAIM-Control Optim. Calc. Var. 1996, 1:17~33
    114 S. J. Osher, F. Santosa. Level Set Methods for Optimization Problems InvolvingGeometry and Constraints. J. Comput. Phys. 2001, 171(1):272~288
    115 M. Burger. Levenberg-Marquardt Level Set Methods for Inverse Obstacle Prob-lems. Inverse Probl. 2004, 20(1):259~282
    116 M. Burger. A Level Set Method for Inverse Problems. Inverse Probl. 2001,17(5):1327~1355
    117 M. Burger. A Framework for the Construction of Level Set Methods for ShapeOptimization and Reconstruction. Interface Free Bound. 2003, 5:301~329
    118 T. F. Chan, X. C. Tai. Level Set and Total Variation Regularization for EllipticInverse Problems with Discontinuous Coefficients. J. Comput. Phys. 2004,193(1):40~66
    119 K. V. D. Doel, U. M. Ascher. On Level Set Regularization for Highly Ill-Posed Distributed Parameter Estimation Problems. J. Comput. Phys. 2006,216(2):707~723
    120 J. Qian, S. Leung. A Local Level Set Method for Paraxial Geometrical Optics.SIAM J. Sci. Comput. 2006, 28(1):206~223
    121 M. Lien, I. Berre, T. Mannseth. Combined Adaptive Multiscale and Level-SetParameter Estimation. Multiscale Model. Simul. 2005, 4(4):1349~1372
    122 S. Mallat. Multiresolution Approximations and Wavelet Orthonormal Bases ofL2(R). Trans. Am. Math. Soc. 1989, 315(1):69~87
    123 Y. Meyer. Wavelet and Operators. Cambridge University Press. Cambridge,1992:1~224
    124 S. Mallat. A Theory for Multi-Resolution Signal Decomposition: The WaveleRepresentation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11(7):674~693
    125 Z. P. Liao, H. L. Wong, B. P. Yang, et al. A Transmitting Boundary for TransientWave Analyses. Sci. China Ser. A-Math. 1984, 27(10):1063~1076
    126 Z. P. Liao, H. L. Wong. A Transmitting Boundary for the Numerical Simulationof Elastic Wave Propagation. Soil Dyn. Earthq. Eng. 1984, 3(4):174~183
    127 G. Beylkin. On the Representation of Operators in Bases of Compactly Sup-ported Wavelets. SIAM J. Numer. Anal. 1992, 29(1):1716~1740
    128 M. A. Hajji, S. Melkonian, V. Vaillancourt. Representation of DifferentialOpterator in Wavelet Basis. Comput. Math. Appl. 2004, 47(6):1011~1033
    129周涛.小波分析用于求解微分方程数值解的研究,中南大学,硕士论文.2007:32–34
    130李庆扬,莫孜中,祁力群.非线性方程组的数值解法.科学出版社,1992:135~153
    131 E. Allgower, K. Georg. Simplicial and Continuation Methods for Approxi-mating Fixed Point and Solutions to Systems of Equation. SIAM Rev. 1980,22(1):28~85
    132 S. Osher, R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.Springer-Verlag, New York, 2003
    133 T. F. Chan, X. C. Tai. Augmented Lagrangian and Total Variation Methods forRecovering Discontinuous Coefficients from Elliptic Equations. in: M. Bris-teau, G. Etgen, W. Fitzgibbon, J. L. Lions, J. Periaux, M. F. Wheeler (Eds.),Computational Science for the 21st Century, Wiley, New York, 1997:597~607
    134 A. Leitao, O. Scherzer. On the Relation between Constraint Regularization,Level Sets, and Shape Optimization. Inverse Probl. 2003, 19:L1~L11
    135 A. Nur, C. Tosaya, D. V. Thanh. Seismic Monitoring of Thermal EnhancedOil Recovery Processes. 54th. Annual International SEG meeting. ExpandedAbstracts with Biographies. Atlanta, GA, 1984:337~340

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700