用户名: 密码: 验证码:
地球动力学若干问题的计算仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用三维有限元动力学分析方法,结合地球物理观测数据,研究了地壳介质中应力的传播特性,得出了大陆地壳对海洋潮汐的响应、仿真地震图、全球模型、断裂面对地震波的影响、动应力对断层错动的影响等研究结果。基于后两项内容,探讨了地震触发的动力学机理。在此基础上,进一步研究了由此形成的地震波与断层活动之间的正反馈关系,解释了大地震发生有一个长时间酝酿过程这一现象。通过研究,对地壳中的力学现象从应力的传播和影响角度作出物理解释。同时探讨了计算力学与地球物理观测相结合的可行性。
     本文的主要内容包括:
     (1)将三维动态有限元方法应用于地球动力学分析,研究了大尺度的地球物理对象,本文致力于深入地进行三维动力学分析与固体地球的动力学过程的联合研究,在方法上,着眼于地球物理的动力学现象,对地球物理现象作动力学机理的探讨。
     地球物理的研究对象具有大尺度特征,通常的研究,往往着眼于缩小的模型,再外推到大尺度的实际情况,外推必须非常谨慎。研究小尺度模型而外推到大尺度,涉及到相似性分析,其正确性还需要论证,比较繁琐。本文利用了动态有限元建模,直接研究大尺度的对象。在大陆地壳对海洋潮汐的响应、仿真地震图、全球模型、断裂面对地震波的影响、动应力对断层错动的影响等问题的研究中,均采用了真实尺寸地壳建模,进行仿真计算。得到了直观的结果。
     (2)利用反演思想实现了仿真地震图研究,基于传统的理论地震图的研究方法,本文提出仿真地震图方法。针对地壳的有限元模型,做了实际的仿真地震图分析,与地震观察结果进行对比研究。理论地震图是一种解析方法,而仿真地震图基于数值方法。前者采用一种解析的格林函数,代表波在地壳中的传播特性,而后者对地壳介质及其结构具有明确的定义,对波的传播过程有具体的描述。仿真地震图属于反演方法,通过假设介质和震源参数,得到理论上的仿真地震图,将实际观察到的地震图与之比较,用试错法调整介质和震源参数,最终使仿真地震图与观察到的地震图符合较好,这时的介质和震源参数就是所求出的未知量。
     (3)研究了地震触发的动力学机理:地震机理有很多模式,本文提出了一种可能的模式。这个模式指出,库伦应力的变化可能触发地震。动态应力的传播即地震波,波在自由面上反射会发生半波损失,也就是说,压缩波会变成拉伸波,因此,无论是压缩波还是拉伸波,都有可能激发应力降。而应力下降将会减小(内)摩擦,导致库伦-莫尔断裂准则中的库伦等效应力增大,从而触发岩石破裂现象。岩石的破裂会导致地震波的辐射,因此,应力的下降和岩石的破裂会相互激发,形成一个正反馈环路,最终触发大规模的岩石破裂事件,这就是大地震。本项研究从冲击载荷下的断裂现象入手,论述拉伸波的作用,考虑到围压的影响,指出拉伸波虽然可以在爆破中直接引起岩石的断裂,但是在地层深处,不能直接引起断裂事件。因此引出了内摩擦和库伦应力的影响机理。在此基础上,理解到大地震的触发,为一个不断通过内摩擦改变形成的正反馈过程,解释了大地震发生有一个漫长的地应力下降过程和局部变形过程这一实际现象,从而对已有的地震的触发机理给出了合理的补充。
The dynamic process of stress transmition in crust is studied by three dimensional dynamic FEM based on geophysical observation. The response of crust to ocean tide, simulation of seismogram, the globe model, the relation between geological structures and its influences to the crust stress are studied. Besed on the last two contents, the mechanism of earthquake triggering is studied. Furthermore, the feedback relation between the structure and the stress' evolution has been studied. The studies give an interpretation to those dynamic effects in crust. Analysis says that the joint research of computational mechanics and geophysical observation is acceptable.
     The creations in this dissertation are on four aspects.
     Firstly, we conduct a joint research combined computational mechanics and geophysical observations. This joint research is realistic because the dynamic FEM meets the request of geophysics research where many equation of movtion can not be expressed briefly. Therefore the three dimensional finite elemental dynamic analysis offers a way for simulating the mechanical waves in crust. In addition, by applying the nonlinear analysis to geophysics research, the physics in geodynamic process can be understood.
     Second, we simulate large scale geophysical objects with the full size and dynamic analysises applys to geophysical research. Usually, geophysics studies large scale object via small experimental samples. Anyhow, to extrapolate the experimental results is not always safe. In this paper, we directly study full scale model. All the research contents, include the response of crust to ocean tide, simulated seismogram, the globe model, earthquake triggering mechanism, are conducted by full scale model.
     Third, the concept of "simulating seismogram" is proposed as a successor of theoretical seismogram that is an inversive method. The new concept includes a material definition of media and a transmition process of waves. The S and P waves can not be distinguished from each other in a small experimental sample, save the real rarth's crust. By simulation of seismogram, we study the S and P wave in a model and comparing to the seismological observation. With the full scale model, the S and P waves are identified and successfully shown some information of the source. This is one of the meanings of simulation seismogram. Generally, any kind of theoretical seismogram, include simulated seismologram, is for getting information from the source or the media of waves by trial-and-error method.
     Finally, the dynamic mechanism of earthquake triggering is studied. The seismic waves are the propagations of the vibrations in crust, in which include the propagations of dynamic stresses. The compressive wave can be turned into tensile wave when it reflected on a free surface. However, the tensile or compressive wave may reduce or increase the inviromental stress in deep crust. It infuences the inner friction and, in turn, changes the Coulomb's equvlent stress. By this way, it may trigger an small rupture. As the rupture of rock will emit the seismic wave, the dynamic stress and the events of rupture form a loop of positive feedback. The positive feedback process, namely, will finally build a big event of rock rupture, that is, earthquake. The study begins with the phenomenon of rupture under an impact load. And the effect of tensile wave is researched. Taking the giant ambient stress into consideration, though the tensile stress of impact load can cause a rupture under common condition near the earth's surface, the tensile in deep crust cannot break the rock. Therefore, the mechanism of inner friction and of the coulombs' stress is proposed. Based on the train of thoughts above, we interpret the earthquake as a result of a positive feedback process when the inner friction declines and the crannies enrich and big deformation appears. This explanation matches well to the phenomenon that a big shock occurrence often accompanying a long period's normal stress decline and an obvious located deformation. By this train of thoughts, we have given a full description for earthquake triggering in dynamic mechanism.
引文
[1]W.D.Mooney.The Crust over continent.Traslation on World's Seismology,2004(1):75-83.
    [2]H.F.Reid.The elastic-rebounded theory of earthquakes.Bull Seismo Soc Amer,1910,6:413-444
    [3]A.Nur.Dilatancy Pore fluids and premonitory variations of ts/tp traval times.Bull Seism.Soc.Amer.:1972,62(5):1217-1222.
    [4]V.I.Myachkin,W.E Brace,G.A.Sobolev,et al.Two models for earthquake forerunners.Pure and Applied Geophysics.1 975,113(1-2):169-182.
    [5]郭增建,秦保燕等.震源孕育模式的初步讨论.地球物理学报,1973,16:43-48.
    [6]牛志仁.地震的前兆理论:震源孕育的膨胀-蠕动模式.地球物理学报,1978,21(3):199-212.
    [7]张海明,陈晓非.地震波研究.地震学报,2003,25(5):465-474.
    [8]郑文衡,陆明勇.地震动态触发机理的初步研究.地球物理学报,2005,48(1):116-123.
    [9]Chen Xiaofei.Seismogram synthesis in multi-layered half-space.Part Ⅰ.Theoretical formulations.Earthq Res China,1999,13(2):149-174.
    [10]Chen XiaoFei,Zhang Haiming.An efficient method for computing Green's function for a layered half-space at large epicentral distances.Bull Seismo Soc Amer,2001,89(4):858-869.
    [11]Zhang Haiming,Chen Xiaofei.Self-adaptive Filon's integration method and its application to computing synthetic seismograms.Chinese Phys Lett,2001,18(3):313-315
    [12]张海明,陈晓非,张似洪.峰谷平均法及其在计算浅源合成地震图中的应用. 地球物理学报,2001,44(6):805-813.
    [13]束沛镒,张学民,李幼铭等.利用纯S波输入研究地震台站下方的横波速度结构.地球物理学报,2002.45(1):67-75.
    [14]张坚,张海明,陈晓非.垂向非均匀介质中首波特征分析.地震学报,2002,24(6):585-594.
    [15]孙雁,刘正兴.Hamilton体系及弹性波在层状介质中的传播问题.地球物理学报,2002,45(4):569-574.
    [16]罗明秋,刘洪,李幼铭.地震波传播的哈密顿表达及辛几何算法[J].地球物理学报,2001a,44(1):120-128.
    [17]罗明秋,刘洪,李幼铭.基于螺旋线上谱因式分解的地震波场隐式辛算法.地球物理学报,2001b,44(3):379-388.
    [18]粱建文,严林,V W.Lee.圆弧形层状沉积谷地对入射平面P波的散射解析解.地震学报.2001a,23(2):167-184.
    [19]粱建文,严林,V W.Lee.圆弧形凹陷地形表面覆盖对入射平面SV波的影响.地震学报,2001b,23(6):622-636.
    [20]Chen Xiaofei.Seismic wave propagation and excitation in multi-layered media with irregular interfaces.Part(Ⅰ):SH case.Earthq Res China,1999b,13(2):175-193.
    [21]Chen Xiaofei.Love waves in multi-layered media with irregular interfaces.Ⅰ.Modal solution and formulations.Bull Seismo Soc Amer,1999c,89(6):1 519-1534.
    [22]Chen XiaoFei,Ge Zhengxi.1999.A new theory of love waves in multi-layered media with irregular interfaces.Earthq Res China,13(2):195-210
    [23]陈九辉,刘启元.横向非均匀介质远震体波接收函数的波场特征.地震学报,2000.22(6):614-621
    [24]王辉,常旭.基于图形结构的三维射线追踪方法.地球物理学报,2000,43(4):534-541.
    [25]赵爱华,张中杰,王光杰等.非均匀地震波走时与射线路径快速计算技术.地震学报,2000,22(2):151-157.
    [26]高亮,李幼铭,陈旭荣等.地震射线辛几何算法初探.地球物理学报,2000,43(3):402-410.
    [27]秦孟兆,陈景波.Maslov渐进理论与辛几何算法.地球物理学报,2000,43(4):522-533
    [28]J.F.Zhang.Quadrangle-grid velocity-stress finite difference method for poroelastic wave equations.Geophys J Int,1999,139(1):171-182.
    [29]D.H.Yang,E.Liu,Z.J.Zhang,et al.finite-difference modeling in two-dimension anisotropic media using a fluxcorrected transport technique.Geophys J Int,2002,148(2):320-328
    [30]董良国,马在田,曹景忠.一阶弹性波方程交错网格高阶差分解法稳定性研究.地球物理学报,2000a,43(6):856-864.
    [31]董良国,马在田,曹景忠等.一阶弹性波方程交错网格高阶差分解法,.地球物理学报,2000b,43(3):411-419.
    [32]孙若昧,娃啊卡利,潘乍.局部地质条件对强地面运动影响的剪切波模拟,地球物理学报,2000,43(1):81-90.
    [33]张钋,杨长春,李幼铭.三维多值走时地震波场重建及格林函数计算.地球物理学报,2000,43(2):241-250.
    [34]张文生,关泉,宋海斌.高精度混合法叠前深度偏移及其并行实现.地球物理学报,2001,44(4):542-551.
    [35]廖振鹏,周正华,张艳红.波动数值模拟中透射边界的稳定实现.地球物理学报,2002,45(4):533-545.
    [36]王真理,李幼铭.细胞自动机地震波模拟的并行化算法.地球物理学报,1999,42(3):410-415.
    [37]刘劲松,许云,乌达巴拉.用于地震波场模拟的变网格边长声格固体模型.地球物理学报,1999,42(4):536-542
    [38]罗明秋,刘洪,李幼铭.基于螺旋线上谱因式分解的地震波场隐式辛几何算法.地球物理学报,2001,44(3):379-388.
    [39]陈凌,吴如山.声子波及其在地震波资料分解中的应用.地球物理学报,2001.44(3):369-378.
    [40]王碧泉,吴大铭,边银菊.中国华北峰值加速度的衰减特性及与北美东部的比较.地震学报,1999.21(1):24-31
    [41]X.J.Shi,L.Ye,C.P.Zhao,et al.Measurement of attenuation Q value of cylindrical sample from wave energy.Earthq Res China,2000,14(1):115-121.
    [42]赵卫明,杨明芝,金延龙等.宁夏中北部区域尾波Q值特征研究.地震学报,2000,22(3):249-256.
    [43]王辉,常旭,刘伊克等.时间域相邻道地震波衰减成像研究.地球物理学报,2001,44(3):396-403.
    [44]丁伯阳,樊良本,吴建华.两相饱和介质中的集中力点源位移场解与应用.地球物理学报,1999,42(6):800-808.
    [45]刘伟霞.弹性波在离散介质中传播的贝塞尔函数解.地球物理学报,42(增刊):1999,204-208.
    [46]陈蔚天,陈晓非.水平层状海洋-地球模型中的地震面波振型解.中国科学(D 辑),2001,31(9):712-718.
    [47]张碧星,鲁来玉,鲍光淑.瑞利波勘探中“之”字形频散曲线研究.地球物理学报,2002,45(2):263-274.
    [48]朱良保,许庆,陈晓非.保角变换在区域面波群速度反演中的应用.地球物理学报,2001.44(1):64-71.
    [49]吴建平,明跃红,曾融生.遗传算法中的光滑约束反演及其在青藏高原面波研究中的应用.地震学报,2001a,23(1):45-53.
    [50]胡家富,苏有锦.用面波估计浅土层的品质因子.地震学报,1999.21(4):433-438.
    [51]胡家富,段永康,胡毅力等.利用Raylight波反演浅土层的剪切波速度结构.地球物理学报,1999,42(3):393-400.
    [52]徐果明,李光品,王善恩等.用瑞利面波资料反演中国大陆东部地壳上地幔横波速度的三维构造.地球物理学报,2000,43(3):366-376.
    [53]何正勤,张天中,叶太兰等.河北平原北部的短周期面波频散与地壳中上部速度结构.地震学报,2000,22(1):82-86.
    [54]何正勤,丁志峰,叶太兰等.中国大陆及其邻域地壳上地幔速度结构的面波层析成像研究.地震学报,2001a,23(6):596-603.
    [55]何正勤,丁志峰,叶太兰等.中国大陆及其邻域的瑞利波群速度分布图象与地壳上地幔速度结构.地震学报,2001b,24(3):252-259.
    [56]滕吉文,张中杰,胡家富等.中国东南大陆及陆缘地带的瑞利波频散与剪切波三维速度结构.地球物理学报,2001,44(5):663-676.
    [57]曹小林,朱介寿,赵连锋等.南海及邻区地壳上地幔三维S波速度结构的面波波形反演.地震学报,2001,23(2):113-124.
    [58]朱良保,许庆,陈晓非冲国大陆及邻近海域的Rayleigh波群速度分析.地球物理学报,2002,45(1):475-482.
    [59]朱介寿,曹家敏,蔡学林等.东亚及太平洋边缘海高分辨率面波层析成像.地球物理学报,2002,45(5):475-482.
    [60]彭艳菊,苏伟,郑辉等.中国大陆及海域Love波层析成像.地球物理学报,2002,45(6):792-801.
    [61]史大年,姜枚,马开义等.阿尔金断裂带地壳和上地幔结构的P波层析成像.地球物理学报,1999.42(3):341-350.
    [62]Xu Yi,Liu Futian,Liu Jianhua,et al.Seimic tomography beneath the orogenic belts and adjacent basins of north-western China.Science in China(D),2001.44(5):468-480.
    [63]刘伊克,常旭,王辉等.三维复杂地形近地表速度估算及地震层析静校正.地球物理学报,2001,44(2):272-278.
    [64]李录明,罗省贤,赵波.初至波表层模型层析反演.石油地球物理勘探,2000,35(5):559-564.
    [65]刘启元,陈九辉,李顺成等.新疆伽师强震群区三维地壳上地幔S波速度结构及其地震成因的探讨.地球物理学报,2000.43(3):356-365.
    [66]吴建平,明跃红,王椿镛.云南数字地震台站下方的S波速度结构研究.地球物理学报,2001b,44(2):228-237.
    [67]钱辉,姜枚,薛光琦等.天然地震接收函数揭示的青藏高原东部地壳结构.地震学报,2001.23(1):103-108.
    [68]杨毅,周蕙兰.用接收函数方法研究中国及邻区上地幔间断面的埋藏深度.地球物理学报,2001.44(6):783-792.
    [69]邹最红,陈晓非.利用SV分量接收函数反演地壳横波速度结构.地震学报,2003,25(1):15-23.
    [70]孟鸿鹰,刘贵忠.小波变换多尺度地震波形反演.地球物理学报,1999,42(2):241-248.
    [71]王赟,王妙月,彭苏萍.地球物理随机联合反演.地球物理学报,1999,42(增刊):141-151.
    [72]杨磊,张向君,李幼铭.地震道非线性反演的参数反馈控制及效果.地球物理学报,1999,42(5):677-684.
    [73]杨峰,聂在平.用变分玻恩迭代方法重建二维非均匀介质结构.地球物理学报,2000,43(4):550-556.
    [74]刘福田,胡戈,王怀军等.由单台远震P波偏振资料反演北京台站邻域的速度结构.中国科学(D辑),2000,30(6):642-649.
    [75]常旭,卢孟夏,刘伊克.地震层析成像反演中3种广义解的误差分析与评价.地球物理学报,1999,42(5):695-701.
    [76]陈九辉,刘启元.合成三维横向非均匀介质远震体波接受函数的Maslov方法.地球物理学报,1999,42(1):84-93.
    [77]刘洪,罗明秋,李幼铭.横向线性变速介质中的共炮检距波场延拓[J].地球物理学报,1999,42(6):809-817.
    [78]邵秀民,蓝志凌.流体饱和多孔介质波动方程的有限元解法.地球物理学报, 2000,42(3):264-278
    [79]何振,王乘,牛安福,郑文衡.地壳块体应力场动力学演变过程仿真的初步研究.地壳形变与地震,2000.20(1):1-7.
    [80]J.Von Neumann and R.D.Richtmyer.A method for the numerical calculation of hydrodynamic shocks.J.Apple.Phys.1950,21:232
    [81]E.J.Caramana,M.J.shashkov,and P.P.Whalen.Formulations of Artificial Viscosity for Multi-dimensional Sock Wave computations.Journal of Computational Physics,1998,144:70-97
    [82]J.C.Campbell and M.J.Shashkov,A Tensor Artificial Viscosity Using a Mimetic Finite Difference Algorithm.Journal of Computational Physics 2001,172:739-769.
    [83]S.H.Bae and R.T.Lahey,Jr..On the use of Nonlinear Fitering,Artificial Viscosity,and Artificial Heat Transfer for Strong Shock Computations.Journal of Computational Physics 1999,153:575-595.
    [84]陈湘鹏,王乘,郑文衡.含内边界非均匀材料三维FEM模型的时间逆转仿真研究.地壳形变与地震,2001,21(2):7-16.
    [85]郑文衡,王乘,陈湘鹏.混沌性或噪声信号引起的确定性响应.华中科技大学学报,2001,29(11):70-72.
    [86]郑文衡,王乘,陈湘鹏.地壳块体脉冲相应的时间反转效应研究.地震学报,2001,23(4):370-379.
    [87]ZHENG Wenheng,WANG Ceng and CHEN Xiangpeng.The time reversal effect of the impulse response of crust.Acta Seismologica Sinica,2001,14(4):394-403.
    [88]W.Zheng,C.Wang,Z.He and A.Niu.Response of Crust to Ocean Tide.Journal of Geodesy and Geodynamics,2002,22(2):41-46.
    [89]杨红心,王乘,张秋文,郑文衡,青藏高原隆升过程的非线性动态有限元仿真研究,大地测量与地球动力学,2002,1(2):25-30.
    [90]郑文衡,地震波的时间反转以及非线性佯谬述评,国际地震动态,2002,(6):24-25
    [91]汪素云.中国及邻区现代构造应力场的数值模拟.地球物理学报,1980,23(1):35-45
    [92]王仁.华北地区地震迁移的数学模拟.地震学报,1980,2(1),32-42.
    [93]王仁.华北地区近700年地震序列的数学模拟.中国科学,1982,B(8):745-753
    [94]殷有泉.模拟地震的应变软化的数学模型.地球物理学报,1982,25(5):414-423
    [95]殷有泉.断裂带内介质的软化特性和地震的非稳定模型.地震学报,1984,6(2):135-145
    [96]朱岳清.唐山地震过程的三维有限元分析及其在地震预报研究上的意义.地球物理学报,1988,31(4):399-409
    [97]尹京苑.地壳应力状态及其在三维有限元模拟计算中的意义.地震,1998,7(3):226-232
    [98]刘昌铨.利用华北深部地球物理资料数值模拟地壳应力场 地震学报,1998,5(3):240-249
    [99]嘉世旭,张先康.华北裂陷盆地不同块体地壳结构及演化研究.地学前缘,2001,8(2):259-266.
    [100]刘杰,石耀霖.伪三维有限元地震活动模型及其在华北地区的应用.地震,2001,21(2):13-21.
    [101]陈连旺,陆远忠.华北地区断层运动与三维构造应力场的演化.地震学报,2001,23(4):349-261.
    [102]D.P.Hill,P.A.Reasenberg,A.Michael,et al.Seismicity remotely triggered by the magnitude 7.3 Landers,Califomia,earthquake.Science,1993,260:1617-1623
    [103]D.Kilb,J.Gomberg,Bodin P.Earthquake triggering by dynamic stresses.Nature,2000,408:570-574.
    [104]J.Byerlee.Model for episodic flow of high presure water in fault zones before earthquakes.Geology,1993,21:303-306.
    [105]J.Gomberg.The failure of earthquake failure models.J.Geophys.Res.,2001b,106(B8):16253-16263
    [106]韩竹军,谢富仁,万永革.断层问相互作用与地震触发机制的研究进展.中国地震,2003,19(1):67-76
    [107]万永革,吴忠良,周公威等.地震应力触发研究.地震学报,2002,24(5):533-551.
    [108]陈兵,江在森,车时等.玛尼7.9级地震对昆仑山口西8.1级地震的触发作用及动力背景初探.中国地震,2003,19(1):1-7.
    [109]陈连旺,陆远忠.华北地区断层运动与三维构造应力场的演化.地震学报,2001.23(4):349-261.
    [110]陆明勇,牛安福,周峥嵘.强震中短期阶段断层活动时空演化特征的讨论.地震,2003,23(1):17-23.
    [111]A.Nur,H.Ron,O.Scotti,Kinematics and Mechanics of Tectonic Block Rotations.Slow defoemation and Transmission of stress in the earth(edited by steven C.Cohen and Peter Vanicek).Geophysical Monograph 49/IUGG Series,1989,(4):31-46
    [112]R.A.Harris.Introduction to special session:stress triggers,stress shadows,and implications for seismic hazard.J.Geophys.Res.,1998,103:24347-24358
    [113]J.Lysmer.Finite element modeling of stress in the Nazca plate:diving forces and plate boundary earthquakes.Tectonophysics,1987,50:223-248.
    [114]W.D.Smith.The application of finite-element analysis to body wave propagation problems.Geophys.J.Rastron.Soc.,1975,42:747-768
    [115]Di Qinyun,zhuling,Wang miaoyue.2-D finite element modeling for seismic wave response in media with sand bodies.Phys earth Planet Inter,2000,120(3):245-254.
    [116]J.F.Zhang,T.L.Liu.Elastic ware modeling in 3D heterogeneous media:3D grid method.Geophys J Int,2002,150(3):789-799
    [117]唐春安,徐小荷.岩石破裂的前兆变形率、前兆应力降及临震前兆.地壳形变与地震,1990,10(3):12-18
    [118]徐锡伟,陈文彬,于贵华等.2001年11月14日昆仑山库湖地震(MS=8.1)地表破裂带的基本特征.地震地质,2002,24(1):1-14
    [119]中国地震局监测预报司编.2001年昆仑山口西8.1级大地震.地震出版社,北京:2002。
    [120]石特临,郭大庆.地震学中非线性预测方法的初步研究.地球科学进展,1995,10(3):273-277
    [121]何世海.华北地震场和源地壳形变前兆研究.地震,1995,15(3):199-207.
    [122]J.Zhang,Inversion of surface wave spectra for source parameters of large earthquakes using aspherical earth models.Physics of the Earth and Planetary Interiors,1998,107(4):1-6
    [123]S.M.Liang,C.Y.Liao.Numerical simulation of blast-wave reflection over a wedge using a high-order scheme.2002,34(1):69-74
    [124]刘光鼎.20世纪地球科学的发展.地球物理学进展,2000年6月,15(2):12-16.
    [125]向文,李辉.重力场与构造应力场内在关系的理论研究.地壳形变与地震,1999,19(1):17-23
    [126]马宗晋,任金卫,张进.ITRF97下空间对地观测站速度矢量显示的全球构造运动.地质力学学报,2001,4(3):12-20.
    [127]张永鸿.全球扭转构造体系结构要素分析.地质力学学报,1998,4(3):1-3
    [128]张永鸿,地球圈层耦合扭转机制及其成因,地质力学学报,1999,5(2):12-16
    [129]山西省地质局,山西省地质图,1:50万北京:1975
    [130]山西省区测队,山西省构造体系图说明书,1:50万.北京:1976
    [131]地科院,中华人民共和国构造体系图,1:400万.北京:1976
    [132]马杏垣.中国岩石圈动力学地图集.地震出版社,北京:1989
    [133]地科院,地力所.中国及其毗邻海区构造体系图,1:250万.北京:1984
    [134]郑文衡,陆明勇.地震动态触发机理的初步研究.2005,48(1):116-123
    [135]周一杰,胡才博,蔡永恩.非均匀应力场下的铲状正断层带位移场和应力场特征.地质论评,2009,(4):590-597
    [136]马宗晋,杜品仁,任金卫,高祥林.低纬度环球剪切带及其与坏太平洋带大地震的幕式活动.中国科学(D辑),2006,(4):326-331
    [137]黄元敏,马胜利.关于应力触发地震机理的讨论.地震,2008,28(3):95-102
    [138]胡志奇,郑文衡,陆明勇.岩体动态应力在地震机理中的作用研究.大地测量与地球动力学,2005,25(1):108-112.
    [139]孙卫春,闵弘,王川婴.三维地应力测量及地质力学分析.岩石力学与工程学报,2008,27(A02):3778-3784.
    [140]徐耀鉴.高地应力数理模型的建立及应用.地质与资源,2008,17(3):232-234.
    [141]冯建刚,周龙泉,杨立明,代炜.青藏块体东北缘中强地震前小震频度异常研究.地震,2009,29(3):19-26.
    [142]杨立明.汶川地震临震地脉动记录特殊频率波动现象及其重现性初步研究.国际地震动态,2009,(1):14-19.
    [143]任凤楼.裂谷系主平移断层带的地震反射成像:中国渤海辽东湾郯庐断裂带的早第三纪构造和演化.海洋地质动态,2009,25(3):18-21
    [144]C.D.Reddy and S.K.Prajapati.GPS measurements of postseismic deformation due to October 8,2005 Kashmir earthquake.Journal of Seismology,2009,13(3):415-420
    [145]E.Papadimitriou,V.Karakostas,M.Tranos,B.Ranguelov and D.Gospodinov.Static stress changes associated with normal faulting earthquakes in South Balkan area.International Journal of Earth Sciences,2007,96(5 ):911-924.
    [146]L.Metivier,O.Viron,C.P.Conrad,et al.Evidence of earthquake triggering by the solid earth tides.Earth and Planetary Science Letters,2009,278(3-4):370-375.
    [147]Sachiko Tanaka,Haruo Sato,Shozo Matsumura,Masakazu Ohtake.Tidal triggering of earthquakes in the subducting Philippine Sea plate beneath the locked zone of the plate interface in the Tokai region,Japan.Tectonophysics,2006,417(1-2):69-80
    [148]G.Baer,Y.Hamiel,G.Shamir,R.Nof.Evolution of a magma-driven earthquake swarm and triggering of the nearby Oldoinyo Lengai eruption,as resolved by InSAR,ground observations and elastic modeling,East African Rift,2007.Earth and Planetary Science Letters, 2008,272(1-2): 339-352.
    [149] K. Gahalaut, V.K. Gahalaut. Stress triggering of normal aftershocks due to strike slip earthquakes in compressive regime. Journal of Asian Earth Sciences, 2008, 33(5-6):379-382
    [150] P. A. Rydelek, I.S. Sacks. Triggering and inhibition of great Japanese earthquakes: the effect of Nobi 1891 on Tonankai 1944, Nankaido 1946 and Tokai. Earth and Planetary Science Letters, 2003,206(3-4): 289-296
    [151] N. Takeuchi, R. J. Geller, P. R. Cummins. Complete synthetic seismograms for 3-D heterogeneous Earth models computed using modified DSM operators and their applicability to inversion for Earth structure. Physics of The Earth and Planetary Interiors, 2000,119(1-2): 25-36
    [152] V. G. Krishna, C. V. R. K. Rao, H. K. Gupta, D. Sarkar, M. Baumbach. Crustal seismic velocity structure in the epicentral region of the Latur earthquake (September 29, 1993), southern India: inferences from modelling of the aftershock seismograms. Tectonophysics, 1999, 304(3): 241-255
    [153] C. Chiaruttini, G. Salemi. Artificial intelligence techniques in the analysis of digital seismograms. Computers & Geosciences, 1993, 19(2): 149-156
    [154] A. R. Banghar. Synthetic P-wave seismograms for the Kinnaur (Himachal Pradesh, India) earthquake of January 19, 1975. Physics of The Earth and Planetary Interiors, 1983, 32(4): 331-341
    [155] P. Martin Mai, G. C. Beroza. A hybrid method for calculating near-source, broadband seismograms: application to strong motion prediction. Physics of The Earth and Planetary Interiors, 2003, 137(1-4): 183-199.
    [156] J. Tromp. Theory and Observations - Forward Modeling and Synthetic Seismograms: 3-D Numerical Methods. Treatise on Geophysics, 2007, (Chapter 1.06): 191-217
    [157] N. Jobert. Contribution of some particularities in the dispersion curves to numerical seismograms computed by normal modes. Journal of Computational Physics, 1978, 29(3): 404-411
    [158] A. W. H. Bunch. A detailed seismic structure of Rockall Bank (55°N, 15°W) — A synthetic seismogram analysis. Earth and Planetary Science Letters, 1979,45(2):453-463
    [159] H. Sato, M. C. Fehler. Synthesis of Seismogram Envelopes in Heterogeneous Media. Advances in Geophysics, 2007,48: 561-596
    [160] C. Larmat, J.P. Montagner, Y. Capdeville, et al. Numerical assessment of the effects of topography and crustal thickness on martian seismograms using a coupled modal solution-spectral element method. Icarus, 2008,196(1):78-89
    [161] B. G. Mikhailenko. Seismic modeling by the spectral-finite difference method. Physics of The Earth and Planetary Interiors, 2000,119(1-2): 133-147.
    [162] J. H. Leven. The application of synthetic seismograms to the interpretation of the upper mantle P-wave velocity structure in northern Australia. Physics of The Earth and Planetary Interiors, 1985, 38(1): 9-27
    [163] D. Sarkar, M. Ravi Kumar, S. J. Duda, H. K. Gupta. Spectral seismograms, magnitude spectra and source parameters of a selection of Indian plate earthquakes. Journal of Geodynamics, 2000, 30(4): 423-438
    [164] G. Strykowski. Experiences with a detailed estimation of the mass density contrasts and of the regional gravity field using geometrical information from seismograms. Physics and Chemistry of The Earth, 1998, 23(9-10): 845-856
    [165] T. Takanami, I. S. Sacks, Akira Hasegawa. Attenuation structure beneath the volcanic front in northeastern Japan from broad-band seismograms. Physics of The Earth and Planetary Interiors, 2000, 121(3-4): 339-357

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700