用户名: 密码: 验证码:
鄂尔多斯盆地延长期富烃凹陷特征及其形成的动力学环境
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯盆地处于我国东西南北四大不同构造域活动影响的复合部位,西跨南北构造带。不同构造域和多种地球动力学环境的复合、叠加及其与时彼此消长变化,形成了极为复杂的盆地演化-改造历史。盆地中南部中晚三叠世延长期富烃凹陷的形成与秦岭碰撞造山过程在时间上彼此呼应,空间上毗邻共存,对该凹陷发育环境和沉积特征的深入研究,可进一步探索该区的盆山耦合关系,揭示富烃凹陷形成的动力学环境。
     本文以沉积盆地“整体、动态、综合”的研究思路为指导,在大量野外剖面考察和岩芯观察、多种岩矿、地球化学测试分析和地球物理等第一性资料研究的基础上,综合沉积学、构造地质学、油气地质与勘探等研究成果和资料,对富烃凹陷湖盆底形特征、优质烃源岩和与其伴生的多种事件沉积岩和生物化石等进行深入研究,探讨鄂尔多斯盆地中晚三叠世延长期富烃凹陷主要特征及其形成的动力学环境。
     大量岩石矿物学和地球化学分析表明,鄂尔多斯盆地延长组长7优质烃源岩富含黄铁矿,形成于深湖-半深湖相还原环境。优质烃源岩具有两个显著特征,其一是铀元素富集。富铀烃源岩平面上呈北西-南东向展布;缺氧的沉积环境、丰富的铀源、高含量的有机质及胶磷矿等共同促使了铀元素的富集;丰富的铀元素可能主要来自于火山灰、深部热液物质。优质烃源岩另一重要特征是与多层火山灰沉积物互层。延长组火山灰沉积物包括有空降型和水携型两种成因机制,平面上表现为整体呈北西-南东向展布,由南西至北东方向火山灰沉积物厚度逐渐变薄、层数逐渐表少、粒度逐渐变细;大地构造环境判识图解说明其可能源于火山弧钙碱性岩浆源区;盆地外西南方向西秦岭天水地区印支期流纹岩可能是火山灰沉积物的源区之一;火山灰带来大量营养物质可能导致了藻类勃发,提高了湖盆原始生产力,有利于形成富有机质层,对延长期富烃凹陷的形成有重要贡献。
     在众多野外剖面考察和岩芯观察的基础上,综合最新沉积相研究资料,分析了延长期湖岸线和深湖区演化特征,指出受秦岭造山过程的影响,延长期存在两次重要的沉积中心迁移。通过氧化-还原环境判识指标U/Th值及与GR关系,计算了优质烃源岩形成期的古水深,最大深度为100m左右,位于华池-白豹附近。恢复了长7优质烃源岩发育期湖盆底形结构,结果表明湖盆整体为北东缓、西南陡,呈北西-南东向展布,并向南东方向开口的特征。湖盆充填类型分析表明,长7_3深湖相亚组合发育的优质烃源岩有机质丰度最高,除与构造沉降幅度大导致可容空间较大以外,还可能与火山灰沉积和深部热液物质的输入关系密切。
     在富烃凹陷内的露头剖面和岩芯中发现有众多延长期同沉积变形构造及其活动遗迹。通过详细分析震积岩、浊积岩和软沉积局部变形的特征、分布和形成机制,指出富烃凹陷发育期构造活动明显,并总体受秦岭造山过程制约。优质烃源岩、火山灰沉积物、震积岩、浊积岩纵、横向和平面上耦合共存,相互影响,形成于统一的动力学背景。众多与优质烃源岩互层或共存的岩石矿物学、元素地球化学、同位素地球化学、铂族元素以及石油微量元素分析表明,富烃凹陷存在众多深部热流体活动的证据。这与该区受秦岭造山过程影响,基底断裂发生裂开-闭合的间歇式往复活动有关。盆地中南部富烃凹陷沉降幅度大,为较深-深湖区,且与盆地的热异常区、壳内高导层发育区分布相一致,在发育时间和分布位置上与秦岭造山过程有明显的耦合响应关系。深部作用活跃区主要分布于盆地中部38°N构造带和凹陷沉降幅度最大且存在热异常区,说明延长期富烃凹陷形成于深部作用活跃的背景。通过详细的野外考察,综合沉积学、岩石矿物学、元素-同位素地球化学分析,并结合区域地质构造研究表明,构造活动性明显、深部作用活跃可能是子洲双壳类动物勃发并集群死亡的主要原因。这对揭示延长期富烃凹陷的形成环境有重要启迪。
     综合磁异常和深部岩石圈结构资料,结合延长期富烃凹陷保留的众多特殊地质现象,依据延长期原始盆地面貌和盆山耦合关系,认为素以稳定著称的延长期富烃凹陷形成于受秦岭造山过程深、浅部耦合控制,构造活动性明显,深部作用活跃的动力学背景。
Ordos basin locate at the overlapping part influenced by activities of various large structural domains consisting of the peri-Pacific, Siberia, Qinling-Qilian and Tethys, and spans in the west the famous N-S trending structural belt of China. The complicated evolution-reformation history is formed as a result of the combination, superposition and continuous changes different structural domain and multiple geodynamic setting. The spatio-temporal relationship of forming middle-late Triassic Yanchang period hydrocarbon -rich depression in middle-southern Ordos basin and the process of Qinling orogenic evolution are intimately related. Formational environment and sedimentary records of hydrocarbon-rich depression in depth study could explore the coupling relationship of orogenic belt and reveal the formational dynamic settings of hydrocarbon-rich depression.
     The thesis hold the three principles that research thinking“Integrity, Dynamics and Synthesis”of basin analysis as guidance. Based on lots of field profiles investigation, core observation, rock-minerals analysis, geochemical and geophysical data, synthesis research results and data of sedimentology, structural geology, oil-gas geology and exploring, reconstructing the bottom palaeo-topography framework of hydrocarbon-rich depression, analysis distribution characteristics and formational mechanism of excellent hydrocarbon source rocks, accompanies event deposits and fossil beds, then disscuss the major characteristics and formational dynamic settings of middle-late Triassic Yanchang period hydrocarbon-rich depression in Ordos basin.
     Many analyses of lithology-minerlogy and geochemistry indicate that Yanchang formation Chang7 excellent hydrocarbon source rocks containing much pyrite and forming reduction environment of deep lacustrine to semi-deep lacustrine facies in Ordos basin. The excellent hydrocarbon source rocks present two remarkbly characteristics, the first one is enriching uranium element. The uranium-rich source rock distribute in the center of hydrocarbon-rich depression with NW-SE trending. Uranium concentration induced by the action together with anoxia environment, abundant uranium element, high content organic matter and collophane. The uranium may be mainly from the volcanic ash sediments and deep hydrothermal liquid substances. The second distinguished characteristic of excellent hydrocarbon source rocks is interlay with much volcanic ash sediments. Water and air transport approches are the primary formational mechanism of volcanic ash sediment which depositing in NW-SE trending with the tendency that being gradually thinner, less and smaller from SW to NE. From the discrimination diagram of tectonic environment, we conclude that it came from calc-alkali magma area, the rhyolite of Tianshui area in western Qinling Mountain is one of original areas of volcanic ash sediments. The nutritive substance brought by volcanic ash may lead to blooming of alga and raised the primary productive of the palaeo-lake. It is benefit for building the organic-rich beds and it is important for the development of hydrocarbon-rich depression in Yanchang period.
     Based on lots of field profiles investigation, core observation, inegrate the latest sedimentary facies data, analysis the evolution characteristics of lake strandlines and deep lake zones, showing twice important depocenter migration in Yanchang period due to the orogenic process of Qinling. Using the relationship of U/Th value which is redox discrimination index and GR valute of log curve, caculated the palaeobathymetric, the deepest region loacating in Huachi-Baibao areas reached at 100m, and recovering the lacustrine basin bottom palaeo-topography frameworks indicate the lacustrine basin with flatter and steep slope in Northeastern and Southwestern, respectively. Express NW-SE trending distribution and opening to the east. Basin filling types analysis indicates that Chang73 deep lacustine sub-assemblage filling type develop excellent hydrocarbon source rocks which have the highest abundance organic matter. It may be closely relating with volcanic ash deposit and deep hydrothermal substance input except the bigger accommodation space due to the bigger amplitude of tectonic subsidence.
     Many syndepositional deformation structures and their activity imprints in outcrop area and core at hydrocarbon-rich depression can be observed. Through detail analysis on characteristics, distributions, formational mechanisms of seismites, turbidite and soft -sediment deformation sturtures, we conclude that the tectonic setting is obvious activities during the formation of hydrocarbon-rich depression periods, which are controlled by the Qinling orogeny belt. The spatio-temporal distrutbion of excellent hydrocarbon source rocks, volcanic ash sediments, seismites, turbidite are consistent and interactional, and forming the uniform dynamic setting. Combining with the petrological and mineralogical, elements geochemistry, isotopes geochemistry, platinum group elements of interbeds or existence with excellent hydrocarbon source rocks and trace elements in petroleum demonstrate the hydrocarbon-rich depression keeping many evidences about deep hydrothermal fluids activity, which are influenced by the process of Qinling orogeny belt and related with the intermittence rupture-close activity of fundamental faults. The subsidence amplitude is very large of hydrocarbon-rich depression, lacating in deep lake area, and consistenting with abnormal thermal and crust high conductivity area, which are closely related coupling with the the process of Qinling orogeny on spatio-tempal relationship. The deep hydrothermal fluids active areas distribute in 38°N structural zone and the biggest subsidence amplitude with anomalous thermal area in the basin, which shows that the hydrocarbon-rich depression developed in the background of active deep processes. Throngh detail investigation of outcrop, integrating a large number analysis of geochemistry, lithology-mineralogy and sedimentology, combining regional geological characteristics, which indicate that structural action is obvious and active deeply dynamic background settings are the mainly reasons of bivales blooming and death, which is benefit for revealing the formational settings of hydrocarbon-rich depression.
     After analyzing abnormal magnetic field and lithosperic data, combining many special geological appearances preserved in Yanchang period hydrocarbon-rich depression. So based on the analysis of prototype basin visage and basin-mountain coupling relationship in Yanchang period, the author believe that although its famous for stable, Yanchang period hydrocarbon-rich depression formed in the setting of structural action is obvious and actively dynamic background which response to the process of Qinling orogenic form deep to shallow.
引文
1. Al-Aasm I S, Lonnee J S, Clarke J. Multiple fluid flow events and the formation of saddle dolomite:case studies from the Middle Devonian of the Western Canada Sedimentary basin. Marine petroleum geology, 2002, 19:209-217
    2. Alvarez L W, Alvarez W, Asaro F, et al. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 1980, 208:1095-1108
    3. An M J, Feng M, Zhao Y. Destruction of lithosphere within the north China craton inferred from surface wave tomography. Geochemistry. Geophysics. Geosystems., 2009, 10, Q08016, doi:10.1029/ 2009GC002562
    4. An M J, Shi Y L. Lithospheric thickness of the Chinese continent. Physics of the Earth and Planetary Interiors, 2006, 159:257-266
    5. Bao Xuewei, Xu Mingjie, Wang Liangshu, et al. Lithospheric structure of the Ordos block and its boundary areas inferred from Rayleigh wave dispersion. Tectonophysics, 2011, 499:132-141
    6. Barnosky A D, Koch P L, Feranec R S, et al. Assessing the Causes of Late Pleistocene extinctions on the Continents. Science, 2004, 306: 70-75
    7. Bender M, Broecker W S, Gornitz U, et al. Geochemistry of three cores from the East Pacific rise. EPSL, 1971, 12:425-433
    8. Bescoby D, Barclay J, Andrews J. Saints and sinners: a tephrochronology for late antique landscape change in Erirus from the eruptive history of Lipari, Aeolian Islands. Journal of Archaeological science, 2008,35:2574-2579
    9. Bohacs K M, Carroll A R, Neal J E, et al. Lake-basin type, source potential, and hydrocarbon character: an integrated-sequence-stratigraphic-geochemical framework, in Gierlowski- Kordesch E H and Kelts K R, eds,.Lake basins through space and time: AAPG studies in Geology, 2000, 46:3-34
    10. Bohacs K M, Carroll A R, Neal J E. Lessons from large lake systems-Thresholds, nonlinearity, and strange attractors. GSA Special paper 370, 2003, 75-90
    11. Bostrom K, Peterson M N A. Precipitates from hydrothermal exhalations on the East Pacific rise. Economic Geology, 1966, 61:1258-1265
    12. Boyd P W, Watson A J, Law C S, et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 2000, 407:695-702
    13. Boynton W.V. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P. (ed), Rare earth element geochemistry. Elservier, 1984, 63~114
    14. Cabanis B, Lecolle M. Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination de series volcaniques et la mise en evidence des processus de mélange et/ou de contamination crustale. C.R. Acad. Sci. Ser.Ⅱ, 1989, 309: 2023~2029
    15. Carroll A R, Bohacs K M. Lake-type controls on petroleum source rock potential in nonmarine basins. AAPG Bulletin, 2001, 85(6):1033-1053
    16. Carroll A R, Bohacs K M. Stratigraphic classification of ancient lakes: Balancing tectonic and controls. Geology, 1999, 27(2):99-102
    17. Carroll A R, Graham S A, Smith M E. Walled sedimentary basins of China . Basin Research, 2010,22:17-32
    18. Chen L, Cheng C, Wei Z G. Seismic evidence for significant lateral variations in lithospheic thickness beneath the central and western North China Craton. Earth and Planetary science letters, 2009, 286:171-183
    19. Chen L, Zheng T Y, Xu W W. A thinned lithospheric image of the Tanlu fault zone, eastern China : Constucted from wave equation based receiver function migration. J.Geophys.Res, 2006,111, B09312, doi:10.1029/2005JB003665
    20. Coale K H, Johnson K S, Fitzwater S E, et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature, 1996, 383:495-501
    21. Crane K. Hydrothermal vents in Lake Baikal. Nature, 199l, 350:281
    22. Cuadros J, Caballero E, Hueratas F J, et al. Experimental alteration of volcanic tuff: smecite formation and effect on 18O isotope composition. Clays and clay minerals, 1999, 47(6): 769~776
    23. Cullen-L J, Huff W D. Correlation of Chamlinian(Middle Ordovician) K-bentonite beds in central Pennsylvania based on chemical fingerpring. J. Geol, 1986, 94: 865~874
    24. Davies G R, Smith Jr LB. Structurally controlled hydrothermal dolomite reservoir facies: A overview. AAPG Bulletin, 2006, 90(11):1641-1690
    25. DePaolo D J, Wasserburg G J. Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. GRL, 1976, 3:743-746
    26. Desmares D, Grosheny D, Beaudoin B, et al. High resolution stratigraphic record constrained by volcanic ash beds at the Cenomanian-Turonian boundary in the Western Interior basin, USA. Cretaceous research, 2007,28: 561-582
    27. Doe B.R, Zartman R.E. Plumbotectonics. In Barnes H. (ed.). Geochemistry of hydrothermal ore deposit[M]. Chapter 2. New York: Wiley, 1979
    28. Dong Y P, Zhang G W, Neubauer F, et al. Tectonic evoltion of the Qinling orogen, China : review and synthesis. Journal of Asian earth science, 2011, in press, Doi:10.1016/j.jseaes. 2011.03.002
    29. Duggen S, Croot P, Schacht U, et al. Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: Evidence from biogeochemical experiments and satellite data. Geophysical research letters, 2007, 34(5),L01612, Doi:10.1029/2006GL027522
    30. Duggen S, Olgun N, Croot P, et al. The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review. Biogeosciences, 2010, 7:827-844
    31. Dypvik H, Harris N B. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb, and (Zr+Rb)/Sr rations. Chemical geology, 2001, 181:131-146
    32. Einsele G, Chough S K, Shiki T. Depositional events and their records-an introduction. Sedimentary Geology, 1996, 104:1-9
    33. Einsele G. Event deposits: the role of sediment supply and relative sea-level changes- overview. Sedimentary Geology, 1996, 104:11-37
    34. Ellrich J, Hirner A, et al. Distribution of trace elements in crude oils from southern Germany. Chemical geology, 1985, 48(1-4):313-323
    35. Faúndez V, HervéF, Lacassie J P. Provenance and depositional setting of pre-Late Jurassic turbitdite complexes in Patagonia, Chile. New Zealand Journal of Geology & Geophysics, 2002, 411-425
    36. Felitsyn S B, Kirianov V Y. Mobility of phosphorus during the weathering of volcanic ashes. Lithology and mineral resources, 2002, 37(3):275-278
    37. Fisher D E, Bostrom K. Uranium rich sediments on the East Pacific rise. Nature, 1969, 224: 64-65
    38. Foreman B.Z, Rogers R.R, Deino A.L, et al. Geochemical characterization of bentonite beds in the two Medicine Formation (Campanian, Montana), including a new 40Ar/39Ar age. Cretaceous Research, 2007, doi:10.1016/j.cretres.2007.07.001
    39. Gaylord D R, Price S M, Suydam J D. Volcanic and hydrothermal influences on middle Eocene lacustine sedimentary deposits, Republic basin, northern Washington, USA. In White J L, Riggs N, eds. Volcaniclastic Sedimentation in Lacustrine settings. Blackwell Science Ltd, 2001:199-254
    40. Gradstein F M, Ogg J G, Smith A G. A geologic time scale 2004, New York: Cambridge university press, 2005, 271-288
    41. Graham R.D, Langhorne B.S. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bulletin, 2006, 90(11):1640~1690
    42. Gromet L.P., Dymek R.F., Haskin L.A. and Korotev R.L. The“North American shale composite”: its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta, 1984, 48:2469- 2482
    43. Hallam A. Major bio-events in the Triassic and Jurassic, in Walliser O H., ed, Global events and event stratigraphy in the Phanerozoic: Berlin, Springer, 1996, 265-283
    44. Hamme R C, Webley P W, Crawford W R, et al. Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific. Geophysical research letters, 2010, 37, L19604, doi: 10.1029/2010GL044 629
    45. Harrison P J, Whitney F A, Tsuda A, et al. Nutrient and plankton dynamics in the NE and NW gyres of the subarctic Pacific Ocean. J. Oceanogr, 2004, 60:93-117, Doi:10.1023/B: JOCE.0000038321.57391
    46. Haskin L.A, Haskin M.A, Frey F.A, et al. Relative and absolute terrestrial abundances of the rare earth. In: Ahrens L.H.(ed.), Origin and distribution of the elements, Oxford: Pergamon, 1968, 1:889~911
    47. Helge J.H, Harald F, Ole J. M. Paleogene tuffaceous intervals, Grane Field (Block 25-11), Norwegian North Sea: their depositional, petrographical, geochemical character and regional implications. Marine and Petroleum Geology, 2000, 17(1): 101-118
    48. Hess J, Bender M L, Schilling J-G. Evolution of the ration of strontium-87 to strontium-86 in seawater from Cretaceous to Present. Science, 1986, 231:979-984
    49. Hints R, Kirsimae K, Somelar P, et al. 2006, Chloritization of Late Ordovician K-bentonites from the northern Baltic Palaeobasin-influence from source material or diagenetic environment? Sedimentary geology, 191: 55~66
    50. Hitchon B, Filby R H. Use of trace elements for classification of crude oils into families: Example form Alberta , Canada. AAPG, 1984, 68(7):838-849
    51. Hori R S, Fujiki T, Inoue E, et al. Platinum group element anomalies and bioevents in the Triassic-Jurassic deep-sea sediments of Panthalassa. Palaeogeography, Palaeoclimatology, Palaeoe- cology, 2007, 244:391-406
    52. Hu S B, He L J, Wang J Y. Heat flow in the continental area of China: a new data set. EPSL, 2000, 179: 407-419
    53. Huang Z X, Li H Y, Zheng Y J, et al. The lithosphere of north China craton from surface wavetomography. Earth and planetary science letters, 2009, 288:164-173
    54. Huff W D, Kolata D R. Correlation of K-bentonite beds by chemical fingerprinting using multivariate statistics. In: Cross, T.A(Ed.), Quantitative Dynamic stratigraphy. Prentice Hall, Englewood Cliffs, NJ, 1989, 567~577
    55. Huff, W.D., 2008.Ordovician K-bentonites: Issues in interpreting and correlating ancient tephras. Quaternary International, 178(1):276-287
    56. Inglezakis V.J, Stylianou M.A, Gkantzou D, et al. Removal of Pb (Ⅱ) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination, 2007, 210: 248~256
    57. Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical geology, 1994, 111:111-129
    58. Kagya M L N. Geochemical characterization of Triassic petroleum source rock in the Mandawa basin, Tanzania. Journal of African Earth Science, 1996, 23(1):73-88
    59. Kamenov G D, Dekov V M, Willingham A L, et al. Anthropogenic Pb in recent hydrothermal sediments from the Tyrrhenian sea: implications for seawater Pb control on low-temperature hydrothermal systems. Geology, 2009, 37(2):111-114
    60. Katz B J, Mancini E A, Kitchka A A. A review and technical summary of the AAPG Hedberg research conference on“Origin of petroleum-Biogenic and/or abiogenic and its significance in hydrocarbon exploration and production”. AAPG bulletin, 2008, 92(5):549-556
    61. Katz B J. Factors controlling the development of lacustrine petroleum source rocks-An update. AAPG studies in geology, 1995, 61-79
    62. Kitchell J A. Biological selectivity of extinction: A link between background and mass extinction. Palaios, 1986,1:504-511
    63. Klemme H D, Ulmishek G F. Effective petroleum source rocks of the world: Stratigraphic distribution and controlling depositional factors. AAPG Bulletin, 1991, 75(12):1809-1851
    64. Koeberl C, MacLeod K G, eds. Catastrophic Events and Mass Extinctions: Impacts and Beyond: Boulder, Colorado, Geological Society of America Special Paper 356, 2002, 1–729
    65. Kramer W, Weatherall G, Offler R. Origin and correlation of tuffs in the Permian Newcastle and Wollombi Coal Measures, NSW, Australia, using chemical finger printing . International Journal of Coal Geology. 2001,47: 115~135.
    66. Langmann B, Zaksek K, Hort M, et al. Volcanic ash as fertiliser for the surface ocean. Atmos. Chem. Phys., 2010, 10:3891-3899
    67. Lin I I, Hu C M, Li Y H, et al. Fertilization potential of volcanic dust in the low-nutrient low-chlorophyll western North Pacific subtropical gyre: Satellite evidence and laboratory study. Global biogeochemical cycles, 2011, 25: GB1006, 12PP. Doi:10.1029/2009GB003758
    68. Lin L H, Slater G F, Lollar B S, et al. The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochimica et Cosmochimica Acta, 2005, 69(4): 893-903
    69. Liu S F, Yang S. Upper Triassic–Jurassic sequence stratigraphy and its structural controls in the western Ordos basin, China. Basin research, 2000, 12:1-18
    70. Liu S F. The coupling mechanism of basin and orogen in the western Ordos basin and adjacent regions of China. Journal of Asian earth sciences, 1998, 16(4):369-383
    71. Lugmair G W, Marti K. Sm-Nd-Pb timepieces in the Angra dos Reis meteorite. EPSL, 1977, 35: 273-284
    72. Magaritz M, Whitford D J, James D E. Oxygen isotopes and the origin of high 87Sr/86Sr andesites. EPSL, 1978, 40:220-230
    73. Mao J W, Li Y Q, Richard G et al. Fluid inclusion and noble gas studies of the Dongping gold deposit, Hebei province, China : a mantle connection for mineralization?Economic geology, 2003, 98:517 -534
    74. Marshall B D, Kyser T K, Peterman Z E. Oxygen isotopes and trace elements in the Tiva Canyon tuff, Yucca Mountain and vicinity, Nye country, Nevada. USGS Open-file report 95-431, Denver, Colorado, 1996, 1~49
    75. Mattauer M, Matte Ph, Malavieille J, et al. Tectonics of the Qinling belt : build-up and evolution of eastern Asia. Nature, 1985, 317:496-500
    76. McDonough W F, Sun S S. The composition of the earth. Chemical geology, 1995, 120:223-253
    77. McLaren D J. Mass extinctions are rapid events. Palaios, 1996,11(5): 1-2
    78. McLennan S.M. 1989, Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin B.R. and McKay G.A.(eds), Geochemistry and mineralogy of rare earth elements. Rev. Mineral. 21: 169~200
    79. Merriam, D.F., and F?rster, A. Stratigraphic and sedimentological evidence for late Paleozoic earthquakes and recurrent structural movement in the U.S.Midcontinent, in Ettensohn, F.R., Rast, N., and Brett, C.E., eds., Ancient seismites: Boulder, Colorado, Geological Society of America Special Paper, 2002, 359: 9–108
    80. Mongenot T, Tribovillard N-P, Desprairies A, et al. Trace elments as palaeoenvironmental makers in strongly mature hydrocarbon source rocks : the Cretaceous La Luna formation of Venezuela. Sedimentary geology, 1996, 103:23-37
    81. Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 1982, 299: 715~717
    82. Neymark L A, Marshall B D, Kwak L M, et al. Geochemical and Pb, Sr, and O isotopic study of the Tiva Canyon tuff and topopah spring tuff, Yucca Mountain, Nye country, Nevada. USGS Open-file report 95-431, Denver, Colorado, 1995, 1~17
    83. Obermeier, S.F., Pond, E.C., and Olson, S.M. Paleoliquefaction studies in continental settings, in Ettensohn, F.R., Rast, N., and Brett, C.E., eds., Ancient seismites: Boulder, Colorado, Geological Society of America Special Paper, 2002, 359:13–27.
    84. Olsen P E, Kent D V, Sues H D, et al. Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary. Science, 2002b, 296:1305-1307
    85. Olsen P E, Koeberl C, Huber H, et al. Continental Triassic-Jurassic boundary in central Pangea: Recent progress and discussion of an Ir anomaly, in Koeberl C and MacLeod K G, eds. Catastrophic events and mass extinctions: Impacts and beyond: Boulder, Colorado, Geological society of America special paper 356, 2002a:505-522
    86. Onasch, C.M., and Kahle, C.F. Seismically induced soft-sediment deformation in some Silurian carbonates, eastern U.S. Midcontinent, in Ettensohn, F.R., Rast, N., and Brett, C.E., eds., Ancient seismites: Boulder, Colorado, Geological Society of America Special Paper, 2002, 359:165–176.
    87. Orth C J, Attrep Jr M, Quintata L R. Iridium abundance patterns across bio-event horizons in the fossil record. In: Sharpton V L, Ward P D (Eds), Global catastrophes in earth history: An interdisciplinary conference on impact, volcanism, and mass mortality, The Geological society of America special paper, 1990, 247:45-59
    88. Owen G, Moretti M. Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary geology, 2011, 235:141-147
    89. Pearce J A and Cann, J.R. Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth and Planetary Science Letters, 1973, 19: 190~200
    90. Pearce J A and Peate D W. Tectonic implications of the composition of volcanic are magmas. Ann Rev Earth Planet Sci, 1995, 23:251-285
    91. Pearce J A, Harris, N., Tindle, A., Trace element discrimination diagrams for the tectonic interpretation of granite rocks . J. Petrol. 1984, 15: 956~983
    92. Pearce J A. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe R.S (ed.), Andesits. Chichester: Wiley, 1982, 525~548
    93. Petersen K D, Nielsen S B, Clausen O R, et al. Small-scale mantle convection produces stratigraphic sequences in sedimentary basin. Science, 2010, 329:827-830
    94. Pfefferkorn H W. The complexity of mass extinction. PNAS, 2004,101(35):12779-12780
    95. Roberts B, Merriman R T. Cambrian and Ordovician meta-bentonites and their relevance to the origins of associated mudrocks in the northern sector of the Lower Palaeozoic Welsh marginal basin. Geology Magzine, 1990, 127(1): 31~43
    96. Robinson N D. Biogenic acid rain during the late Cretaceous as a possible cause of extinctions. Journal of the geological society, London, 1995, 152: 4-6
    97. Rodríguez-Pascua M A, Calvo J P, De Vicente G, et al. Soft-sediment deformation structures interpreted as seismites in lacustirne sediments of the Prebetic Zone, SE Spain, and their potential use as indicatiors of earthquakes magnitudes during the Late Miocene. Sedimentary Geology, 2000, 135:117-135
    98. Rollinson H R. Using geochemical data: Evaluation, Presentation, Interpretation. Singapore: Longman Singapore Publisher, 1993, 215-265
    99. Rudnick, R.L. and Gao, S. Composition of the continental crust. In Holland, H.D. and Turekian, K.K., exec. eds., Treatise on Geochemistry, Elsevier, Amsterdam, 2004, 3, 1-64
    100. Sander S G, Koschinsky A. Metal flux from hydrothermal vents increased by organic complexation. Natrue Geoscience, 2011, 4:145-150
    101. Sant’Anna L G, Clauer N, Cordani U G, et al. Origin and migration timing of hydrothermal fluids in sedimentary rocks of the ParanáBasin, South America. Chemical geology, 2006, 230:1-21
    102. Seilacher A. Fault-graded bed interpreted as seismites. Sedimentology, 1969, 13(1-2):155-159
    103. Sepkoski J J Jr. Patterns of Phanerozoic extinction: A perspective from global data bases, in Walliser O H., ed, Global events and event stratigraphy in the Phanerozoic: Berlin, Springer, 1996, 35-51
    104. Shanks W C, Callender E. Thermal springs in lake Baikal. Geology, 1992, 20:495-497
    105. Shanmugam G. 50 years of the turbidite paradigm (1950-1990s):deep-water processes and facies models-a critical perspective. Marine and petroleum geology, 2000, 17:285-342
    106. Shanmugam G. Ten turbidite myths. Earth-science reviews, 2002, 58:311-341
    107. Sibley D F, Nordeng S H, Borkowski M L. Dolomitization kinetics in hydrothermal bombs and natural settings. Journal of sedimentary research, 1994, A64(3):630-637
    108. Sinclair H D, Coakley B J, Allen P A et al. Simulation of foreland basin stratigraphy using a diffusion model of mountain belt uplift and erosion: an example from the central Alps, Switzerland. Tectonics, 1991, 10(3): 599-620
    109. Smith M E, Singer B, Carroll A. 40Ar/39Ar geochronology of the Eocene Green river Formation, Wyoming. GSA Bulletin, 2003, 115(5):549-565
    110. Smith M. Lacustrine oil shale in the geological record, in Katz B J, ed., Lacustrine basin exploration- case studies and modern analogues, AAPG Memoir 50, 1990, 43-60
    111. Su Wenbo, Huff Warren D, Ettensohn Frank R., et al., K-bentonite, black-shale and flysch successions at the Ordovician-Silurian transition, South China: Possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana, Gondwana Research , 2008, doi: 10.1016/j.gr.2008.06.004
    112. Sun S.S, McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. From Saunders A.D. & Norry M.J.(eds). Magmatism in the ocean basins. Geological society special publication, 1989, 42:313-345
    113. Tian Y, Zhao D P, Sun R M, et al., Seismic imaging of the crust and upper mantle beneath the north China craton. Physics of the Earth and Planetary Interiors, 2009, 172: 169~182
    114. Tsuda A, Takeda S, Saito H, et al. A mesoscale iron enrichment in the western Subarctic Pacific induces a large centric diatom bloom. Science, 2003, 300:958-961
    115. Ward P D, Haggart J W, Carter E S, et al. Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction. Science, 2001, 292: 1148-1151
    116. Wignall P B, Sun Yadong, Bond D P G, et al. Volcanism, Mass extinction, and carbon isotope fluctuations in the middle Permian of China. Science, 2009, 324: 1179-1182
    117. Wignall P B. Large igneous provinces and mass extinctions. Earth-Science Reviews, 2001, 53: 1-33
    118. Wilkinson J J, Earls G. A high-temperature hydrothermal origin for black dolomite matrix breccias in the Irish Zn-Pb orefiled. Mineralogical magazine, 2000, 64(6):1017-1036
    119. Wood D.A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary vocanic province. EPSL, 1980, 50: 11~30
    120. Wright J, Holser W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochim. Et Cosmochim. Acta, 1987, 51:631-644
    121. Yang H, Zhang W Z, Wu, K, et al. Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Erdos basin, China. Journal of Asian earth sciences, 2010, 39:285-293
    122. Zheng Y.F, Wang Z. R, Li S.G, et al. Oxygen isotope equilibrium between eclogite minerals and its constraint on mineral Sm-Nd chronometer. Geochimica et Cosmochimica Acta, 2002, 66(4): 625~634
    123. Zhou Yiping, Bohor Bruce F, Ren Youliang. Trace elment geochemistry of altered volcanic ash layers (tonsteins) in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Provinces, China. International journal of coal geology, 2000, 44:305~324
    124.曹红霞,李文厚,陈全红,等.鄂尔多斯盆地南部晚三叠世沉降与沉积中心研究.大地构造与成矿学, 2008, 32(2):159-164
    125.曹红霞.鄂尔多斯盆地晚三叠世沉积中心迁移演化规律研究.西安:西北大学博士学位论文, 2007
    126.长庆油田地质志编写组.中国石油地质志(卷十二)-长庆油田.北京:石油工业出版社, 1992
    127.陈刚,孙建博,周立发,等.鄂尔多斯盆地西南缘中生代构造时间的裂变径迹年龄记录.中国科学(D辑:地球科学), 2007, 37(增刊Ⅰ):110-118
    128.陈践发,张水昌,孙省利,等.海相碳酸盐岩优质烃源岩发育的主要影响因素.地质学报, 2006, 80(3): 467-472
    129.陈骏,王鹤年.地球化学.北京:科学出版社, 2004
    130.陈全红,李文厚,高永祥,等.鄂尔多斯盆地上三叠统延长组湖相沉积与油气聚集意义.中国科学D辑:地球科学, 2007, 37(增刊Ⅰ): 39~48
    131.陈全红,李文厚,郭艳琴,等.鄂尔多斯盆地南部延长组浊积岩体系及油气勘探意义.地质学报, 2006, 80(5): 656~663
    132.陈中红,查明.湖相烃源岩Ro异常与无机元素相关性初探.地球化学, 2007, 36(3): 275-278
    133.迟清华,鄢明才.铂族元素在地壳、岩石和沉积物中的分布.地球化学, 2006, 35(5):461-471
    134.崔攀峰,李健,胡海涛,等.宏观藻类化石在沉积相研究中的意义.石油学报, 2000, 21(5): 36-38
    135.代世峰,任德贻,周义平,等.煤中微量元素和矿物富集的同沉积火山灰与海底喷流复合成因. 2008, 53(24):3120-3126
    136.党犇,赵虹,付金华,等.鄂尔多斯盆地沉积盖层构造裂缝特征研究.天然气工业, 2005, 25(7): 14-16
    137.邓秀芹,李文厚,刘新社,等.鄂尔多斯盆地中三叠统与上三叠统地层界线讨论.地质学报, 2009, 83(8):1089-1096
    138.邓秀芹,蔺昉晓,刘显阳,等.鄂尔多斯盆地三叠系延长组沉积演化及其与早印支运动关系的探讨.古地理学报, 2008, 10(2): 159-166
    139.丁燕云.鄂尔多斯盆地北部航磁反映的构造特征.物探与化探, 2002, 24(3):197-202
    140.丁振举,刘丛强,周宗桂,等著.碧口地块古海底热水喷流沉积及其成矿作用地球化学示踪.北京:地质出版社, 2003
    141.董云鹏,张国伟.造山带与前陆盆地结构构造及动力学研究思路和进展.地球科学进展, 1997, 12(1):1-6
    142.杜远生,韩欣.论震积作用和震积岩.地球科学进展, 2000, 15(4):389-394
    143.段毅,等著.中国西部盆地油藏地球化学.北京:科学出版社, 2010:67-165
    144.段毅,于文修,刘显阳,等.鄂尔多斯盆地长9油层组石油运聚规律研究.地质学报, 2009, 83(6): 855-860
    145.樊太亮,李卫东.层序地层应用于陆相油藏预测的成功实例.石油学报, 1999, 20(2):12-17
    146.方国庆,王多云,林锡祥,等.陕甘宁盆地中部东西向构造带的确定及其聚气意义.石油与天然气地质, 1999, 20(3):195-198
    147.付金华,郭正权,邓秀芹.鄂尔多斯盆地西南地区上三叠统延长组沉积相及石油地质意义.古地理学报, 2005, 7(1):34-44
    148.付金华,孙六一,等.鄂尔多斯盆地东部上古生界浅层天然气成藏机理与勘探方向.长庆油田勘探开发研究院, 2002
    149.付锁堂,邓秀芹,庞锦莲.晚三叠世鄂尔多斯盆地湖盆沉积中心厚层砂体特征及形成机制分析.沉积学报, 2010, 28(6):1081-1089
    150.傅强,吕苗苗,刘永斗.鄂尔多斯盆地晚三叠世湖盆浊积岩发育特征及地质意义.沉积学报, 2008, 26(2):186-192
    151.高山,张本仁.秦岭造山带及其邻区岩石的放射性与岩石圈的现代热结构和热状态.地球化学, 1993, 3:241-251
    152.龚再升.中国近海大油气田.北京:石油工业出版社, 1997
    153.郭艳琴,李文厚,陈全红,等.鄂尔多斯盆地安塞-富县地区延长组-延安组原油地球化学特征及油源对比.石油与天然气地质, 2006, 27(2):218-224
    154.郭耀华.镇-泾地区三叠系延长组烃源岩沉积有机相分析及评价.河南石油, 2004, 18(2):8-10
    155.郭占谦.成矿热液与石油生成.新疆石油地质, 2001, 22(3): 181-184
    156.何登发,庄忠海,马永生.松潘-阿坝地块三叠系古地磁结果及运动学意义.现代地质, 2007, 21(3):556-563
    157.何自新,杨华,费安琪,等.鄂尔多斯盆地演化与油气.北京:石油工业出版社, 2003
    158.赫英,潘爱芳,刘养杰,等.盆地深部流体及其成藏(矿)效应研究现状评述.见刘池洋主编,盆地多种能源矿产共存富集成藏(矿)研究进展,北京:科学出版社, 2005, 43-49
    159.侯林慧,彭平安,于赤灵,等.鄂尔多斯盆地姬源-西峰地区原油地球化学特征及油源分析.地球化学, 2007, 36(5):497-506
    160.胡朝元.生油区控制油气田分布--中国东部陆相盆地进行区域勘探的有效理论.石油学报, 1982, 3(2): 9-13
    161.胡艳华,刘健,周明忠等,等.奥陶纪和志留纪钾质斑脱岩研究评述.地球化学, 2009, 38(3):393-404
    162.华保钦.陕西、宁夏地区晚三叠世淡水瓣鳃类化石.古生物学报, 1965, 13(3):379-400
    163.黄志龙,高岗,刚文哲,等.鄂尔多斯盆地三叠系延长组长6和长4+5段烃源岩生烃潜力及有利生烃区评价.中国石油长庆油田分公司勘探开发研究院内部报告, 2004
    164.吉利明,吴涛,李林涛.陇东三叠系延长组主要油源岩发育时期的古气候特征.沉积学报, 2006, 24(3):426-431
    165.吉利明,祝幼华,王少飞.鄂尔多斯盆地三叠系延长组葡萄藻形态特征.古生物学报, 2008, 47(2):185-194
    166.贾进斗,何国琦,李茂松,等.鄂尔多斯盆地基底结构特征及其对古生界天然气的控制.高校地质学报, 1997, 3(2):144-153
    167.江为为,郝天珧,宋海斌.鄂尔多斯盆地地质地球物理场特征与地壳结构.地球物理学进展, 2000, 15(3):45-53
    168.金强,查明,赵磊.柴达木盆地西部第三系盐湖相有效生油岩的识别.沉积学报, 2001, 19(1): 125-129
    169.金强,熊寿生,卢培德.中国断陷盆地主要生油岩中火山活动及其意义.地质论评, 1998, 44(2):136-142
    170.金强,朱光有.中国中新生代咸化湖盆烃源岩沉积的问题及相关进展.高校地质学报, 2006, 12(4): 483-492
    171.金之钧,胡文瑄,张刘平,等.深部流体活动及油气成藏效应.北京:科学出版社,2007
    172.金之钧,杨雷,曾溅辉,等.东营凹陷深部流体活动及其生烃效应初探.石油与勘探开发, 2002, 29(2):42-44
    173.孔庆芬.鄂尔多斯盆地延长组烃源岩有机显微组分特征.新疆石油地质, 2007, 28(2):163-166
    174.赖绍聪,张国伟,秦江锋,等.青藏高原东北缘伯阳第三系流纹岩地球化学及岩石成因.地学前缘(中国地质大学(北京);北京大学). 2006,13(4):212-220
    175.李凤杰,王多云,张庆龙,等.鄂尔多斯盆地陇东地区延长组沉积相特征与层序地层分析.沉积学报, 2006, 24(4):549-554
    176.李洁,陈洪德,林良彪,等.鄂尔多斯盆地东南部延长组古地震效应及其地质启迪.地质论评, 2010, 56(4): 480-489
    177.李明,高建荣.鄂尔多斯盆地基底断裂与火山岩的分布.中国科学:地球科学, 2010, 40(8):1005-1013
    178.李清河,郭守年,吕德徽.鄂尔多斯西缘与西南缘深部结构与构造.北京:地震出版社, 1999
    179.李荣西,席胜利,邸领军.鄂尔多斯盆地中部断裂带方解石天然气包裹体研究.石油实验地质, 2006, 28(5): 463-466
    180.李树同,王多云,陶辉飞,等.鄂尔多斯盆地三叠纪延长期湖水分布特征及演化规律.沉积学报, 2009, 27(1):41-47
    181.李树同,王多云,王彬,等.坳陷型湖盆缓坡边缘沉积坡折带的识别.天然气地球科学, 2008, 19(1) :83-88
    182.李思田.沉积盆地的动力学分析-盆地研究领域的主要趋向.地学前缘, 1995,2(3-4): 1-8
    183.李思田.大型油气系统形成的盆地动力学背景.地球科学——中国地质大学学报, 2004, 29(5): 505-512
    184.李文厚,庞军刚,曹红霞,等.鄂尔多斯盆地晚三叠世延长期沉积体系及岩相古地理演化.西北大学学报(自然科学版), 2009, 39(3): 501-506
    185.李文厚,邵磊,魏红红,等.西北地区湖相浊流沉积.西北大学学报(自然科学版), 2001, 31(1): 57-62
    186.李相博,刘化清,陈启林,等.大型坳陷湖盆沉积坡折带特征及其对砂体与油气的控制作用——以鄂尔多斯盆地三叠系延长组为例.沉积学报, 2010, 28(4):717-729
    187.李相博,刘化清,陈启林,等.大型坳陷湖盆沉积坡折带特征及其对砂体与油气的控制作用——以鄂尔多斯盆地三叠系延长组为例.沉积学报, 2010, 28(4):717-729
    188.李元昊,刘池洋,王秀娟,等.鄂尔多斯盆地三叠系延长组砂岩强(脉)特征及其地质意义.中国地质, 2007, 34(3): 400~406
    189.李祯,温显端,周慧堂,等.鄂尔多斯盆地东缘中生代延长组浊流沉积的发现与意义.现代地质, 1995, 9(1): 99-106
    190.梁文天.秦岭造山带东西秦岭交接转换区陆内构造特征与演化过程.西安:西北大学博士学位论文, 2009
    191.刘宝珺.沉积成岩作用研究的若干问题.沉积学报, 2009,27(5):787-791
    192.刘本培.陕甘宁盆地中生代地层古生物(下册).北京:地质出版社, 1980
    193.刘池洋,邱欣卫,吴柏林,等.中-东亚能源矿产成矿域基本特征及其形成的动力学环境.中国科学D辑:地球科学, 2007, 37(增刊Ⅰ): 1~15
    194.刘池洋,赵红格,桂小军,等.鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应.地质学报, 2006, 80(5): 617-638
    195.刘池洋,赵红格,王锋,等.鄂尔多斯盆地西缘(部)中生代构造属性.地质学报, 2005, 79(6): 738-747
    196.刘池洋,赵重远,杨兴科.活动性强、深部作用活跃——中国沉积盆地的两个重要特点.石油与天然气地质, 2000, 21(1):1-6
    197.刘池洋.渤海湾盆地的构造演化及其特点.见:西北大学地质系编.西北大学地质系成立45周年学术报告会论文集.西安:陕西科学技术出版社, 1987, 447~458
    198.刘池洋.沉积盆地动力学与盆地成藏(矿)系统.地球科学与环境学报, 2008, 30(1): 1~23
    199.刘池洋.含油气盆地沉积-沉降中心迁移的形成机制探讨.第五届全国沉积学及岩相古地理学学术会议论文集,王宜林,主编.新疆科技卫生出版社,1997, 275-278
    200.刘池洋.后期改造强烈——中国沉积盆地的重要特点之一.石油与天然气地质, 1996,17(4):255-261
    201.刘池洋.盆地多种能源矿产共存富集成藏(矿)研究进展.北京:科学出版社, 2005
    202.刘池洋.盆地构造动力学研究的弱点、难点及重点.地学前缘, 2005,12(3):113-124
    203.刘池洋.叠合盆地特征及油气赋存条件.石油学报, 2007, 28(1):1-7
    204.刘传联,徐金鲤,汪品先.藻类勃发——湖相油源岩形成的一种重要机制.地质论评, 2001, 47(2):207-210
    205.刘豪,王英民,王媛,等.坳陷湖盆坡折带特征及其对非构造圈闭的控制.石油学报, 2004, 25(2) :30-35
    206.刘和甫,汪泽成,熊保贤,等.中国中西部中、新生代前陆盆地与挤压造山带耦合分析.地学前缘, 2000,7(3): 55-72
    207.刘联群,李勇,康立明,等.鄂尔多斯盆地晚三叠世最大湖泛泥岩分布特征.西北大学学报(自然科学版), 2010, 40(5):866-871
    208.刘洛夫,金之均.中国大中型油气田的主力烃源岩分布特征.石油学报, 2002, 23(5): 6-13
    209.刘少峰,李思田,庄新国,等.鄂尔多斯西南缘前陆盆地沉降和沉积过程模拟.地质学报, 1996, 70(1):12-22
    210.刘绍龙.华北地区大型三叠纪原始沉积盆地的存在.地质学报, 1986, 60 (2):128~138
    211.刘宪斌,万晓樵,林金逞,等.陆相浊流沉积体系与油气.地球学报, 2003, 24(1):61-66
    212.刘晔,柳小明,胡兆初,等. ICP-MS测定地质样品中37个元素的准确度和长期稳定性分析.岩石学报, 2007, 23(5):1203-1210
    213.柳益群,李红,朱玉双,等.白云岩成因探讨:新疆三塘湖盆地发现二叠系湖相喷流型热水白云岩.沉积学报, 2010, 28(5): 861-867
    214.卢龙飞,史基安,蔡进功,等.鄂尔多斯盆地西峰油田三叠系延长组浊流沉积及成因模式.地球学报, 2006, 27(4): 303~309
    215.卢宗盛,陈斌.陕西横山晚三叠世鱼类游泳遗迹(Undichna)的发现.古生物学报, 1998, 37(1): 76-84
    216.吕强,赵俊兴,陈洪德,等.鄂尔多斯盆地南部中生界延长组物源与盆地底形分析.成都理工大学学报(自然科学版), 2008, 35(6): 610-616
    217.马素萍,漆亚玲,张晓宝,等.西峰油田延长组烃源岩生烃潜力评价.石油勘探与开发, 2005, 32(3):51-54
    218.毛光周.铀对烃源岩生烃演化的影响.西安:西北大学博士学位论文, 2009
    219.毛景文,张光弟,杜安道,等.遵义黄家湾镍钼铂族元素矿床地质、地球化学和Re-Os同位素年龄测定——兼论华南寒武系底部黑色页岩多金属成矿作用.地质学报, 2001, 75(2):234-243
    220.苗建宇,赵建设,李文厚,等.鄂尔多斯盆地南部烃源岩沉积环境研究.西北大学学报(自然科学版),2005, 35(6):771-776
    221.闵琪,付金华,席胜利,等.鄂尔多斯盆地上古生界天然气运移聚集特征.石油勘探与开发, 2000, 27(4): 26~32
    222.潘爱芳,马润勇,黎荣剑,等.鄂尔多斯盆地深部流体地球化学研究.北京:石油工业出版社, 2006
    223.裴先治,丁仨平,胡波,等.西秦岭天水地区新生代酸性火山岩地球化学特征及其构造意义.岩石矿物学杂志, 2004,23(3):227-235
    224.蒲仁海,姚宗慧,张艳春.鄂尔多斯盆地古构造演化在气田形成中的作用及意义.天然气工业, 2000, 20(6): 27~29
    225.戚华文,胡瑞忠,苏文超,等.陆相热水沉积成因硅质岩与超大型锗矿床的成因——以临沧锗矿床为例.中国科学(D辑),2003, 33(3):236-246
    226.乔秀夫,宋天锐,高林志,等.碳酸盐岩振动液化地震序列.地质学报, 1994, 68(1):16-32
    227.乔秀夫.中国震积岩的研究与展望.地质论评, 1996,42(4):317-32
    228.秦建中等,著.中国烃源岩.北京:科学出版社, 2005, 1-614
    229.秦江锋.秦岭造山带晚三叠世花岗岩类成因机制及深部动力学背景.西安:西北大学博士学位论文, 2010
    230.秦艳,张文正,彭平安,等.鄂尔多斯盆地延长组长7段富铀烃源岩的铀赋存状态与富集机理.岩石学报, 2009, 25(10):2469-2476
    231.邱欣卫,刘池洋,李元昊,毛光周,等.鄂尔多斯盆地延长组凝灰岩夹层展布特征及其地质意义.沉积学报, 2009,27(5): 1138-1146
    232.邱欣卫,刘池洋,毛光周,等.鄂尔多斯盆地延长组火山灰沉积物岩石地球化学特征.地球科学, 2011, (1):139-150
    233.邱欣卫,刘池洋,毛光周,等.鄂尔多斯盆地延长组凝灰岩夹层Th元素富集特征.地质通报, 2010,29(8): 1185-1191
    234.邱欣卫.鄂尔多斯盆地延长组凝灰岩夹层特征和形成环境.西安:西北大学硕士学位论文, 2008
    235.屈健鹏,朱佐全,杨国栋,等.鄂尔多斯地块西缘定边-景泰地壳和上地幔电性结构分析.西北地震学报, 1998, 20(2):70-75
    236.任纪舜,邓平,肖藜薇,等.中国与世界主要含油区大地构造比较分析.地质学报, 2006, 80(10): 1491-1500
    237.任战利,张盛,高胜利,等.鄂尔多斯盆地热演化程度异常分布区及形成时期探讨.地质学报, 2006, 80(5): 674-684
    238.石亚军,陈武杰,曹正林,等.柴达木盆地西南区震积岩的发现及其引发的勘探启迪.地质学报, 2009, 83(8):1178-1184
    239.宋天锐.北京十三陵前寒武纪碳酸盐岩地层中的一套可能的地震—海啸序列.科学通报, 1988, 38(8):609-611
    240.孙少华,李小明,龚革联,等.鄂尔多斯盆地构造热事件研究.科学通报, 1997, 42(3): 306-308
    241.孙少华,刘顺生,汪集旸.鄂尔多斯盆地热流场特征.大地构造与成矿学, 1996, 22(1): 29-37
    242.孙亚莉,管希云,杜安道.锍试金富集贵金属元素Ⅰ.等离子体质谱法测定地质样品中痕量铂族元素.岩矿测试, 1997, 16(1):12-17
    243.孙亚莉,孙敏,巩爱华.小锍试金铂族元素富集方法.分析化学研究简报, 2000, 28(8): 1010-1012
    244.谭成仟,刘池洋,赵军龙,等.鄂尔多斯盆地典型地区放射性异常特征及其地质意义.中国科学D辑:地球科学, 2007, 37(增刊Ⅰ): 147~156
    245.汤锡元,郭忠铭,陈荷立,等.陕甘宁盆地西缘逆冲推覆构造及油气勘探.西安:西北大学出版社, 1992
    246.唐有彩,冯永革,陈永顺,等.山西断陷带地壳结构的接收函数研究.地球物理学报, 2010, 53(9): 2102-2109
    247.腾格尔,刘文汇,徐永昌,等.缺氧环境及地球化学判识标志的探讨——以鄂尔多斯盆地为例.沉积学报, 2004, 22(2):365-372
    248.腾格尔,刘文汇,徐永昌,等.无机地球化学参数与有效烃源岩发育环境的相关性研究.地球科学进展, 2005, 20(2): 193-200
    249.滕吉文,王夫运,赵文智,等.鄂尔多斯盆地上地壳速度分布与沉积建造和结晶基底起伏的构造研究.地球物理学报, 2008, 51(6):1753-1766
    250.滕吉文,王夫运,赵文智,等.阴山造山带-鄂尔多斯盆地岩石圈层、块速度结构与深层动力过程.地球物理学报, 2010, 53(6):67-85
    251.滕吉文,杨辉,张雪梅.中国地球动力学研究的方向和任务.岩石学报, 2010, 26(11):3159-3176
    252.田建锋,刘池洋,王桂成,邱欣卫.鄂尔多斯盆地三叠系延长组砂岩的碱性溶蚀作用.地球科学-中国地质大学学报, 2011,36(1): 103-110
    253.田世澄,陈永进,张兴国,等.论成藏动力学系统中的流体动力学机制.地学前缘, 2001, 8(4): 330-336
    254.万从礼,翟庆龙,金强.生油岩与火成岩的相互作用研究初探——有机酸对火成岩的蚀变及过渡金属对有机质演化的催化作用.地质地球化学, 2001, 29(2): 46-51
    255.汪品先,刘传联.含油盆地古湖泊学研究方法.北京:海洋出版社, 1993
    256.汪泽成,赵文智,门相勇,等.基底断裂“隐性活动”对鄂尔多斯盆地上古生界天然气成藏的作用.石油勘探与开发, 2005, 32(1): 9-13
    257.王昌勇,郑荣才,高振中.准噶尔盆地下侏罗统八道湾组震积岩的发现及其研究意义.地质论评, 2008, 54(6):821-826
    258.王国栋,程日辉,王璞珺,等.松辽盆地青山口组震积岩的特征、成因及其构造-火山事件.岩石学报, 2010, 26(1):121-129
    259.王建强.鄂尔多斯盆地南部中新生代演化-改造及盆山耦合关系.西安:西北大学博士学位论文, 2010
    260.王良书.多种能源矿产共存成藏(矿)机理与富集分布规律973项目子课题《鄂尔多斯盆地南部深部构造宽频地震观测研究》结题报告,2008
    261.王起琮,李文厚,赵虹,等.靖边—安塞地区延长组长1段沉积相特征.西北大学学报(自然科学版), 2006, 36(1):107-111
    262.王起琮,李文厚,赵靖舟,等.鄂尔多斯盆地延长组长1段烃源岩有机地球化学特征.煤田地质与勘探, 2006, 34(1):26-29
    263.王清晨,严德天,李双建.中国南方志留系底部优质烃源岩发育的构造-环境模式.地质学报, 2008, 82(3): 289-297
    264.王瑞飞,孙卫.鄂尔多斯盆地姬源油田上三叠统延长组超低渗透砂岩储层微裂缝研究.地质论评, 2009, 55(3):444-448
    265.王涛,徐鸣洁,王良书,等.鄂尔多斯及邻区航磁异常特征及其大地构造意义.地球物理学报, 2007, 50(1):163-170
    266.王同和.华北克拉通中腰纬向构造带的特征及演化.山西地质, 1992, 7(3):301-312
    267.王晓伏,王成善,冯子辉,等.陆相盆地充填类型及对烃源岩形成的控制:以松辽盆地为例.地学前缘, 2009, 16(5):192-200
    268.王鑫,詹艳,赵国泽,等.鄂尔多斯盆地西缘构造带北段深部电性结构.地球物理学报, 2010, 53(3):595-604
    269.王学军,陈杰.鄂尔多斯盆地镇北地区油源对比及石油运移方向.石油天然气学报, 2009, 31(2): 35-40
    270.王学军,王志欣,刘显阳,等.利用铀的测井响应恢复鄂尔多斯盆地古水深.天然气工业, 2008, 28(7):46-48
    271.王英民,刘豪,李立诚,等.准噶尔大型坳陷盆地坡折带的类型和分布特征.地球科学, 2002, 27(6):683-687
    272.魏垂高,张世奇,姜在兴,等.塔里木盆地志留系震积岩特征及其意义.地质学报, 2007, 81(6): 827-833
    273.魏文博,金胜,叶高峰,等.华北地区大地电磁测深及岩石圈厚度讨论.中国地质, 2006, 33(4): 762-772
    274.吴朝东,申延平.湘西黑色岩系铂族元素地球化学特征及富集因素.自然科学进展, 2001, 11(5): 507-513
    275.吴朝东,杨承运,陈其英.湘西黑色岩系地球化学特征和成因意义.岩石矿物学杂志, 1999, 18(1):26-39
    276.吴根耀,马力.“盆”、“山”耦合和脱耦:含油气盆地研究的新思路.大地构造与成矿学, 2004, 28(2): 389-403
    277.吴志亮.热水沉积成岩成矿作用.北京:地质出版社, 1996
    278.席胜利,王涛,刘新社,等.鄂尔多斯盆地烃源岩类型分布及生烃潜力评价.中国石油长庆油田分公司勘探开发研究院内部报告, 2002
    279.夏青松,田景春.鄂尔多斯盆地南部上三叠统延长组震积岩的发现及地质意义.沉积学报, 2007, 25(2): 246~252
    280.夏群科.上地幔矿物中的氢.地学前缘(中国地质大学,北京), 2000, 7(1):160
    281.肖荣阁,杨忠芳,杨卫东,等.热水成矿作用.地学前缘, 1994, 1(3-4):140-147
    282.肖荣阁,张宗恒,罗卉泉,等.地质流体自然类型与成矿流体类型.地学前缘, 2001, 8(4): 245 -251
    283.徐学义,王洪亮,陈隽璐,等.西秦岭天水尹道寺中生代酸性火山岩锆石U-Pb定年和元素地球化学研究.岩石学报, 2007, 23(11):2845-2856
    284.许志琴,李廷栋,杨经绥,等.大陆动力学的过去、现在和未来——理论与应用.岩石学报, 2008, 24(7):1433-1444
    285.许志琴,杨经绥,嵇少丞,等.中国大陆构造及动力学若干问题的认识.地质学报, 2010, 84(1): 1-29
    286.杨华,窦伟坦,刘显阳,等.鄂尔多斯盆地三叠系延长组长7沉积相分析.沉积学报, 2010, 28(2): 254-263
    287.杨华,田景春,王峰,等著.鄂尔多斯盆地三叠纪延长组沉积期湖盆边界与底形及事件沉积研究.北京:地质出版社, 2009
    288.杨华,张文正.论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用:地质地球化学特征.地球化学, 2005, 34(2):147-154
    289.杨俊杰.鄂尔多斯盆地构造演化与油气分布规律.北京:石油工业出版社, 2002
    290.杨友运.印支期秦岭造山活动对鄂尔多斯盆地延长组沉积特征的影响.煤田地质与勘探, 2004, 5:7-9
    291.杨玉芳,钟建华,王海侨,等.松辽盆地青山口组震积岩特征及油气地质意义.西南石油大学学报(自然科学版), 2010, 32(3):41-50
    292.叶先任,任建国,陶明信,等.事件沉积及其周期性的氦同位素指示.沉积学报, 2003, 21(4): 640-647
    293.游国庆,潘家华,童英.江汉盆地海相地层有效烃源岩的识别.地质通报, 2006, 25(9-10): 1156-1159
    294.喻建,杨亚娟,杜金良.鄂尔多斯盆地晚三叠世延长组湖侵期沉积特征.石油勘探与开发, 2010, 37(2):181-187
    295.袁静,陈鑫,张善文.济阳坳陷古近系软沉积变形层中的砂岩脉特征.石油学报, 2008, 29(3):336-340
    296.袁选俊,谯汉生.渤海湾盆地富油气凹陷隐蔽油气藏勘探.石油与天然气地质, 2002,23(2):130-133.
    297.岳信东,林春明,李艳丽,等.二连盆地白音查干凹陷下白垩统震积岩的发现及其地质意义.高校地质学报, 2009, 15(1):57-62
    298.曾联波,高春宇,漆家福,等.鄂尔多斯盆地陇东地区特低渗透砂岩储层裂缝分布规律及其渗流作用.中国科学D辑:地球科学, 2008, 38(增刊Ⅰ):41-47
    299.曾联波,李忠兴,史成恩,等.鄂尔多斯盆地上三叠统延长组特低渗透砂岩储层裂缝特征及成因.地质学报, 2007, 81(2):174-280
    300.张本浩,吴柏林,邱欣卫,等.鄂尔多斯盆地延长组长7富铀烃源岩铀的赋存状态.西北地质, 2011,(6),待刊
    301.张成立,王涛,王晓霞.秦岭造山带早中生代花岗岩成因及其构造环境.高校地质学报,2008, 14(3):304-316
    302.张光弟,李九玲,熊群尧,等.贵州遵义黑色页岩铂族金属富集特点及富集模式.矿床地质, 2002, 21(4):377-386
    303.张国伟,程顺有,郭安林,等.秦岭—大别中央造山系南缘勉略古缝合带的再认识——兼论中国大陆主体的拼合.地质通报, 2004, 23(9-10):846-853
    304.张国伟,董云鹏,裴先治,等.关于中新生代环西伯利亚陆内构造体系域问题.地质通报, 2002, 21(4-5):198-201
    305.张国伟,孟庆任,赖绍聪,等.秦岭造山带的结构构造.中国科学(B辑), 1995, 25(9): 994-1003
    306.张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学.北京:科学出版社, 2001
    307.张泓,李恒堂,熊存卫,等.中国西北侏罗纪含煤地层与聚煤规律.北京:地质出版社, 1998, 115~119
    308.张进,马宗晋,任文军.鄂尔多斯盆地西缘逆冲断褶带构造特征及其南北差异的形成机制.地质学报, 2004, 78(5): 601~611
    309.张景廉,朱炳泉,张平中,等.克拉玛依乌尔禾沥青脉Pb-Sr-Nd同位素地球化学.中国科学(D辑), 1997, 27(4): 325-330
    310.张俊明,李国祥,周传明.滇东下寒武统含磷岩系底部火山喷发事件沉积及其意义.地层学杂志,1997,21(2): 91~99
    311.张莉,杨亚娟,张玉玲,等.陕甘宁盆地川口油田低渗透油藏长6油层裂缝特征.西北地质, 2002, 35(2):41-45
    312.张立飞.陕北鄂尔多斯盆地埋藏变质作用研究.地质学报, 1992, 66(4):339-349
    313.张仁杰.河南渑池、南召地区晚三叠世淡水瓣鳃类化石及其意义.古生物学报, 1978: 135-145
    314.张世奇,任延广.松辽盆地中生代沉积基准面变化研究.长安大学学报(地球科学版), 2003, 25(2):1-5
    315.张文正,杨华,傅锁堂,等.鄂尔多斯盆地长91湖相优质烃源岩的发育机制探讨.中国科学D辑:地球科学, 2007, 37(增刊Ⅰ): 33-38
    316.张文正,杨华,李剑锋,等.论鄂尔多斯盆地长7段优质烃源岩在低渗透油气成藏富集中的主导作用——强生排烃特征及机理分析. 2006,石油勘探与开发, 2006, 33(3): 289-293
    317.张文正,杨华,彭平安,等.晚三叠世火山活动对鄂尔多斯盆地长7优质烃源岩发育的影响.地球化学, 2009, 38(6):573-582
    318.张文正,杨华,谢丽琴,等.湖底热水活动及其对优质烃源岩发育的影响——以鄂尔多斯盆地长7烃源岩为例.石油勘探与开发, 2010, 37(4):424-429
    319.张文正,杨华,杨奕华,等.鄂尔多斯盆地延长组长7优质烃源岩的岩石学与元素地球化学特征.地球化学, 2008, 37(1):479-485
    320.赵国泽,詹艳,王立凤,等.鄂尔多斯断块地壳电性结构.地震地质, 2010,32(3):345-359
    321.赵红格,刘池洋,王峰.鄂尔多斯盆地西缘的构造分区性探讨.地学前缘(中国地质大学(北京);北京大学), 2005, 12(4):200
    322.赵红格,刘池洋,王锋,等.贺兰山隆升时限及其演化.中国科学D辑:地球科学, 2007, 37(增刊Ⅰ): 185~192
    323.赵靖舟,杨县超,武富礼,等.论隆起背景对鄂尔多斯盆地陕北斜坡区三叠系油藏形成和分布的控制作用.地质学报, 2006, 80(5): 648~655
    324.赵俊峰,刘池洋,王晓梅,等.吕梁山地区中—新生代隆升演化探讨.地质论评2009, 55(5): 663-672
    325.赵俊兴,李凤杰,申晓莉,等.鄂尔多斯盆地南部长6和长7油层浊流事件的沉积特征及发育模式.石油学报, 2008, 29(3):389-394
    326.赵孟为.划分成岩作用与埋藏变质作用的指标及其界线.地质论评, 1995, 41(3):238-244
    327.赵孟为.磷灰石裂变径迹分析在恢复盆地沉降抬升史中的应用——以鄂尔多斯盆地为例.地球物理学报, 1996, 39(增刊):238-248
    328.赵文智,胡素云,汪泽成,等.鄂尔多斯盆地基底断裂在上三叠统延长组石油聚集中的控制作用.石油勘探与开发, 2003, 30(5): 1~5
    329.赵文智,邹才能,谷志东,等.砂岩透镜体油气成藏机理初探.石油勘探与开发, 2007, 34(3): 273-284
    330.赵文智,邹才能,汪泽成,等.富油气凹陷“满凹含油”论——内涵与意义.石油勘探与开发, 2004, 31(2):5-13
    331.赵彦彦,郑永飞.碳酸盐沉积物的成岩作用.岩石学报, 2011, 27(2):501-519
    332.赵重远,刘池洋.残延克拉通内盆地及其含油气性—以鄂尔多斯盆地和四川盆地为例.见:中国地质学会编,“七五”地质科技重要成果学术交流会议论文选集.北京:科学技术出版社, 1992, 610~613
    333.赵重远,刘池洋.华北克拉通中新生代区域地质构造及含油气盆地的形成和演化.见:赵重远,刘池洋,等著.华北克拉通沉积盆地形成与演化及其油气赋存.西北大学出版社, 1990, 10~21
    334.赵宗举,张润合,郑兴平,等.鄂尔多斯盆地上三叠统延长组长1-长4+5烃源岩研究及资源评价.中国石油天然气股份有限公司杭州石油地质研究所内部报告, 2000
    335.郑德文,张培震,万景林,等.六盘山盆地热历史的裂变径迹证据.地球物理学报, 2005,48(1): 157~164
    336.郑孟林,王桂梁. 38°构造带及其对晚古生代煤系的控制作用.中国煤田地质, 1995, 7(4):32-36
    337.郑荣才,王成善,朱利东,等.酒西盆地首例湖相“白烟型”-热水沉积白云岩的发现及其意义.成都理工大学学报:自然科学版, 2003, 30(1):1-8
    338.郑荣才,文华国,韩永林,等.鄂尔多斯盆地白豹地区长6油层组湖底滑塌浊积扇沉积特征及其研究意义.成都理工大学学报(自然科学版), 2006, 33(6):566-575
    339.郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社, 2000
    340.钟蓉,孙善平,陈芬,等.大青山、大同煤田太原组流纹质沉凝灰岩的发现及地层对比.地球学报, 1995, 5: 291~301
    341.钟蓉,孙善平,傅泽明.山东及邻区晚石炭世-早二叠世火山事件沉积及地层对比.地质学报, 1996,70(2): 142~152
    342.周荔青,刘池阳.深大断裂与中国东部新生代油气资源分布.石油工业出版社, 2006
    343.朱光有,金强,张水昌.烃源岩非均质性的控制因素研究——以东营凹陷为例.矿物岩石, 2003, 23(4): 95-100
    344.朱光有,金强.东营凹陷两套优质烃源岩层地质地球化学特征研究.沉积学报, 2003, 21(3): 506-512
    345.朱日祥,杨振宇,吴汉宁,等.中国主要地块显生宙古地磁视极移曲线与地块运动[J].中国科学(D辑), 1998, 28(增刊):1-16
    346.朱伟林,葛建党.渤海海域天然气勘探前景分析.石油学报, 2001, 22(2):8-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700