用户名: 密码: 验证码:
江苏及邻区地壳上地幔结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
江苏及邻区在大地构造位置上跨越中朝断块区、扬子断块区和昆祁秦断褶系三大一级构造单元。研究区内有切割岩石圈级的深大断裂郯庐断裂,有大别-苏鲁超高压变质带,地质构造非常复杂。
     本文首先回顾了研究区的地质构造背景,分析了研究区已有的深部结构研究成果,然后采用多种方法系统研究了江苏及邻区的深部结构。
     本文具有以下几个创新点:
     1、有效地将双差法和遗传法两种定位方法相结合,第一次对研究区丰富的地震进行重新精确定位,克服了一种方法在精确定位研究上的局限性。通过对大量的精确定位地震的结果分析,获得了研究区地震发生的主要层位、不同大地构造震源深度差异和断裂位置的新认识。
     2、利用重新精确定位后的地震资料,用走时反演方法获得了研究区较细的地壳速度结构三维成像结果,填补了江苏以东南黄海海域缺乏深部结构研究的空白。
     3、采用远震体波接收函数方法,研究了江苏及邻区不同构造部位台站下方的深部结构,第一次获得了研究区不同构造块体的岩石圈厚度,为该区地球动力学模型的研究提供了一定的证据。
     4、通过对三个二级构造单元的各层速度分布、加权RMS速度、莫霍面深度、震源深度以及岩石圈埋深等深部结构进行分析,研究了江苏及邻区大地构造区域的深部结构特征差异。
     本文研究表明:
     1.地震定位的精度得到了很大改善,地震在空间上更加集中分布在某些区域,地震震源深度分布结果更加合理。
     2.下扬子块体江苏段和研究区中的华北块体两个构造单元地震震源深度特点相似,在10~11km、15~17km深处存在二个明显的地震优势分布,推测分别在上地壳底面和中地壳;大别山地区地震的震源深度与下扬子块体和华北块体的地震震源深度存在明显的差异,主要差异为大别山地区lOkm以上的浅源地震十分发育,在6~7km的深处有一地震优势分布,该深度附近可能地震波速度较高。而在10km以下差异不大。
     3.获得了研究区间距为40×40公里较精细的地壳速度结构三维成像结果,反演结果与精度较高的HQ-13剖面和高淳—南京人工地震剖面做对比分析,结果基本一致,表明我们给出地壳速度结构成像结果精确度较高。
     4.研究区莫霍面埋深东西差别较大,总体呈现东浅西深,北浅南深。不同的构造单元莫霍面深度有明显的不同。大别山地区莫霍面明显深于周围地区,而华北块体的莫霍面深度总体来看比扬子块体的莫霍面深度浅些。苏鲁断块莫霍面深度和周边地区有所不同,有明显的上隆,深度在32公里左右。
     5.大地震的发生地点与P波速度异常区有明显的关系,大地震往往不是发生在速度高值区,也不是发生速度低值区,而是发生在速度高值区和低值区的交界部位。地震发生的强度与高速区和低速区的速度梯度大小没有明显的关系。
     6.远震体波接收函数反演研究结果显示,华北块体和扬子块体的台站下方岩石圈厚度差别不大,约在90多公里,扬子块体岩石圈厚度略大于华北块体;位于郯庐断裂带内部的宿迁台下方岩石圈厚度最薄,为76公罩左右,表明该地岩石圈存在较为明显的上隆现象;大别山地区的合肥下方岩石圈厚度最深,为128公里左右。
     7、本研究区各构造块体的深部结构差异较明显,大别造山带地壳最厚,震源深度较浅,各层速度和RMS速度最高,岩石圈厚度埋深较深:中朝断块区地壳厚度相对较浅,震源深度较深,各层速度和RMS速度相对居中,岩石圈埋深略浅于扬子块体;下扬子地块地壳厚度比中朝断块区厚,但比大别造山带浅,震源深度与中朝断块区相近,各层速度和RMS速度最低,岩石圈厚度与中朝断块区内的厚度差异不明显,略深于中朝断块。
Jiangsu and its adjacent area is located in the intersection of three main blocks: Sino-Korea Block, Yangtze Block, and Qin-Qi-Kun Fold Zone. There are Tanlu Fault extending to Lithosphere, Ultra High-Pressure Metamorphic (UHPM) Belt in Dabie-Su-Lu Orogenic Zone in the reseach area that shows complicated tectonic features.
     In the paper, the geological background and existing deep structure results are introduced, and the new results about deep structure in the research area are systematically obtained by multi-methods. The innovations in the paper are:
     1. The earthquakes in research area with both the Hypo-DD and GA methods were relocated. Thus, the limit of using one method can be refrained. By analyzing relocated seismic events, some new results are available, such as focal depths ,the depth differences in different tectonic elements, and the position of interested faults.
     2. The 3D image results of crustal velocity structure is obtained by traveltime inversion using relocated seismic events, which improves the deep structure research in Jiangsu and southern Yellow Sea.
     3. On the basis of teleseismic Body-wave Receiver-Function method, deep structures below stations in different tectonic parts are studied. The depth of lithosphere in the research area is available for the first time, which is useful for geo-dynamic research.
     4. The differences in deep structure of three sub-blocks in research area are analyzed with several parameters, such as respectively interval velocity, weighted RMS velocity, Moho depths, focal depths, and the depths of lithosphere.
     The main results in the paper are:
     1. The accuracy of seismic locations is greatly improved by relocating calculation, the seismic events are more focused on some certain areas, and the focal depths are more reasonable.
     2. The focal depths are similar in Lower Yangtze Block (Jiangsu part) and North China Basin. The events are mainly located in the depths of 10~11km, 15~17km, corresponding to the bottom of upper crust and middle crust respectively. The focal depths in Dabie Orogenic Belt are quite different from another two blocks. The shallow earthquakes (less than 10km) are quite predominate in Dabie Orogenic Belt, especially in the depths of 6~7km, possibly relating to high-velocity area, but the difference is not obvious deeper than 10km.
     3. The 3D crustal velocity image is obtained in 40×40km. The inversion results are consistent with HQ-13 and Gaochun—Nanjing DSS profiles, which means that the accuracy in the paper is quite good.
     4. The Moho depths are different from the east to the west, and the Moho depths are shallower in eastern and northern research area, deeper in western and southern research area. The Moho depths are quite different in different tectonic element. The Moho depths in Dabie Orogenic Belt are deeper in surrounding area, while the Moho depths in North China Basin are shallower in Lower Yangtze Block. Sulu sub-block shows obvious differences in Moho depths (about 32km), which is uplifted.
     5. The position of great earthquake is related to the P velocity abnormality. Great earthquake usually occurred in the transition area of higher and lower velocity, but not in higher or lower velocity. The magnitude of seismic event is not quite related to velocity gradient slope.
     6. On the basis of teleseismic Body-wave Receiver Function, it is shown that the thickness of lithosphere (about 90 km) in North China Basin is a little less than it is in Lower Yangtze Block. The thinnest lithosphere (about 76km) in the research area is below Suqian station, in Tanlu Fault, which hints that uplift phenomenon is observed. The thickest lithosphere (about 128km) is below Hefei station in Dabie-Su-Lu Orogenic Zone.
     7. The deep structure is quite different for different tectonic unit in the research area. Dabie Orogenic Belt shows deepest crust, shallow focal depths, highest interval velocity & RMS velocity, and thick lithosphere. Sino-Korea Block shows comparatively shallower crust, deeper focal depths, moderate interval velocity & RMS velocity, shallower lithosphere than Lower Yangtze Block. Lower Yangtze Block shows deeper crust than Sino-Korea Block, shallower crust than Dabie Orogenic Belt, similar focal depths with Sino-Korea Block, lowest interval velocity & RMS velocity, similar lithosphere thickness with Sino-Korea Block, a litter deeper than Sino-Korea Block.
引文
陈九辉,刘启元,李顺成等.2005.青藏高原东北缘-鄂尔多斯地块地壳上地幔S波速度结构.地球物理学,48(2):333-342
    白志明.2004.深地震测深剖面的层析成像研究及其应用[白志明博士论文].中国地震局地球物理研究所
    从柏林,王清晨.1994.中国超高压变质岩研究评述.科学通报,39(24):2214-2218
    陈沪生.1988.下扬子地区HQ-13线的综合地球物理调查及其地质意义.石油与天然气地质,第三期
    陈沪生,周雪清,李道琪等.中国东部灵壁-奉贤(HQ-13)地学断面(说明书).1993.北京:地质出版社
    陈沪生,张永鸿,徐师文等.下扬子及邻区岩石圈结构构造特征与油气资源评价.1999.北京:地质出版社
    丁志峰.1999.近震层析成像的理论和应用[丁志峰博士论文].中国地震局地球物理研究所董树文,吴宣治,高锐等.1998.大别造山带地壳速度结构与动力学.地球物理学报,41(3):349-361
    段永红,张先康,刘忠等.2005.长白山-镜泊湖火山区地壳结构接收函数研究.地球物理学报,48(2):352-358
    范桃园,石耀霖.2001.大别-苏鲁超高压变质带P-T-t轨迹的动力学模型.地球物理学报,44(5):629-635
    国家地震局地学断面编委会,上海奉贤至内蒙古阿拉善左旗地学剖面说明书.1992.北京:地震出版
    国家地震局地学断面编委会,江苏响水至内蒙古满都拉地学剖面说明书.1991.北京:地质出版社
    国家地展局《深部物探成果编写组》,中国地壳上地幔地球物理探测成果(第六章).1986.北京:地震出版社
    何建坤,刘福田,刘建华等.1998.东秦岭造山带莫霍面展布与碰撞造山带深部过程的关系.地球物理学报,41(增刊):64-75
    郝天珧,SUH Mancheol,王谦身等.2002.根据重力数据研究黄海周边断裂带在海区的延伸.地球物理学报,45(3):385-397
    郝天珧,刘伊克,徐万哲.1998.黄海及邻区重磁场及区域构造特征地球物理学进展,13(1):27-38
    郝天珧,刘伊克,段旭.199.中国东部及邻域地球物理场特征与大地构造意义地球物理学报,40(5):677-689
    贺传松,王椿镛,吴建平.2004.远震接收函数研究滇西地区的深部结构.地震学报,26(3):238-246
    贺传松,王椿镛,吴建平.2003.五大连池火山区地壳上地幔速度结构的接收函数反演.地震学报,25(2):128-135
    江苏省地质矿产局.1998.江苏省大地构造图说明书
    胡家富,朱雄关,夏静瑜等.2005.利用面波和接收函数联合反演滇西地区壳幔速度结构.地球物理学报,48(5):1069-1076
    黄金莉,赵大鹏.2005.首都圈地区地壳三维P波速度细结构与强震孕育的深部构造环境.科学通报,50(4):348-355
    黄金莉,顾小虹.2001.国家数字地震台网中心应用地震波形数据格式及转换.地震,21(4):60-65
    姜枚,王友学,宿和平.2003.宽频地震方法技术在地震探测工作中的应用.地质通报,22(7):536-539
    李红谊,刘福田,孙若昧等.2001.大陆东部及海域地壳-上地幔结构研究.地震学报,23(5):472-479
    李清河,张元生,涂毅敏等.1998.祁连山-河西走廊地壳速度结构及速度与电性的联合解释.地球物理学报,41(2):197-210
    李清河,张元生,so Gu KIM.2007.朝鲜半岛南部三维地壳速度结构成像.地球物理学报,50(4):1073-1081
    李志海,赵翠萍,王海涛等.2004.双差定位法在北天山地区地震精确定位中的初步应用.内陆地震,18(2):146-153
    乐俊英、曾维军.1993.南黄海地震剖面图,见刘光鼎主编中国海区及邻域地质地球物理图集。北京:科学出版社,32-33
    刘吕铨,刘光夏,杜官恒等.1987.郯庐古断裂中断地壳结构的初步研究-三维力学射线追踪方法的解释结果.华北地震科学,5(2):1-11
    刘吕铨,祝治平,李捍东等.1983.连云港-临沂-泗水测深剖面及临沂8.5级地震深部构造背景.地震,3,11-17
    刘建华,刘福田,孙若昧等.1995.秦岭-大别山带及其南北缘地震层析成像.地球物理学报,38(1):46-54
    刘福田,徐佩芬,刘劲松等.2003.大陆深俯冲带的地壳速度结构-东大别造山带深地震宽角反射/折射研究.地球物理学报,46(3):366-372
    刘福田,曲克信,吴华等.1986.华北地区的地震层析成像.地球物理学报,29:442-449
    刘启元、R.Kind.1992.远震接收函数及非线性复谱波形反演,中国地球物理学会年刊,18
    刘启元、R.Kind、李顺成.1996.接收函数复谱比的最大或然性估计及非线性反演.地球物理学报,39(4),500-511
    刘启元,Kind H,李顺成.1997.中国数字地震台网的接收函数及其非线性反演.地球物理学报,40(3),336-368
    刘启元,李顺成,沈杨等.1997.延怀盆地及其邻区地壳上地幔速度结构的宽频带地震台阵研究.地球物理学报,40(6):763-771
    刘启元,陈九辉,李顺成等.2000.新疆伽师强震群区三维地壳上地幔S波速度结构及其地震成冈的探讨.地球物理学,43(3)356-366
    刘启元,Rainer Kind,赵九辉等.2005.大别山带地壳上地幔界面的断错结构和壳内低速体.地球物理学,35(4):304-313
    孟鸿鹰,刘贵忠.1999.小波变换多尺度地震波形反演.地球物理学报,42(2):241-248
    梅卫萍,李清河,丁页蛉等.2007.用双子地震相干函数法对常熟震群进行精确相对定位.西北地震学报,29(2):123-128
    宁杰远,臧绍先等.日本海及中国东北地震的深度分布及其应力状态.地震地质,1987,9(2),49-61
    马杏垣,刘昌铨,刘国栋.1991.江苏响水至内蒙古满都拉地学断.面.北京:地质出版社彭艳菊,苏伟,郑月军等.2002.中国大陆及海域Love波层析成像.地球物理学报,45(6):792-801
    钱辉,宿和平,姜枚等.2004.江苏东海大陆钻址区层析成像.地质学报,78(1):139-144
    任纪舜,姜春发,张正坤等.1980.中国大地构造及演化(1:400万中国大地构造图简要说明).北京:科学出版社
    阮爱国,李家彪,郝天姚等.2006.石岛地震台远震记录反演研究.海洋学报,28(2):85-91
    史大年,姜枚,彭聪等.1998.大别造山带东部地壳结构的层析成像及广角反射的地震学研究.地震学报,21(4):403-410
    石耀霖.1992.遗传算法在地球物理中的应用.地球物理学报,35(增):367-371
    石耀霖,金文.1995.面波频散反演地球内部构造的遗传算法.地球物理学报,38(2):189- 198
    孙文斌,和跃时,2004,西太平洋Beniof带的形态及其应力状态.地球物理学报,47(3):433-440
    孙文斌,和跃时.2004,中国东北地区地震活动及其与日本板块俯冲俄关系.地震地质,26(1):122-132
    腾吉文,孙克忠,熊绍柏等.1985.中国东部马鞍山-常熟-启东地带地壳与上地幔结构和速度分布的爆炸地震研究.地球物理学报,28(2):156-169
    唐国兴.1979.用计算机确定地震参数的一个通用方法.地震学报,1(2):186-196
    陶国宝.1996.南黄海周缘地区的地质构造联系海洋.地质泽丛,4:1-14
    王清晨,孙枢,李继亮等.1989.秦岭的大地构造演化.地质科学,2:129-142
    王椿镛,张先康,陈步云等.1997.大别造山带的地壳结构研究.中国科学(D辑),27(3):221-226
    王椿镛,张先康,丁志峰等.1997.大别造山带上部地壳结构的有限差分层析成像.地球物理学报,40(4):495-502
    王椿镛,丁志峰,宋建立等.1997.大别造山带地壳S波速度结构.地球物理学报,40(3):337-346
    王椿镛,丁志峰,陈学波等.1997.大别造山带地壳S波分裂和介质各向异性.科学通报,42(23):2539-2542
    王有学,姜枚,韩国华等.2004.中国大陆科学钻探场址区的地壳速度结构特征.地球科学-中国地质大学学报,29(6):667-673
    王谦身,安玉林.1999.南黄海西部及邻域重力场与深部构造.科学通报,44(22):2448-2453
    汪素云,许忠淮,俞击祥等.1994.北京西北地区现代微震重新定位.地震学报,16(1):24-31
    汪素云,高阿甲,许忠淮等.2000.青藏高原东北地区地震重新定位及其活动特征.地震学报,22(3):241-248
    万永革,李鸿吉.1995.遗传算法在确定震源位置中的应用.地震地磁观测与研究,16(6):1-7
    万永革,李清河,李鸿吉等.1997.用遗传算法确定三维横向不均匀介质中的近震震源位置.西北地震学报,19(2):7-114
    吴明熙,王鸣,孙次昌等.1990.1985年禄劝地震部分余震的精确定位.地震学报,12(2): 121-129
    吴建平,明跃红,王椿镛.2001.云南数宁地震台站下方的S波速度结构研究.地球物物学报,44(2):228-237
    吴建平.1997.宽频带数字地震波形反演与中国大陆地壳上地幔结构研究[吴建平博士论文].中国地震局地球物理研究所
    吴庆举,曾融生.1998.用宽频带远震接收函数研究青藏高原的地壳结构.地球物理学报,41(5):669-679
    吴庆举.1996.宽频带数字地震波形反演与青藏高原岩石圈速度结构研究[吴庆举博士论文].中国地震局地球物理研究所
    吴庆举,田小波,张乃铃等.2003a.用Wiener滤波方法提取台站接收函数.中国地震,19(1):42-47
    吴庆举,田小波,张乃铃等.2003b.计算台站接收函数的最大熵谱.地震学报,25(4):382-389
    吴庆举,田小波,张乃铃等.2003c.用小波变换方法反演接收函数.地震学报,25(6),607-607
    吴庆举,曾融生,赵文津.2004.喜马拉雅-青藏高原的上地幔倾斜构造与陆-陆碰撞过程.中国科学,4(10):910-925
    吴庆举,李永华,张瑞青等.2007a.用多道反褶积方法测定台站接收函数.地球物理学报,50(3):791-796
    吴庆举,李永华,张瑞青等.2007b.接收函数的克希霍丈2D偏移方法.地球物理学报,50(2):539-545
    徐树铜,江利来,刘贻灿等.1992.大别山区(安徽部分)的构造格局和演化过程.地质学报,66(1):1-13
    徐嘉炜,1980.郯庐断裂带的平移运动及其地质意义.国际交流地质学术论文集,为21届国际地质大会撰写,第1册构造地质、地质力学.北京:地质出版社
    徐纪人,赵志新等.2004.苏鲁造山带区域地壳山根结构特征.岩石学报,20(1):149-156
    徐果明,李光品,王善恩等.2000.用瑞利面波资料反演中国大陆东部地壳上地幔横波速度的三维结构.地球物理学报,43(3):366-376
    徐鸣洁,王良书,刘建华等.2005.利用接收函数研究哀牢山、红河断裂带地壳上地幔特征.中国科学D辑,35(8):729-737
    徐佩芬,刘福田,王清晨等.2000.大别-苏鲁碰撞造山带地震层析成像研究-岩石圈三维速度结构.地球物理学报,43(3):377-385
    徐彦,杨品琼,苏有锦等.2005,云南地区地燧精确定位及其构造意义.地震研究,28(4):340-344
    徐义贤,王家映.1998.大地电磁多尺度反演.地球物理学报,41(5):704-711
    杨文采.2003.东大别超高压变质带的深部构造.中国科学D辑,33(2):183-192
    杨文采,程振炎,陈国九等.1999.苏鲁超高压变质带北部地球物理调查(1)-深发射地震.地球物理学报,42(1):41-52
    杨文采,方慧,程振炎.1999.等苏鲁超高压变质带北部地球物理调奄(2)-非地震方法.地球物理学报,42(4):508-519
    杨文采,程振炎,张春贺等.2003.中国科学深钻选址地球物理调查与大别-苏鲁岩石圈.地球学报,24(5):391-404
    杨文采,胡振远,程振炎等.1999.郯城-涟水综合地球物理剖面.地球物理学报,42(2):206-217
    杨文采,杨午阳,金振民等.2004.苏鲁超高压变质带岩彳i周的地震组构.中国科学D辑,34(4):307-319杨文采,杨午阳,程振炎等.2004.中国大陆科学钻探孔区三维地震资料的初步解释.岩石学报,20(1):127-138
    杨文采,张春贺,朱光明等.2002.标定大陆科学钻探孔区地震反射体.地球物理学报,45(3):370-383
    杨文采,余长青.2001.根据地球物理资料分析大别山-苏鲁超高压变质带演化的运动学与动力学.地球物理学报,44(3):346-358
    杨文采.2002.大陆科学钻探与中国科学深钻工程,石油地球物理物探,37(2):197-120
    杨文采.2003.大别苏鲁地区层状地幔反射体及解释,地球物理学报,46(2):191-199
    杨文采著.1997.地球物理反演的理论与方法,北京:地质出版社
    杨智娴,陈运泰,张宏志.1999.张北-尚义地震序列的重新定位.地震地磁观测与研究,20(6):6-9
    杨智娴,陈运泰.2002.用舣差地震定位法再次精确测定1998年张北-尚义地震序列的震源参数.地震学报,24((4):366-377
    杨智娴,陈运泰,郑月军等.2004.双差地震定位法在我国中西部地区地震精确定位中的应用.中国科学(D辑),26(2):115-120
    严尊国,薛军蓉.1987.长江三峡地区弱震重新定位.中国地震,3(1):52-59
    郑晔,滕吉文.1989.随县-马鞍山地带地壳与上地幔结构及郯庐构造带南段的某些特征.地球物理学报,32(6):648-659
    郑晔,滕吉文.1994.中国东部随县-启东地带上地幔结构研究.地球物理学报,15(1):553-558
    赵志新,徐纪人,杨文采等.2004.中国大陆科学钻探孔区反射地震剖面的数值模拟与分析.岩石学报,20(1):139-148
    赵志新,徐纪人,许志琴等.2004.上地幔三维S波速度结构与大别苏鲁超高压变质带俯冲折返机制探讨.岩石学报,20(1):157-164
    郑月军,黄忠贤,刘福天等.2000.中国东部海域地壳-上地幔瑞利波速度结构研究.地球物理学报,43(3):480-487
    朱介寿,曹家敏,蔡学林等.2002.东亚及西太平洋边缘海高分辨面波层析成像.地球物理学报,45(5):647-663
    朱良保,许庆,陈晓非.2002.中国大陆及邻近海域的Rayleigh波群速度分布.地球物理学报,45(4):475-482
    朱艾斓,徐锡伟,周永胜等.2005.川西地区小震重新定位及其活动构造意义.地球物理学报,48(3):629-636
    张文佑,李阴槐,张弛等.1986.中国及邻区海陆大地构造.北京:科学出版社,267-278
    张鹏,王良书,钟锴等,2007,郯庐断裂带分段性研究.地质论评,53(5):586-591
    张四维,张锁喜,唐荣余等.1988.下扬子地区符离集-奉贤地震测深资料解释.地球物理学报,31(6),637-648
    张元生,李清河,徐果明.1998.联合利用走时与波形反演技术研究地壳三维速度结构(Ⅰ)-理论与方法.西北地震学报,20(2):8-15
    张元生,李清河,徐果明.1998.联合利用走时与波形反演技术研究地壳三维速度结构(Ⅱ)-应用.西北地震学报,20(3):44-51
    张元生,赵仲和,张海营等.2001.辽宁地区地壳三维速度结构研究.地震上程与工程振动,21(2):
    张元生,李清河,刘耀炜等,地震层析成像软件,西北地震学报,25(2):170-174
    张元生,周明都,荣代潞等.2003.祁连山中东段地区三维速度结构研究.地震学报,26(2):247-255
    臧绍先,宁杰远.1996.西太平洋俯冲带的研究及其动力学意义.地球物理学报,39(2): 188-202
    臧绍先,宁杰远等.1993.日本海俯冲带的热结构及热源的影响.地球物理学报,36(2):164-173
    赵仲和.1983.多重模型地震定位程序及其在北京台网的应用.地震学报,5(2):242-254
    赵卫明,金延龙,任庆维.1992.1988年灵武地震序列的精确定位和发震构造.地震学报,14(4):416-422
    周仕勇,许忠淮,韩京等.1999.主地震定位方法分析以及1997年新疆伽师震群高精度定位.地震学报,21(3):258-265
    周民都,张元生,张树勋等.1999.遗传算法在地震定位中的应用.西北地震学报,21(2):167-171
    周蕙兰,杨毅.2003.接收函数反演上地幔速度结构和间断面的剥壳遗传算法.地球物理学报,46(3):382-389
    翟明国,从柏林.1996.苏鲁-大别山变质带岩石大地构造学.中国科学D辑,26(3):258-264
    Ammon.C.J.,G.E.Randall,G.Zandt,1990.On the nonuniqueness of receiver function inversions.J Geophys.Res.,95:303-318
    Burdick,L.J.and C.A.1977.Longston,Modelling crustal structure through the use of converted phases in teleseismic body waves.Bull.Seismol.Soc.Am.,67:677-691
    Cassidy,J.F..1992.Numerical experiments in broadband receiver function analysis.Bull.Seismol.Soc.Am.,82:1453-1474
    Chang,S.,Baag,C.2005.Crustal structure in Southern Korea from joint analysis of teleseismic receiver functions and surface-wave dispersion.BSSA,95:1516-1534
    Chapman,C.H..1978.A new method for computating synthetic seismograms.Geophys.J.R Astron.Soc.,54:481~518
    Chung W Y,Kanamori H.1976.Source process and tectonic implications of the Spanish deep-focus earthquake of March 29.Phys Earth Planet Interi,13:85-96
    Chui C K.1992.An Introduction to Wavelets.New York:Academic Press,367
    Coleman P G,Wang X.1995.Overview of geology and tectonics of UHPM.in:Coleman R G,Wang X,eds.Ultrahigh Pressure Metamorphism.Cambridge:Cambridge University Press,1-32
    Cong B, Zhai M, Carswell D A, et al. 1995. Petrogenesis of the ultrahigh-pressure rocks and their country rocks at Shuanghe in Dabiesshan, central China . European J. Mneraloty, 7:119—138
    
    Du, Z. J., Foulger, G. R., Julian, B. R. et al. 2002. Crustal structure beneath western and eastern Iceland from surface waves and receiver functions. Geophys. J. Int., 149:349-363
    
    Fitch T J. 1975. Compressional velocity in source regions of deep earthquakes: an application of the master event technique . Earth Planet Sci Lett, 2 6:156-166
    
    Fuchs, K., and Muller.. 1971. Computation of synthetic seismograms with the reflectivity method and comparison with observations. Geophys. J. R. Astron. Soc.23:417-433
    
    Fukao Y. 1972. Source process for a large earthquake and its tectonic implications —the western Brazil earthquake of 1963. Phys Earth Planet Interi, 5: 6—76
    
    Geiger L. 1912. Probability method for the determination of earthquake epicenters from arrival time only. Bull. St. Louis. Univ, 8: 60—71
    
    Gurrola, H., J. B. Minster, T. J. Owens. 1994. The use of velocity spectrum for stacking receiver functions and imaging upper mantle discontinuities. Geophys. J. Int., 117: 427-440
    
    Helmberger, D. V., 1968. he crust-mantle transition in the Bering Sea. Bull. Seismol Soc.Am., 58:179-214
    
    Helmberger, D. V., R. Wiggins. 1971. Upper mantle structure of the midwesten United States. J. Geophys. Res., 76:3229—3245
    
    Jordan, T. H., and L. N. Frazer. 1975. Crustal and upper mantle structure from SP phases, J. Geophys. Res., 80:1504—1578
    
    Julia, J., Ammon, C. J., Herrmann, R. B., et al. 2000. Joint inversion of receiver function and surface wave dispersion observations. Geophys. J. Int. 143:99—112
    
    Kennet, B. L. N. and Sambridge, M. S.. 1992. Earthquake location—genetic algorithms for teleseisms, Phys. Earth and Planet Int. , 75: 103—110
    
    Klein F W. 1978. Hypocenter location program HYPOLINVERSE Part I: Users guide to versions 1, 2, 3 and 4. U.S. Geol. Surv. Open-File Rept, 78—694
    
    Koch, M.. 1993a. Simultaneous inversion for 3—D crustal structure and hypocentres including direct, refracted and reflected phases—I. evelopment,validation and optimal regularization of the method,Geophys. J. Int., 112: 385—412
    Koch, M., 1993b. Simultaneous inversion for 3-D crustal structure and hypocentres including direct, refracted and reflected phases—II. Application to the northern Rhine Graben/Rhanish Massif Region,Germany, Geophys. J. Int., 112: 413-428
    
    Koch, M., 1993c. Simultaneous inversion for 3—D crustal structure and hypocentres including direct, refracted and reflected phases—III. Application to the southern Rhine Grabern, Germany, Geophys. J. Int., 112: 429—447
    
    Langston, C. A.. 1979. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J. Geophys. Res., 84:4749-4762
    
    Langston. C. A.. 1989. Scattering of teleseismic body waves under Pasadena. California. J. Geophys. Res., 94: 1935—1951
    
    Lee W H K, J C Lahr. 1975. A computer program for detemining hypocenter, magnitude and first motion pattern of local earthquakes. U. S Geol. Surv. Open-File Rept, 75-311
    
    Lienert B R, Berg E, Frazer L N. 1986. Hypocenter: An earthquake location method using centered, scaled, and adaptively damped least squares. Bull. Seism. Soc. Am, 76(3): 771-783
    
    Liou J G, Wang Q, Zhang RY, et al. 1995. Ultrahigh-P metamorphic rocks and their associated lithologies from the Dabie Mountains, central China: a field trip guide to the 3rd international eclogite field symposium. Chinese Science Bulletin, 40: Supplement, 1—41
    
    Ling Chen, Tianyu Zheng, Weiwei Xu, 2006.A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration. Journal of Geophysical Research. 111: 1 — 15
    
    McNamara D. E., T. J. Owens. 1993. Azimuthal shear wave velocity anisotropy in the Basin and Range Province using Moho Ps converted phases. J. Geophys. Res., 98:12003—12017
    
    Nelson G D. John E Vidale. 1990. Euthquake locations by 3-D finite difference travel times. Bull. Seism. Soc. Am, 80(2): 395— 410
    
    Okay A I, SengerAMC, SatnM. 1993. Tectonics of an ultrahigh-pressure metamorphic terrane: the Dabie Shan/Tongbai Shan orogen. China. Tectonics, 12(6): 1320—1334
    
    Okay A I, Sengor A M C. 1992. Evidence for intracontinental thrust-related exhumation of the ultra-high pressure rocks in China. Geology, 20: 411—414
    
    Owens, t. J., G. Zandt, S. R. Taylor. 1984. Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P waveforms. J. Geophys. Res., 89:7783—7795
    
    Phinney, R. A.. 1964. Structure of the Earth' s crust from spectral behavior of long-period body waves. J. geophys. Res. 69, 2997—3107
    
    Powell M J. 1964. An off iciont method for finding the minimum of a function of several variable without calculating derivatives. Computer J, 7(2): 155—162
    
    Randall, G. E.. 1989. Efficient calculation of differential seismograms for lithospheric receiver functions. Geophys. J. Int., 99:469—481
    
    Randall, G. E., T. J. Owens. 1994. Array analysis of the large-aperture array of the 1988-89 PASSCAL Basin and Range passive-source seismic experiment. Geophys. J. Int., 116:618-636
    
    Richards, P. G.. 1973. Calculation of body waves for caustics and tunnelling core phases. Geophys. J. R. Astron. Soc., 35:243—264
    
    Sambridge M S, Drijkoningen G G. 1992. Genetic algorithms in waveform inversion. Geophys. J. Int., 109: 323—342
    
    Sambridge, M. S., Gallagher K.. 1993. Earthquake hypocenter location using genetic algorithms. Bull. Seism. Soc. Am. 83(5): 1467—1491
    
    UyedaS, Kanamori H. 1979. Back-arc opening and the mode of subduction. Jour Geophys Res. 84: 1049-1061
    
    1061. Wang X, Liou J G, Mao H K. 1989. Coesite-bearing ecologites from the Dabie mountains in central China. Geology, 17: 1085—1088
    
    WaldhauserF, Ellsworth W L. 2000. A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. Bull. Seism. Soc. Am. 90(6): 1353-1368
    
    WangQingchen, Sun shu, LI jiliang, et al. 1989. Tectonic evolution of the Qingling mountains. Scientia Geologica Sinica (in Chinese), (2): 129—142
    
    Wang X, Liou J G, Mao H K. 1989. Coesite-bearing ecoiogites from the Dabie mountains in central China. Geology, 17: 1085—1088
    
    Xu Zhiqin. 1987. Etude tectonique et microtectinique de la Chaine paleclzoique de Qinlings. In: Presente a L' Universite des Sciences et Techninues du Lanauedoc Pour obtenir le dinlome de Doctorat . 93 —107
    
    Xu S, Okay A l, ]i S, et al. 1992. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 256: 80~82
    
    Yang Wencai. 1997. Crustal structure and development of Sulu UHPM Terrane in East-Central China. Episodes, 20(2): 100—104
    
    Yang Wencai. 2000. Analysis of deep intracontinental subduction. Episodes, 23(1): 20-24
    
    Ye Kai , Hirajima T, Ishiwatari A, et al. 1996. The discovery of intergranular coesite in eclogite of Yangkou, Qingdao and its significance. Chinese Science Bulletin, 41(15): 1407-1408
    
    Zhu, L. P., T. J. Owens, G. E. Randall. 1995. Lateral variation in crustal structure of the northern Tibetan Plateau inferred from teleseismic receiver functions. Bull. Seismol. Soc. Am., 85:1531-1540

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700