用户名: 密码: 验证码:
滑脱效应影响的低渗透储层煤层气运移规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用煤层气运移理论、固体力学、孔隙介质理论、渗流力学、多相渗流、有限元数值计算等理论在总结前人己有的研究结果的基础上,进行了滑脱效应影响的低渗透储层气体运移规律的研究,完成了以下研究工作:
     1.根据低渗透储层的特点,进行了合理必要的力学假设,并在此基础上,建立了滑脱效应影响的低渗透储层煤层气运移的数学模型;建立了对煤层气采出有重要影响的气水两相渗流阶段的滑脱效应影响的低渗透储层气水耦合渗流模型;建立了滑脱效应影响的低渗储层单相气体渗流数学模型。
     2.利用滑脱效应影响的低渗透储层单相气体渗流数学模型,进行了解析分析,得到了有限长煤层滑脱效应影响的气体稳定流动的采场压力分布解析式;无限大煤层滑脱效应影响的气体不稳定流动的采场压力分布解析式;滑脱效应影响的低渗透无限储层气体单向不稳定流动采场产量预测公式;滑脱效应影响的球向不稳定流动的采场压力分布解析式以及低渗透无限储层气体球向不稳定流动采场产量预测公式。
     3.利用实验手段进行了考虑滑脱效应的低渗透储层煤层气运移实验和不同水饱和度下低渗透气藏气体滑脱效应实验,得到了新的滑脱效应数学拟合式并解释了式中各系数的物理意义;得到了滑脱因子和绝对渗透率之间的变化关系;解释了水饱和度、孔隙压力、环境压力对储层有效渗透率的动态影响;证明了低渗透环境下,滑脱效应存在的孔隙压具有高阈值性。
     4.开发了滑脱效应影响的气体单相非线性渗流以及滑脱效应影响的气水两相非线性渗流的有限元模拟程序。
     5.利用山西河东煤田柳林煤层气试验区现场试井资料和生产动态数据,分析了滑脱效应影响的不同开采条件下低渗透储层采场压力变化规律、采场气体流速变化规律、采场产量预测规律和采场气水两相饱和度的变化规律。
     数值模拟结果表明:滑脱效应对采场孔隙压力分布、气体流速变化、气体预测产量以及采场水饱和度变化有着重要的影响,主要体现在滑脱效应导致了开采井周围的储层压力下降加快,使得储层和开采井之间的压差增加,有利于煤层气的长效解吸;滑脱效应导致采场气体速率高于达西渗流的气体速率;滑脱效应导致气体产量预测更加接近煤层气历史拟合值;滑脱效应导致低渗透储层的气相饱和度很快达到饱和状态,水相饱和度也会随着开采的深入迅速下降并稳定,更加有利于煤层气的采出。
     本文的主要创新之处在于,根据低渗透储层的特点,建立了滑脱效应影响的低渗透储层煤层气运移数学模型;在此数学模型基础上建立了滑脱效应影响的气水两相渗流阶段的气水耦合数学模型;建立了滑脱效应影响的低渗透储层单相气体渗流数学模型;利用理论分析手段得到了不同流动特征下的采场孔隙压力分布解析式和产量预测公式;利用实验手段得到了滑脱效应影响的低渗透储层气体运移规律;解释了水饱和度、孔隙压力、环境压力对储层有效渗透率的动态影响;证明了低渗透环境下,滑脱效应存在的孔隙压具有高阈值性;开发了滑脱效应影响的气体单相非线性渗流以及滑脱效应影响的气水两相非线性渗流的有限元模拟程序,并利用数值模拟手段对滑脱效应影响的不同开采条件下的低渗透储层采场压力变化规律、采场气体流速变化规律、采场气体产量预测规律和采场气水两相饱和度的变化规律等方面问题进行了较为系统的研究。
In summarize the predecessor some findings foundation, this thesis used theory of migration of coal-bed methane, solid mechanics, pore media theory, seepage mechanics, poly-phase seepage and finite element numerical simulation and so on, studied the rule of gas migration in hypotonic reservoir considering slippage effects, completed the following research work:
     1. According to the hypotonic reservoir characteristic, carried on the reasonable essential mechanics supposition, and based on this, established the mathematical model of coal-bed methane migration in hypotonic reservoir considering slippage effects, established the mathematical model considering coupling of gas and water and gas slippage effects that the material effect gas water two seepage stage in hypotonic reservoir, through simplification established the single-phase gas seepage mathematical model influence by slippage effects in hypotonic reservoir.
     2. Used the single-phase gas seepage mathematical model influence by slippage effects carried on the theory analysis, obtained the steady-flow pore pressure distribution analysis formula in the finite coal bed; gamma infinity hypotonic coal bed non-steady flow pore pressure distribution analysis formula influence by slippage effects; gas output prediction formula in gamma infinity hypotonic coal bed considered by gas slippage effects; spheric non-steady flow pore pressure distribution analysis formula with the slippage effects as well as the spheric non-steady flow gas output prediction formula in gamma infinity hypotonic reservoir.
     3. Used the experiment method carried on the experiment that gas migration in hypotonic reservoir considered gas slippage effects and the gas slippage effects experiment in hypotonic reservoir with different water degree of saturation, obtained the new gas slippage effects fitting formula and explained various coefficients physics significance in the formula; obtained the relation between the slippage factor and the absolute permeability; explained the water degree of saturation, the pore pressure and the environment pressure dynamic effected to the reservoir effective permeability; proved under the low permeability environment, the pore pressure of gas slippage effects existence had the high threshold value.
     4. Developed the single-phase gas nonlinear seepage and the gas-water two phase gas nonlinear seepage finite element simulators influence by gas slippage effects.
     5. Used the field engineering wells data and delivery dynamic data of liulin coal-bed methane experiment block in shanxi hedong coal field, analyzed the variation rule of pore pressure in hypotonic reservoir considering the slippage effects and different mining condition, the variation rule of gas current velocity, the prediction rule of gas output and the change rule of gas-water two degrees of saturation.
     The result of numerical simulation indicated: gas slippage effects had the significant contribution to distribution of pore pressure, changing of gas current velocity, gas prediction output and changing of gas-water degree of saturation, mainly manifested in the gas slippage effects caused the pore pressure drop accelerate around of the mining wells, increased differential pressure between the hypotonic reservoir and the mining wells that is advantageous the coal-bed methane persistent desorption; slippage effects caused the gas speed to be higher than daxi seepage gas speed; it caused the prediction gas output more closer to the coal-bed methane historical fitting value; it also caused the gas phase degree of saturation of low seepage reservoir to achieve the saturated condition very quickly, and the water phase degree of saturation also rapid drop and stable along with the mining thorough, it was more advantageous to coal-bed methane recovery.
     The main innovation of this thesis lied, according to the hypotonic reservoir characteristic, established the mathematical model of coal-bed methane migration in hypotonic reservoir considering slippage effects; and based on this, established the mathematical model considering coupling of gas and water and gas slippage effects that the material effect gas water two seepage stage in hypotonic reservoir, established the single-phase gas seepage mathematical model influence by slippage effects in hypotonic reservoir; used the theoretical analysis method obtained pore pressure distribution analysis formula and the gas output prediction formula under the different flowing characteristic; used the experiment method obtained the coal-bed methane migration rule in hypotonic reservoir considered the slippage effects; explained the water degree of saturation, the pore pressure, the environment pressure to the reservoir effective permeability dynamic effect; explained the water degree of saturation, the pore pressure and the environment pressure dynamic effected to the reservoir effective permeability; proved under the low permeability environment, the pore pressure of gas slippage effects existence had the high threshold value; developed the single-phase gas nonlinear seepage and the gas-water two phase gas nonlinear seepage finite element simulators influence by gas slippage effects and used the numerical simulation method to systematic research these questions such as the pore pressure changing rule in hypotonic reservoir different mining condition, the gas variation current velocity rule, the gas prediction output rule and the gas-water two degrees of saturation change rule considering the slippage effects and so on.
引文
[1]孙茂远,黄盛初,朱超.世界煤层气开发利用现状[J].中国煤炭,1996,(4)
    [2]李在民.世界煤层气开发现状[J].煤层气工业,1994,14(1):79-80.
    [3]傅雪海.沁水盆地中—南部水文地质控气特征[J].中国煤田地质,2001,3(1):31-34.
    [4]傅雪海,秦勇,杨永国等.甲烷在煤层水中溶解度的实验研究[J].天然气地球科学,2004,15(4):345-348.
    [5]张建博,王红岩.沁水煤层气有利区预测[M].徐州:中国矿业大学出版社, 1999.5-89.
    [6]王生维,陈钟惠,段连秀等.我国中新生代聚煤盆地煤层气地质特征与勘探前景[J].天然气地球科学,2004,15(4):337-340.
    [7]周世宁.瓦斯在煤层中的流动机理[J].煤炭学报, 1990, 15 (1): 15-24.
    [8]赵阳升,杨栋,胡耀青等.低渗透煤储层煤层气开采有效技术途径的研究[J].煤炭学报,2001,26(5):455-458.
    [9] Klinkenberg L J. The permeability of porous media to liquid sand gases[J]. API Drilling and Production Practice, 1941:200-213.
    [10] Turgay Eetekin. Dynamic gassippage-auniquepual-mechanism approach to the flow gas slippageeintight formation[C], SPE12045.
    [11] Li, K. and Horne, R.N. An Experimental and Theoretical Study of Steam-Water Capillary Pressure[J]. SPEREE (December 2001):477-482.
    [12] Sampath, K. and Keighin, C. W. Factors affecting gas slippage in tight sandstones of cretaceous age in the uinta basin[J]. J. Petrol. Technol.1982,34(11):2715–2720.
    [13] F. O. Jones and W. W. Owens. A Laboratory Study of Low-Permeability Gas Sands[J]. J. Pet.Technol.1980,Sept.(16):31-40.
    [14] Joel D.Walls, Amos Nur. Pore pressure and confining pressure dependence of permeability in sandstone[J].7th. formation evaluation symposium of the Canadian Well Logging Society in Calgary,1979,10:21-24.
    [15] Tye, R.S.: Stratigraphy and Depositional Systems of the Lower Cretaceous of the Travis Peak Formation East Texas Basin[J]. topical report,GRI Chicago.IL(1980)80.
    [16] N.R.Warpinski, L.W.Teufel. influence of geologic discontinuities on hydraulic fracture propagation[J].SPE13224,1987,44(2):209-220.
    [17]黄建章,冯建明,陈心胜.获得克氏渗透率常规方法的简化[J].石油勘探与开发,1994,21(4):54-58.
    [18]任晓娟,闫庆来,何秋轩,张敏渝.低渗气层气体的渗流特征实验研究[J].西安石油学院学报,1997,12(3):22-25.
    [19]张琰,崔迎春.砂砾性低渗气层水锁效应及减轻方法的试验研究[J].地质与勘探,2000,36(1):92-95.
    [20]高旺来.安塞油田低渗透储层岩石物性特征实验研究[J].特种油气藏,1998,5(4):51-55.
    [21]李铁军,吴小庆.一个低渗透气藏数学模型数值求解法[J].西南石油学院学报,1999,21(1):25-29.
    [22]陈代询,王章瑞.致密介质中低速渗流气体的非达西现象[J].重庆大学学报,2000,23(增):25-27.
    [23]何伟钢,唐书恒,谢晓东.地应力对煤层渗透性的影响[J].辽宁工程技术大学学报,2000,19(4):353-355.
    [24]吴凡,孙黎娟,乔国安,赵晓林,陈冬玲.气体渗流特征及启动压力规律的研究[J].天然气工业,2001,21(1):82-84.
    [25]张新红,秦积舜.低渗岩心物性参数与应力关系的试验研究[J].石油大学学报,2001,25(4):56-60.
    [26]傅学海,李大华,秦勇等.煤基质收缩对渗透率影响的实验研究[J].中国矿业大学学报,2002,31(2):129-131.
    [27]李宁,周克明,张清秀等.束缚水饱和度实验研究[J].天然气工业,2002,22(增):110-113.
    [28]李宁,唐显贵,张清秀等.低渗透气藏中气体低速非达西渗流实验研究[J].天然气勘探与开发,2003,26(2):49-55.
    [29]杨满平,王正茂,李治平.影响变形介质气藏储层渗透率变化的主要因素[J].天然气地球科学,2003,14(5):386-388.
    [30]刘建军,刘先贵,胡雅衽.低渗透岩石非线性渗流规律研究[J].岩石力学与工程学报, 2003(4):556-561.
    [31]周克明,李宁,袁小玲.残余水状态下低渗储层气体低速渗流机理[J].天然气工业,2003,23(6):103-105.
    [32]智天翼,陈家军,王恩志.低渗非达西多相渗流的数值模拟分析[J].安全与环境学报,2004,4(5):81-83.
    [33]姚约东,李相方,葛家理,宁正福.低渗气层中气体渗流克林贝尔效应的实验研究[J].天然气工业,2004,24(11):100-102.
    [34]吴英,宁正福,姚约东.低渗气藏非达西渗流实验及影响因素分析[J].西南石油学院学报,2004,26(6):35-38.
    [35]吴英,程林松,宁正福.低渗气藏克林肯贝尔常数和非达西系数确定新方法[J].天然气工业,2005,25(5):78-80.
    [36]宋付权,刘慈群,吴柏志.启动压力梯度的不稳定快速测量[J].2001,22(3):67-70.
    [37]刘长印,王和琴,孙良田等.低速非达西渗流理论方法在DST试井中的应用[J].天然气工业,2005,25(5):88-90.
    [38]胡其华,周昌斌.低渗透非达西渗流动边界模型解存在唯一性[J].西南石油大学学报,2007,29(5):370-374.
    [39]魏丽影.多相流数值试井理论研究[D].大庆石油学院, 2004.
    [40]王延峰.大庆扶杨低渗透油层渗流机理研究与应用[D].大庆石油学院, 2004.
    [41]伊晓东.不渗透边界多层油藏灌注试井模型精确解及其计算[J].大庆高等专科学校学报, 1995,15(04):76-82.
    [42]陈仁华,邓先法,林登元.双重孔隙介质现代试井的数学模型[J].大庆石油学院学报, 1989,13(1):146-152.
    [43]王章瑞,高家碧,陈代珣.气体滑脱因子快速实验测定的理论及方法[J].天然气工业,2007,27(8):97-99.
    [44]王勇杰,王昌杰,低渗透多孔介质中气体滑脱行为研究.石油学报,1995,16(3):101-105.
    [45]吴小庆.研究低渗透气藏滑脱效应的非线性偏微分方程反问题[J].重庆邮电学院学报,1999,11(4):34-40.
    [46]李铁军,李允.低渗透储层气体渗流数学模型及计算方法研究*[J].天然气工业,2000,20(5):70-72.
    [47]陈代珣.渗流气体滑脱现象与渗透率变化的关系[J].力学学报,2002,34(1):96-100.
    [48]陈代询,王章瑞,高家碧.气体滑脱现象的综合特征参数研究.天然气工业,2003,23(4):65-67.
    [49]王茜,张烈辉,钱治家等.考虑科林贝尔效应的低渗、特低渗气藏数学模型[J].天然气工业,2003,23(6):100-103.
    [50]刘曰武,张大为,陈慧新等.多井条件下煤层气不定常渗流问题的数值研究[J].岩石力学与工程学报,2005,24(10):1679-1686.
    [51]苗顺德,吴英.考虑气体滑脱效应的低渗透气藏非达西渗流数学模型[J].天然气勘探与开发,2007,30(3):45-48.
    [52]朱维耀,宋洪庆,何东博等.含水低渗气藏低速非达西渗流数学模型及产能方程研究[J].天然气地球科学,2008,19(5):685-689.
    [53]杨凯,郭肖,廖敬等.低渗透气藏流固耦合综合数学模型[J].特种油气藏,2008,15(3):76-79.
    [54]张烈辉,梁斌,刘启国等.考虑滑脱效应的低渗低压气藏的气井产能方程[J].天然气工业,2009,29(1):76-78.
    [1]张群.煤层气储层数值模拟模型及应用的研究[D].煤炭科学研究总院博士学位论文,2003.
    [2]郑启明,崔洪庆.煤层气储层模型的建立及其应用[J].辽宁工程技术大学学报,2007,26(增2):140-142.
    [3]肖晓春,潘一山.考虑滑脱效应的水气耦合煤层气渗流数值模拟[J].煤炭学报,2006,31(6):711-715.
    [4]韩大匡,陈钦雷等编著.油藏数值模拟基础[M].北京:石油工业出版社,1993.
    [5]陈月明主编.油藏数值模拟技术[M].北京:石油大学出版社,1989.
    [6] Yu-Shu Wu, Karsten Pruess, Peter Persoff. Gas Flow in Porous Media with Klinkenberg Effects. Transport in Porous Media[J].1998,32:117-137.
    [7] Ahlers, C. F., Finsterle, S., Wu, Y. S. and Bodvarsson, G. S. Determination of pneumatic permeability of a multi-layered system by inversion of pneumatic pressure data[J].Proc.of the 1995 AGU Fall Meeting,San Francisco,California.
    [8] Al-Hussainy, R. J. Ramey, and Crawford, P. B. The flow of real gases through porous media[J].Petrol. Technol. pp.1966, 624-636.
    [9] Baehr, A. L. and Joss, C. J. An updated model of induced airflow in the unsaturated zone, Water Resour[J].Res.1995, 27(10):417-421.
    [10] Baehr, A. L. and Hult, M. F. Evaluation of unsaturated zone air permeability through pneumatic tests[J].Water Resour. Res.1991, 27(10):2605-2617.
    [11]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].1999,北京:煤炭工业出版社.
    [12]煤矿瓦斯动力灾害防治理论及控制技术[M].2007,北京:科学出版社.
    [13]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1):34-42.
    [14]赵阳升,胡耀青,赵宝虎等.块裂介质岩体变形与气体渗流的耦合数学模型及其应用[J].煤炭学报,2003,28(1):41-45.
    [15]周世宁,鲜学福,朱旺喜.煤矿瓦斯灾害防治理论战略研讨[M].2001,徐州:中国矿业大学出版社.
    [16]王维纲.高等岩石力学理论[M].1996,北京:冶金工业出版社.
    [17]赵国景,步道远.煤与瓦斯突出的固-流两相介质力学理论及数值分析[J].工程力学,1995,12(2):1-7.
    [18]梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报,1996,15(2):135-142.
    [19]章梦涛,徐曾和,潘一山.冲击地压与突出的统一失稳理论[J].煤炭学报,1991,16(4):48-53.
    [20]李高翔.求解拉普拉斯逆变换的一般方法及其应用[J].高等函授学报(自然科学版),2006,20(3):26-28.
    [1]夏德宏,张世强.煤层气的运移机理及其强化抽采[J].工业加热,2008,37(2):15-18.
    [2]杨清岭,杨鹏.煤层瓦斯流动理论研究[J].煤炭技术,2007,26(2):67-69.
    [3]聂百胜,何学秋,王恩元.瓦斯气体在煤孔隙中的扩散模式[J].矿业安全与环保,2000,(5):14-16.
    [4]王宏图,杜云贵,鲜学福等.地球物理场中的煤层瓦斯渗流方程[J].岩石力学与工程学报,2002,(5):644-646.
    [5]宋艳波.低渗气藏岩石变形渗流机理及应用研究[D].中国地质大学(北京),2005.
    [6]章梦涛等.煤岩流体力学[M].北京:科学出版社, 1995.
    [7]贝尔J.多孔介质流体力学[M].北京:中国建筑工业出版社,1983.
    [8]司胜利.煤层气解吸扩散运移动力学[J].云南地质,2004,23(4):465-470.
    [9]吴世跃,郭勇义.煤层气运移特征的研究[J].煤炭学报,1999,24(1):65-68.
    [10]杨其銮,王佑安.煤层瓦斯扩散理论及其应用[J].煤炭学报, 1986, 11 (3): 87-93.
    [11]吴世跃.煤层瓦斯扩散渗流规律的初步探讨[J].山西矿业学院学报, 1994, (3): 259-263.
    [12]周世宁.瓦斯在煤层中的流动机理[J].煤炭学报, 1990, 15 (1): 15-24.
    [13]欧成华,李士伦,杜建芬等.煤层气吸附机理研究的发展与展望[J].西南石油学院学报,2003,25(5):34-37.
    [14]葛家理.油气藏渗流力学[M].北京:石油工业出版社,1982.
    [15]吴佩芳等.煤层气开发的理论与实践[M].北京:地质出版社,2000.5.
    [16] Gray I.Reservoir engineering in coal seams:partI-The physical pro-cess ofgas storage andmovement in coal seams[A].SPEReservoir En-gineering[C].Feb.,1987:28-34.
    [17] Zuber M D,Sawyer W K, et al.The Use of simulation and history matching to determine critical coalbed methane reservoir properties[A].SPE 16420 presented at the SPE/DOE Low Permeability Reservoirs Symposium[C].held in Denver, Colorado, 1987, May 18-19.
    [18] Reid G W, Towler B F, et al.Simulation and economics of coalbed methane production in the power river basin [A].SPE 24360 Presented at the SPE Rocky Mountain Regional Meeting[C].held in Casper, Wyoming, 1992,May 18-21.
    [19]聂百胜,张力,马文芳.煤层甲烷在煤孔隙中扩散的微观机理[J].煤田地质与勘探,2000,28(6):20-22.
    [20]苏现波,陈江峰,孙俊民等.煤层气地质学与勘探开发[M].北京:石油工业出版社,2001.
    [21]张力,何学秋,聂百胜.煤吸附瓦斯过程的研究[J].矿业安全与环保,2000,27(6):1-4.
    [22]冯增朝.低渗透煤层瓦斯抽放理论与应用研究[D].太原理工大学博士学位论文,2005.
    [23]唐巨鹏.煤层气赋存运移的核磁共振成像理论和实验研究[D].辽宁工程技术大学博士学位论文,2006.
    [24]孙可明.低渗透煤层气开采理论及其应用[D].辽宁工程技术大学博士学位论文,2004.
    [25]梁冰,孙可明.低渗透煤层气开采理论及其应用[M].科学出版社,2006.4.
    [26]李前贵,康毅力,罗平亚.煤层甲烷解吸—扩散—渗流过程的影响因素分析[J].煤田地质与勘探,2003,31(4):26-29.
    [27]聂百胜,张力,马文芳.煤层甲烷在煤孔隙中扩散的微观机理[J].煤田地质与勘探,2000,28(6):20-22.
    [28] S.Harpalani. Gas flow through stressed coal. University of Califomia Berkeley[D].Ph.D.thesis,1985
    [29]孙欣,王国文.抚顺、铁法和晋城矿区煤层气开发利用[J].中国煤炭,2003,29(9):50-52.
    [30]赵明鹏,路爱平,周立岱,曹立刚.阜新煤田煤层气开发选区研究*[J].煤田地质与勘探,2000,28(1):28-31.
    [31]王秀茹,王勇.辽宁煤层气资源赋存特征及开发利用[J].天然气工业,2007,27(5):142-144.
    [32]安震.刘家勘探区煤储层特征及煤层气开发条件研究[J].中国矿业大学学报,2003,32(2):183-185.
    [1]杨胜来,郎兆新,张丽华.煤层气开发的强化采气技术初探[J].中国煤层气,1998,(1):42-43.
    [2]孙平,王一兵.沁南煤层气藏高渗区预测[J].天然气工业,2008,28(3):33-35.
    [3]秦勇,曾勇主编译.煤层甲烷储层评价及生产技术[M].徐州:中国矿业大学出版社,1996.
    [4] Scott A R,Kaiser W R,Ayers W B.Thermogenic and secondary biogenic gas, San Juan Basin, Colorado and New Mexico:Implications for coalbed gas producibility[J].AAPG Bull,1994(8):1196-1209.
    [5]冯三利,胡爱梅.美国低煤阶煤煤层气资源勘探开发新进展[J].天然气工业,2003,23(2):124-126.
    [6]霍永忠.煤储层的气体解吸特性研究*[J].天然气工业,2004,24(5):24-26.
    [7] Ayer W B. Coal bed gas systems, resources, and production and a review of contrasting cases from the San Juan and Powder River basins[J]. AAPG, 2002, 86(11):1853-1890.
    [8] Ayer W B. Knowledge of methane potrntial for coal bed resources grow, but needs more study[J]. Oil & Gas Journal, week of Oct 9, 1989:9-12.
    [9] Harpalani S, Schraufnagel R A. Shrinkage of coal matrix with release of gas and its impact on permeability of coal[J]. Fuel, 1991, 69(5):551-556.
    [10]苏喜立,唐书恒,羡法.煤层气的赋存运移机理及产出特征[J].河北建筑科技学院学报,1999,16(3):67-71.
    [11]杨秀春,接铭训,王国强.潘河煤层气试验区产能影响因素分析[J].天然气工业, 2008,28(3):99-101.
    [12]张冬丽,王新海.煤层气降压开采机理研究[J].江汉石油学院学报,2004,26(3):124-126.
    [13]万玉金,曹雯林.煤层气单井产量影响因素分析[J].天然气工业,2005,25(1):24-26.
    [14]延吉生,葛家理.现代油藏渗流力学的新发展[J].西南石油学院学报,2003,25(1):29-32.
    [15]宋岩,秦胜飞,赵孟军.中国煤层气成藏的两大关键地质因素[J].天然气地球科学,2007,18(4):545-553.
    [16] Joehen V A, Young G B C, Conway M W et al. Coal bed methane open-hole cavity completion work shop[J]. GRI, Radisson Hotel, Denver, Colorado, April25, 1993.
    [17] Saulsberry J L, Schraufnagel R A. Sensitivity of permeability and other reservoir properties on coal bed methane gas recovery[J]. Proceedings of the1993 international coal bed methane symposium, 1993, May 17-21.
    [18]秦勇,宋全友,傅雪海.煤层气与常规油气共采可行性探讨——深部煤储层平衡水条件下的吸附效应[J].天然气地球科学,2005,18(4):492-498.
    [19]卢福长,武晓玲,唐文忠.扩散作用对煤层气可采性的形响[J].断块油气田,2000,7(3):17-18.
    [20]赵建忠,韩素平,石定贤,郭相平.利用水合物技术有效处理煤层气的途径[A];2005中国可持续发展论坛——中国可持续发展研究会2005年学术年会论文集(下册)[C]; 2005.
    [21]宋文宁,杜秀芳,马献斌.煤层气开采中的几项关键技术[J].中国煤层气,1998,(1): 45-47.
    [22]柳孟文,李能根,赵文光,王海华.煤层气综合评价技术初探[J].测井技术,1999,23(2): 19-22.
    [23]徐龙君.煤层气赋存状态及提高煤层气采收率的研究.[J].中国煤层气.2005,21(3):16-18.
    [24]樊世忠.钻井液完井液及保护油气层技术[M].北京:石油大学出版社,1996. 524-530.
    [25]俞启香,程远平,将承林.高瓦斯特厚煤层煤与卸压瓦斯共采原理及实践[M].徐州:中国矿业大学出版,2005.
    [26]程远平,俞启香,袁亮.上覆远程卸压岩体移动特性与瓦斯抽采技术[J].辽宁工程技术大学学报,2003,22(4):483-486.
    [27]段三明,煤层瓦斯扩散渗流规律的研究:[D].太原:太原理工大学,1998.
    [28]孔祥义,董礼.岩土测试技术[M].吉林:吉林教育出版社,2003,5.
    [29] Rose W D. Permeability and gas-slippage phenomenal [J]. API Drilling and Production Practice, 1949: 209-217.
    [30] Estes R K. Fulton P F. Gas slippage and permeability measurements [J]. Trans. AIME, 1956, 207: 338-342.
    [31] Kewen li. Home R N. Gas slippage in two-phase flow and the effect of temperature [J]. SPE 68778, 2001.
    [1]张义,鲜保安,赵庆波等.超短半径径向水平井新技术及其在煤层气开采中的应用[J].中国煤层气,2008,5(3):20-24.
    [2]侯玉品,张永利,章梦涛.超短半径水平井开采煤层气的探讨[J].河南理工大学报, 2005, 24 (1):46-49.
    [3]杨新乐,张永利,章梦涛.超短半径水平钻井技术在煤层气开采中的应用[J].煤炭工程, 2006 (8):25-26.
    [4]刘玉洲,陆庭侃,柳晓莉.煤层气井超短半径自进式水平钻井技术研究[J].天然气工业, 2006, 26(2): 69-72.
    [5]张芳,朱合华,李成全.煤岩钻孔水射流自旋转喷头限速研究[J].辽宁工程技术大学学报, 2005, 24(2): 205-207.
    [6]张义,周卫东.煤层水力自旋转钻扩孔射流钻头研究[C].中国石油大学(华东)优秀毕业论文集.东营:石油大学出版社, 2005.
    [7]孙平,刘洪林,巢海燕等.低煤阶煤层气勘探思路[J].天然气工业,2008,28(3):19-22.
    [8]杨永印,杨海滨,王瑞和等.超短半径辐射分支水平钻井技术在韦5井的应用[J].石油钻采工艺,2006,28(2):11-14.
    [9]朱峰,刘东方.径向水平井转向器技术的新发展[J].石油机械,2005,33(2):48-49.
    [10]王广新,曹海鹏.无线随钻测井系统介绍及其应用[J].石油仪器,2008,22(1):1-4.
    [11]秦跃平,姚有利,刘长久.铁法矿区地面钻孔抽放采空区瓦斯技术及应用[J].辽宁工程技术大学学报,2008,27(1):5-8.
    [12]何龙.川东北地区优快钻井配套技术[J].钻采工艺,2008,31(4):32-35.
    [13]李文忠,郭勤.陕北浅层油田定向钻井技术配套的实践[J].西部探矿工程,2004,16(7):64-65.
    [14]吴世跃,张美红,郭勇义.单井间歇注气开采煤层气生产过程分析[J].太原理工大学学报,2008.39(2):148-150.
    [15] Yukuo Katayama. Study of coalbed methane in Japan[C].Proceeding of United Nations International Conference on Coalbed Methane Development and Utilization.Beijing:Coal Industry Press,1995,238-243.
    [16]吴世跃,郭勇义.注气开采煤层气增产机制的研究[J].煤炭学报,2001,21(2):199-203.
    [17]唐书恒,杨起,汤达祯等.注气提高煤层甲烷采收率机理及实验研究[J].石油实验地质,2002,24(6):545-548.
    [18] Clarkson C R, Bustin R M. Binary gas adsorption/desorption isotherms: effect of moisture and coalcomposition upon carbon dioxide selectivity over methane[J]. International Journal of Coal Geology, 2000, 42(4):241-272.
    [19] Yukuo Katayama.Study of coalbed methane in Japan[A].Proceedings of United Nations International Conference on Coal-bed Methane Development and Utilization[C]. Beijing: Coal Industry Press, 1995, 238-243.
    [20]江山,王新海,张晓红等.定向羽状分支水平井开发煤层气现状及发展趋势[J].钻采工艺,2004,27(2):4-6.
    [21]鲜保安,高德利,李安启.煤层气定向羽状水平井开采机理与应用分析[J].天然气工业,2005,25(1):114-116.
    [22]程林松等.气藏分支水平井产能的计算方法[J].石油学报,1998,19(4): 69-72.
    [23]李文阳等.中国煤层气勘探与开发[M].江苏徐州:中国矿业大学出版社, 2003: 331-332.
    [24]苏复义,蔡云飞.数值模拟技术在柳林煤层气试验区的应用[J].天然气工业,2004,24(5):95-99.
    [25]张亚蒲.煤层气羽状水平井数值模拟技术在大宁煤层气试验区的应用[J].中国煤层气,2005,2(3):38-41.
    [26]郑爱玲,王新海,刘德华.注气驱替煤层气数值模拟研究[J].石油钻采技术,2006,31(2):55-57.
    [27]张亚蒲,张冬丽,杨正明等.煤层气定向羽状水平井数值模拟技术应用[J].天然气工业,2006,26(12):115-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700