用户名: 密码: 验证码:
阿尔金断裂中段新生代活动过程及盆地响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长达1600km的阿尔金断裂是青藏高原的北界,它分隔了具有坚硬岩石圈的塔里木板块和相对较软的青藏高原,是高原上最重要、规模最大的走滑断裂,其新生代的演化一直是目前地质学界的研究热点之一,同时也是争论的焦点。本文利用位于阿尔金断裂中段南侧同时也是青藏高原内部面积最大的沉积盆地—柴达木盆地的沉积和构造响应来研究这一巨型的左旋走滑断裂在新生代以来的活动过程,并初步得出以下认识:
     (1)柴达木盆地西北缘新生代层序自下而上可明显分为三段:下段包括路乐河组和下干柴沟组(约36Ma之前),此时沉积环境稳定,以滨湖-浅湖相为主,沉积范围广阔,可能一直越过现今阿尔金山与塔里木盆地东南缘相接;中段包括上干柴沟组和下油砂山组,岩性为物源来自阿尔金山的河流相-冲积扇相粗碎屑沉积,剖面上构成向上变粗的磨拉石层序,说明此时阿尔金山进入了持续隆升的演化阶段,这一隆升过程的强度和范围在下油砂山组沉积末期(约15Ma)达到最大;上段由上油砂山组、狮子沟组和七个泉组组成,它们角度不整合于下伏地层之上,并向阿尔金山方向大规模超覆,反映阿尔金山的隆升幅度和范围在此时有所减小,其物源尽管也是来自阿尔金山,但却发生了很大的变化,暗示着阿尔金山在此之前发生过较大的构造变动。与此同时,柴达木盆地内部在新生代以来沉积环境一直处于稳定的接受沉积的状态,沉积物始终以湖相泥岩、粉砂岩为主,说明上述阿尔金山隆升的影响范围并没有到达盆地内部,仅局限在盆地西北缘紧邻阿尔金断裂的线性区域内。
     (2)柴达木盆地西北缘发育的近东西向断裂系统和盆地内部发育的北西向断裂系统并不是由于阿尔金断裂左旋走滑而形成的拖曳构造,而是不同期次、不同方向和不同性质构造的叠加。近东西向断裂系统分布在盆地西北缘紧邻阿尔金断裂并与之平行的狭长区域内,平均宽约30km,彼此呈雁列式排布,明显受控于左旋走滑;断面大多北倾,向下深切至基底,向上则一般仅切穿下油砂山组,少数能突破上油砂山组及以上地层,彼此构成叠瓦状向南逆冲,使盆地西北侧基底向南掀斜抬升;它们开始活动于下干柴沟组沉积末期(约36Ma),强烈活动于下油砂山组沉积末(约14.9Ma)。而北西向断裂系统则分布在盆地内部的广阔区域,控制着盆地内一系列背斜带的发育;断面倾向北东或南西,具有两层结构:深部为陡倾的基底断裂,形成宽缓背斜,浅层为反向的薄皮滑脱断层,在地表形成较紧闭背斜;开始活动于狮子沟组沉积初期(约8.2Ma),强烈活动于七个泉组沉积末期(约1.534-0.277 Ma);形成于左旋应力背景下。可见,二者是在不同时间、不同区域、不同控制条件下形成的两套断裂系统,它们之间的转换标志着柴达木盆地乃至青藏高原北部的一次重要构造事件。
     (3)柴达木盆地与阿尔金断裂系统的耦合分析表明,阿尔金山早在约36Ma就开始隆升,而阿尔金断裂的大规模左旋走滑则发生在约15Ma以后。结合前人研究成果提出了阿尔金断裂新生代活动的两阶段模型:在36-15Ma,阿尔金断裂是一个局限在中下地壳的韧性剪切带,并在上地壳沿着青藏高原北缘(柴达木盆地和祁连山地区)与塔里木板块界线一带产生大范围的线性地表隆起和近东西向的基底断裂,形成阿尔金山的雏形;15Ma以后,阿尔金断裂突破地表开始大规模走滑,并对早期的阿尔金山进行改造,最终形成了现今的构造格局。现今阿尔金山主体的菱形形状是早期的古阿尔山祁连山段被后期的阿尔金断裂和北阿尔金断裂共同改造的结果。阿尔金断裂的左旋走滑把来自南侧的N-S向挤压应力转化为NE-SW向,导致了祁连山和东昆仑山显著的NW向线性隆升,这意味着高原北缘在新生代存在两个方向的变形构造:早期(36-15Ma)为近东西向,晚期(15Ma以后)为北西向,但前者由于被后者所强烈改造而仅在局部地区保留下来,柴达木盆地西北缘的近东西向断裂系统即为早期构造,而盆地内部的北西向断裂系统则为后期构造。
The~1600km long Altyn Tagh Fault (ATF) bounds the Tarim plate with rigid lithosphere to the northwest and the Tibetan plateau with relatively weaker lithosphere to the southeast, and is the most important and the largest strike-slip fault inside the plateau. Its evolution during the Cenozoic not only has been all along the research focus for the geologists, but also provokes hot debates throughout the geoscience world. In this thesis, I use the sedimentary and structural records within the Qaidam Basin, the largest sedimentary basin inside the Tibetan plateau and located at the southern side of the ATF, as the proxies to study the Cenozoic tectonic process of this huge strike-slip fault. The conclusions are summarized as follows:
     (1) The Cenozic sequences of the northwestern Qaidam Basin are clearly divided into 3 units. The lower unit consists of the Lulehe and the Xiaganchaigou formations. During their depositing period (before ca.36Ma), the northwestern Qaidam Basin was a broad lake that may be across the present Altyn Shan and link to the southeastern Tarim Basin. The middle unit includes the Shangganchaigou and the Xiayoushashan formations, which are composed of fluvial-alluvial coarse-grained sediments with upward coarsening rhythm and provenance from the Altyn Shan, indicating the Altyn Shan continually uplifted since then and culminated at the end of the deposition of the Xiayoushashan formation (ca.15Ma). The upper unit consists of the Shangyoushashan, the Shizigou and the Qigequan formations, unconformably covers the underlying strata, and obviously overlaps towards the Altyn Shan, implying the range and altitude of the Altyn Shan both reduced at the time. Although the provenance of the upper unit was also the Altyn Shan, it differs greatly from that of the middle unit, suggesting a tectonic alteration occurring between the two units. However, inside the Qaidam Basin, the sedimentary environment had been all along lacustrine during the whole Cenozoic, and the sediments were fine-grained mudstone and siltstone, indicating the uplift of the Altyn Shan since ca.36Ma did not affect there and was restricted along the northwestern Qaidam Basin.
     (2) The EW-trending fault system in the northwestern Qaidam Basin and the NW-trending fault system inside the basin are completely different, and do not form curvilinear thrusting controlled by the left-slip on the ATF. The EW-trending faults distribute in a narrow belt (ca.30km wide) along the southern side of the ATF, and are in en-echelon arrangement, indicating that they were controlled by sinistral shear. These faults generally dip north, cut downward to the basement and mostly upward to the top of the Xiayoushashan formation. They thrusted imbricately to the south, tilting southward the basement of the northwestern Qaidam Basin. They started to be active at ca.36Ma, strongly activated at the end of the Xiayoushashan formation (ca. 14.9Ma), but became weak since then. The NW-trending faults distribute more expansively, and controlled the formation of anticlinal belts inside the Qaidam Basin. They dip NE or SW, and have two-layer structures:in the deep, they are steep-dipping basement-involved faults with wide anticlines in the hanging walls, while in the shallow layer, they are thin-skinned backthrust faults, forming close anticlines in the surface. They formed under sinistral transpressional settings, and started to develop at the beginning of the Shizgou formation (ca.8.2Ma), but strongly activated at the end of Qigequan formation (ca.1.534~0.277Ma). So they are two different fault systems forming at different periods, in different areas and under different controlling factors, and do not form curvilinear thrusting. The transition between them may mark an important tectonic event in the Qaidam Basin as well as the northern Tibetan plateau.
     (3) Coupling analysis between the Qaidam Basin and the Altyn Tagh Fault system proves that the Altyn Shan started to uplift as early as ca.36Ma, while large-scal left-slip motion on the ATF commenced since ca.15Ma. This suggests a two-stage model for the Cenozoic evolution of the ATF. During the early stage between ca.36~15Ma, the ATF was mearly a basal shear zone confined in the mid-lower crust, creating obviously surface uplift and EW-trending faults in the northern margin of the Tibetan plateau, which formed the rudiment of the Altyn Shan. During the late stage since ca.15Ma, the ATF eventually broke the whole crust, initiating large-scale left-slip movement and altering gradually the early Altyn Shan to the present framework. The diamond-shaped main body of the present Altyn Shan was part of the Qilian segment of the early Altyn Shan which was later cut and displaced by both the ATF and the North Altyn fault. Left-slip movement on the ATF transfers the N-S compressional stress from the south to NE-SW, leading to the prominent uplift of NW-trending Qilian Shan and Eastern Kunlun Shan. This suggests that there should be two types of structures in the northern Tibetan plateau during the Cenozoic: the early EW-trending structures forming during ca.36-15Ma, and the late NW-trending ones forming since 15Ma. The former was greatly altered by the latter and preserved only in some local regions, for instance in the Qiadam Basin, the EW-trending faults in its northwestern part belong to the early structures, while those NW-trending faults inside it are late structures.
引文
蔡雄飞,刘德民,袁晏明,李德威,罗中杰.2009.试论柴达木和可可西里盆地古近纪-中新世地层的亲缘性.地层学杂志,33(3):276-282.
    曹国强,陈世悦,徐凤银,彭德华,袁文芳.2005.柴达木盆地西部中——新生代沉积构造演化.中国地质,32(1):33-40.
    陈柏林,崔玲玲,白彦飞,王世新,陈正乐,李学智,祁万修,刘荣.2010.阿尔金断裂走滑位移的确定——来自阿尔金山东段构造成矿带的新证据.岩石学报,26(11):3387-3396.
    陈汉林,杨树锋,肖安成,潘正中,程晓敢,陈建军,范铭涛,田多文.2006.酒泉盆地南缘新生代冲断带的变形特征和变形时间.石油与天然气地质,27(4):488-494.
    陈汉林,罗俊成,郭群英,廖林,肖中尧,程晓敢,杨树锋,王步清.2009.塔里木盆地东南缘中新生代变形史与构造演化.大地构造与成矿学,33(1):38-45.
    陈能松,王勤燕,陈强,李晓彦.2007a.柴达木和欧龙布鲁克陆块基底的组成和变质作用及中国中西部古大陆演化关系初探.地学前缘,14(1):43-55.
    陈能松,王新宇,张宏飞,孙敏,李晓彦,陈强.2007b.柴-欧微地块花岗岩地球化学和Nd-Sr-Pb同位素组成:基底性质和构造属性启示.地球科学:中国地质大学学报,32(1):7-21.
    陈世悦,徐凤银.2000.柴达木盆地基底构造特征及其控油意义.新疆石油地质,21(3):175-179.
    陈文彬,徐锡伟.2006.阿拉善地块南缘的左旋走滑断裂与阿尔金断裂带的东延.地震地质,28(2):319-324.
    陈宣华,尹安,George E G蒋荣宝,陈正乐,白彦飞.2009.阿尔金山东段地质热年代学与构造演化.地学前缘,16(3):207-219.
    陈应涛,张国伟,鲁如魁,张永强.2010.青藏高原西北缘郭扎错断裂40Ar/39Ar年代学研究—阿尔金断裂西延的新证据.地质通报,29(8):1129-1137.
    陈迎宾,万传治,石亚军,李海亮.2005.柴达木盆地冷湖0-5号构造侏罗系成藏条件及有利勘探方向.西北油气勘探,17(1):11-16.
    陈正乐,张岳桥,王小凤,陈宣华,Washburn Z, Arrowsmith J R.2001.新生代阿尔金山脉隆升历史的裂变径迹证据.地球学报,22(5):413-418.
    陈正乐,万景林,王小凤,陈宣华,潘锦华.2002.阿尔金断裂带8Ma左右的快速走滑及其地质意义.地球学报,23(4):295-300.
    陈正乐,白彦飞,陈柏林,王小凤,陈宣华,刘健.2003.阿尔金山索尔库里北盆地沉积与构造演化.地质通报.22(6).
    陈正乐,刘健,孙知明,王小凤,裴军令,宫红良.2005.阿尔金山脉新生代剥露历史——前陆盆地沉积记录.地质通报,24(4):302-308.
    陈正乐,宫红良,李丽,王小凤,陈柏林,陈宣华.2006.阿尔金山脉新生代隆升-剥露过程. 地学前缘,13(4):91-102.
    陈志勇,肖安成,周苏平,何光玉.2005.柴达木盆地侏罗系分布的主控因素研究.地学前缘,12(3):149-155.
    程晓敢,廖林,陈新安,郭群英,卡德尔,陈汉林,杨树锋.2008a.塔里木盆地东南缘侏罗纪沉积相特征与古环境再造.中国矿业大学学报,37(4):519-525.
    程晓敢,廖林,陈汉林,陈立锋,杨树锋,王步清,肖中尧,罗俊成.2008b.塔里木盆地东南缘新生代构造变形特征研究.岩石学报,24(4):645-654.
    崔军文,张晓卫,里朋武.2002.阿尔金断裂:几何学、性质和生长方式.地球学报,23(6):509-516.
    崔之久,高全洲,刘耕年,潘保田,陈怀录.1996.夷平面、古岩溶与青藏高原隆升.中国科学(D辑:地球科学),26(4):378-386.
    董文杰,汤懋苍.1997.青藏高原隆升和夷平过程的数值模型研究.中国科学(D辑:地球科学),27(1):65-69.
    段宏亮,钟建华,马锋,张跃中,李勇,温志峰.2007.柴达木盆地西部中生界原型盆地恢复.沉积学报,25(1):65-74.
    方小敏,赵志军,李吉均,颜茂都,潘保田,宋春晖,戴霜.2004.祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升.中国科学D辑,34(2):97-106.
    冯志硕,张志诚,李建锋,郭召杰.2010.甘肃石包城盆地新生代沉积特征及与阿尔金断裂的关系研究.地质科学,45(1):181-193.
    高军平,李艾银,宋春晖,彭杨宏,张伟林,李生喜.2009.柴西西岔沟新近系磁组构特征对环境变化的响应.沉积学报,27(1):128-136.
    高先志,陈发景,马达德,汪立群,刘震.2003.中、新生代柴达木北缘的盆地类型与构造演化.西北地质,36(4):16-24.
    葛肖虹,刘俊来.1999.北祁连造山带的形成与背景.地学前缘,6(4):223-230.
    葛肖虹,刘俊来.2000.被肢解的“西域克拉通”.岩石学报,16(1):59-66.
    郭新转,刘永江,葛肖虹,袁四化,孙知明,裴军令,李伟民.2006.柴西红三旱一号地区新生代砂岩成分分析及其区域构造意义.吉林大学学报(地球科学版),36(2):194-201.
    郭泽清,郑得文,刘卫红,钟建华,温志峰.2008.柴达木盆地西部古近纪-新近纪湖相生物礁的发现及意义.地层学杂志,32(1):60-68.
    郭召杰,张志诚.1998a.阿尔金盆地群构造类型与演化.地质论评,44(4):257-264.
    郭召杰,张志诚.1998b.索尔库里盆地的形成、演化及其与阿尔金断裂带的关系研究.高校地质学报,4(1):59-63.
    何光玉.2003.酒泉与北祁连中新生代盆地原型、盆山耦合及油气:[博士后毕业论文].:浙江大学.
    和钟铧,刘招君,郭巍,董清永.2002.柴达木北缘中生代盆地的成因类型及构造沉积演化.吉林大学学报:地球科学版,32(4):333-339.
    贾承造.2005.中国中西部前陆冲断带构造特征与天然气富集规律.石油勘探与开发,32(4): 9-15.
    贾承造.2009.环青藏高原巨型盆山体系构造与塔里木盆地油气分布规律.大地构造与成矿学,33(1):1-9.
    李海兵,杨经绥,许志琴,孙知明,Tapponnier P, Van Der Woerd J, Meriaux A.2006阿尔金断裂带对青藏高原北部生长、隆升的制约.地学前缘,13(4):59-79.
    李海兵,许志琴,杨经绥,戚学祥,Tapponnier P.2007阿尔金断裂带最大累积走滑位移量——900km?.地质通报,26(10):1288-1298.
    李吉均,文世宣,张青松,王富葆,郑本兴,李炳元.1979.青藏高原隆起的时代、幅度和形式的探讨.中国科学,(6):608-616.
    林秀斌,陈汉林,Wyrwoll K.程晓敢,王旭龙,付可昂,廖林,肖骏,Bryan K.2009青藏高原东北部隆升:来自宁夏同心小洪沟剖面的证据.地质学报,83(4):455-467.
    刘桂侠,杨永泰.2003.柴达木盆地北部基底岩性对上部地层构造演化及储集条件的影响.天然气工业,23(2):40-43.
    刘欢,刘永江,袁四化,计桂霞,李伟民.2007.柴达木盆地西北部红三旱地区始新世—渐新世砂岩物源分析.地质通报,26(1):100-107.
    刘良,陈丹玲,王超,张成立.2009.阿尔金、柴北缘与北秦岭高压-超高压岩石年代学研究进展及其构造地质意义.西北大学学报:自然科学版,(3):472-479.
    刘平,王英超.2006.柴达木侏罗纪盆地是“前陆盆地”吗?.天然气工业,26(2):43-45.
    刘训,王军,张招崇,王永.2002.第四纪磨拉石组分与青藏高原隆升的关系——对新疆叶城柯克亚剖面第四系砾石成分测量结果的认识.地质通报,21(11):759-763.
    刘永江,葛肖虹,叶慧文,刘俊来Franz N, Genser J潘宏勋,任收麦.2001.晚中生代以来阿尔金断裂的走滑模式.地球学报,22(1):23-28.
    刘永顺,于海峰,修群业,杨俊泉,李铨.2010.南阿尔金地区榴辉岩特征及意义.岩石矿物学杂志,29(2):166-174.
    刘志宏,万传彪,杨建国,刘振文,高军义.2005.柴达木盆地北缘地区新生代构造特征及变形规律.地质科学,40(3):404-414.
    刘志宏,王芃,刘永江,赵呈祥,高军义,万传彪.2009.柴达木盆地南翼山-尖顶山地区构造特征及变形时间的确定.吉林大学学报(地球科学版),39(5):796-802.
    刘志宏,王破,沙茜,万传彪,高军义.2010.柴达木盆地阿尔金斜坡带构造特征与阿尔金断裂形成时间讨论——以月牙山地区为例.地质学报,84(9):1275-1282.
    楼谦谦,肖安成,杨浩,黄宏升,丁卫星,沈中延,王亮,陈元忠,沈亚,王立群,周苏平2009.柴达木盆地北缘中生代盆地性质研究——对大柴旦凹陷的解剖.高校地质学报,15(3):407-416.
    卢鹏,张志诚,郭召杰.2006.阿克塞盆地和肃北盆地中新世沉积特征及其与阿尔金断裂关系的研究.北京大学学报(自然科学版),42(2):199-205.
    鹿化煜,安芷生,王晓勇,谭红兵,朱日祥,马海州,李珍,苗晓东,王先彦.2004.最近14Ma青藏高原东北缘阶段性隆升的地貌证据.中国科学(D辑:地球科学),34(9):855-864.
    路艳丽,张海泉,乔子真.2005.柴达木盆地正星介爆发点与上油砂山组底界的确定(为庆祝青海油田勘探开发50周年而作).新疆石油地质,26(4):462-464.
    罗金海,车自成,李继亮.2000.中亚及中国西部侏罗纪沉积盆地的构造特征.地质科学,35(4):404-413.
    罗金海,车自成.2001.中亚与中国西部侏罗纪沉积盆地的成因分析.西北大学学报(自然科学版),31(2):167-170.
    罗金海,雷刚林,刘良,肖中尧,魏红兴,车自成.2009.阿尔金构造带对塔东南油气地质条件的制约.大地构造与成矿学,33(1):76-85.
    马文忠.2007.阿尔金山北麓晚新生代沉积记录的构造意义:[硕士毕业论文].兰州:兰州大学.
    孟繁聪,张建新,于胜尧,陈松永.2010.北阿尔金红柳泉早古生代枕状玄武岩及其大地构造意义.地质学报,84(7):981-990.
    孟庆任.2009.柴达木盆地成因分析.地质科学,44(4).
    莫宣学.2009.青藏高原岩浆岩成因研究:成果与展望.地质通报,28(12):1693-1703.
    莫宣学.2010.青藏高原地质研究的回顾与展望.中国地质,37(4):841-853.
    穆剑,汪立群.1999.论柴达木盆地冷湖—南八仙构造带的含油气远景.石油学报,20(2):18-22.
    青海省地质矿产局.1991.青海省区域地质志.北京:地质出版社.
    屈争辉,姜波,王超勇.2007.柴北缘石泉滩和冷湖三号储层特征对比研究.中国矿业大学学报,36(6):837-842.
    任收麦,葛肖虹,刘永江.2003.阿尔金断裂带研究进展.地球科学进展,18(3):386-391.
    任收麦,葛肖虹,杨振宇,林源贤,胡勇,刘永江,Genser J, Rieser A B.2006.36Cll断代法应用于青藏高原末次快速隆升的构造事件研究.地质学报,80(8):1110-1117.
    司家亮,李海兵,Barrier L, Van der Woerd J,孙知明,裴军令,潘家伟.2007.青藏高原西北缘晚新生代的隆升特征——来自西昆仑山前盆地的沉积学证据.地质通报,26(10):1356-1367.
    宋春晖,高东林,方小敏,崔之久,李吉均,杨胜利,金洪波,Burbank D W, Kirschvink J L.2005.青藏高原昆仑山垭口盆地晚新生代高精度磁性地层及其意义.科学通报,50(19):2145-2154.
    宋春晖.2006.青藏高原北缘新生代沉积演化与高原构造隆升过程:[博士毕业论文].兰州:兰州大学.
    宋华颖,伊海生,范爱春,马雪,孙瑕.2010.柴达木盆地西部西岔沟剖面湖相碳酸盐岩岩石学特征与沉积环境分析.中国地质,37(1):117-126.
    孙道武.2007.柴西阿尔金山前红沟子地区中生界生储盖研究.断块油气田,14(2):21-23.
    谈迎,刘德良.2000.试论柴达木盆地基底中央断裂带.石油实验地质,22(2):105-110.
    万景林,王瑜,李齐,王非,王二七.2001.阿尔金山北段晚新生代山体抬升的裂变径迹证据.矿物岩石地球化学通报,20(4):222-224.
    王步清,肖安成,程晓敢,何光玉,陈汉林,杨树锋.2005a.柴达木盆地北缘新生代右行走滑冲断构造带的几何学和运动学.浙江大学学报:理学版,32(2):225-230.
    王步清.2005b.柴北缘晚第三纪以来走滑冲断构造带的几何学和运动学:[博士毕业论文].杭州:浙江大学.
    王桂宏,李永铁,张敏,尹成明,王铁成,郭祖军,刘忠.2004.柴达木盆地英雄岭地区新生代构造演化动力学特征.地学前缘,11(4):417-423.
    王亮,肖安成,巩庆霖,刘东,沈中延,周苏平,吴磊,楼谦谦,孙晓文.2010.柴达木盆地西部中新统内部的角度不整合及其大地构造意义.中国科学(地球科学),40(11):1582-1590.
    王胜利,李维锋,魏东涛,谭彦虎,卢华复.2008.柴达木盆地中新世中期以来构造的运动学模型.南京大学学报:自然科学版,44(1):25-41.
    王新宇,陈能松,陈海,张宏飞.2008.柴达木周缘印支期花岗岩同位素地球化学特征及其对基底属性的制约.矿物岩石地球化学通报,27(1):13-19.
    王亚东,刘永江,常丽华,Rieser A B,计桂霞.2005.沉积物粒度分析在阿尔金山隆升研究中的应用.吉林大学学报(地球科学版),35(2):155-162.
    温志峰,刘显太,钟建华,李勇,王海侨.2010.柴达木盆地新近纪叠层石中微生物化石组合的发现与钙化方式研究.地质学报,84(2):263-271.
    吴光大,葛肖虹,刘永江,袁四化,巩庆林,陈言忠,沈亚.2006.柴达木盆地中、新生代构造演化及其对油气的控制.世界地质,25(4):411-417.
    吴珍汉,胡道功,吴中海,叶培盛,周春景.2009.柴达木盆地北缘第四纪左旋斜冲推覆构造运动.第四纪研究,29(3):599-307.
    伍跃中,李荣社,王战,雷学武,张转,谢丛瑞.2007.阿尔金山各边界断裂的归属性.地球科学:中国地质大学学报,32(5):662-670.
    夏文臣,张宁,袁晓萍,孟科,张兵山,彭晓群.1998.柴达木侏罗系的构造层序及前陆盆地演化.石油与天然气地质,19(3):173-180.
    肖安成,陈志勇,杨树锋,马立协,巩庆林,陈元忠.2005.柴达木盆地北缘晚白垩世古构造活动的特征研究.地学前缘,12(4):451-457.
    肖安成,杨树锋,程晓敢,党玉琪,陈新领,陈元忠,王亮.2006.柴达木盆地北缘的右行走滑冲断系统及其动力学.石油与天然气地质,27(4):482-487.
    新疆维吾尔自治区区域地层表编写组.1981.西北地区区域地层表新疆维吾尔自治区分册.北京:地质出版社.
    徐文,包建平,刘婷,银晓.2008.柴达木盆地北缘冷湖地区下侏罗统烃源岩评价.天然气地球科学,19(5):707-712.
    许志琴,杨经绥,李海兵,张建新,曾令森,姜枚.2006.青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力.中国地质,33(2):221-238.
    杨藩.马志强,许同春,叶素娟.1992.柴达木盆地第三纪磁性地层柱.石油学报,13(2):97-101.
    杨经绥,张建新,孟繁聪,史仁灯,吴才来,许志琴,李海兵,陈松永.2003.中国西部柴北缘-阿尔金的超高压变质榴辉岩及其原岩性质探讨.地学前缘,10(3):291-314.
    杨经绥,李海兵.2006.走滑断裂对超高压变质岩石折返的贡献及青藏高原北部白垩纪隆升之新思考.地学前缘,13(4):80-90.
    杨经绥,史仁灯,吴才来,苏德辰,陈松永,王希斌Wooden J.2008北阿尔金地区米兰红柳沟蛇绿岩的岩石学特征和SHRIMP定年.岩石学报,24(7):1567-1584.
    杨树锋,陈汉林,程晓敢,肖安成,陈建军,范铭涛,田多文.2006.祁连山北缘冲断带构造特征及含油气远景.北京:科学出版社.
    杨树锋,陈立峰,肖中尧,罗俊成,陈汉林,王步清,程晓敢,廖林.2009.塔里木盆地东南缘新生代断裂系统.大地构造与成矿学,33(1):33-37.
    袁四化,刘永江,葛肖虹,任收麦,吴光大,李伟民,刘欢,郭新转.2006.阿尔金山中一新生代隆升历史研究进展.世界地质,25(2):164-171.
    袁四化,刘永江,葛肖虹,吴光大,胡勇,郭新转,李伟民.2008.青藏高原北缘的隆升时期—来自阿尔金山和柴达木盆地的证据.岩石矿物学杂志,27(5):413-421.
    曾联波,金之均,张明利,汤良杰,由福报,雷兵足.2002.柴达木侏罗纪盆地性质及其演化特征.沉积学报,20(2):288-292.
    张海泉,孙镇城,景民昌,路艳丽,董宁,袁秀君,曹丽.2006.正星介(Cyprideis)初现面对柴达木盆地上油砂山组和下油砂山组分界的意义.中国石油勘探,11(6):104-112.
    张建新,杨经绥,许志琴,孟繁聪,宋述光,李海兵,史仁灯.2002.阿尔金榴辉岩中超高压变质作用证据.科学通报,47(3):231-234.
    张建新,孟繁聪.2006.北祁连和北阿尔金含硬柱石榴辉岩:冷洋壳俯冲作用的证据.科学通报,51(14):1683-1688.
    张建新,孟繁聪,Mattinson C G.2007a.南阿尔金—柴北缘高压-超高压变质带研究进展、问题及挑战.高校地质学报,13(3):526-545.
    张建新,孟繁聪,于胜尧,陈文,陈松永.2007b.北阿尔金HP/LT蓝片岩和榴辉岩的Ar—Ar年代学及其区域构造意义.中国地质,34(4):558-564.
    张进,李锦轶,李彦峰,马宗晋.2007.阿拉善地块新生代构造作用——兼论阿尔金断裂新生代东向延伸问题.地质学报,81(11):1481-1497.
    张恺.1993.关于柴达木盆地基底性质及深部古生界油气源的探讨.青海石油,11(4):1-15.
    张伟林.2006.柴达木盆地新生代高精度磁性地层与青藏高原隆升:[博士毕业论文].兰州:兰州大学.
    赵澄林,朱筱敏.2001.沉积岩石学.第三版.北京:石油工业出版社,48-71.
    赵彦德.2005a.阿尔金山北麓若羌一带晚新生代磁性地层与构造隆升:[硕士毕业论文].兰州:兰州大学.
    赵彦德,宋春晖,鲁新川,戴霜,孟庆泉.2005b.阿尔金山北麓晚新生代沉积物磁组构特征及其地质意义.兰州大学学报:自然科学版,41(6):11-16.
    郑孟林,李明杰,曹春潮,张军勇.2004a.柴达木北缘西段侏罗纪盆地构造特征及其演化. 石油实验地质,26(4):315-318.
    郑孟林,李明杰,曹春潮.张军勇,段书府,陈元中,沈亚,管俊亚.2004b.柴达木盆地新生代不同层次构造特征.地质学报.78(1):26-35.
    郑文俊,张培震,袁道阳,郑德文.2009.GPS观测及断裂晚第四纪滑动速率所反映的青藏高原北部变形.地球物理学报,52(10):2491-2508.
    钟大赉,丁林.1996.青藏高原的隆起过程及其机制探讨.中国科学(D辑:地球科学),26(4):289-295.
    钟建华,尹成明,段洪亮,马锋,王海侨,温志峰.2006.柴西阿尔金山南缘中生界古流特征.石油学报,27(2):20-27.
    周建勋,徐凤银,朱战军.2003.柴达木盆地北缘新生代构造变形的物理模拟.地球学报,24(4):299-304.
    周勇,潘裕生.1998.茫崖—肃北段阿尔金断裂右旋走滑运动的确定.地质科学,33(1):9-16.
    周勇,潘裕生.1999.阿尔金断裂早期走滑运动方向及其活动时间探讨.地质论评,45(1):1-9.
    An Z, Kutzbach J E, Prell W L and Porter S C.2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature,411:62-66.
    Bendick R, Bilham R, Freymueller J, Larson K and Yin G.2000. Geodetic evidence for a low slip rate in the Altyn Tagh fault system. Nature,404:69-72.
    Bovet P M, Ritts B D, Gehrels G, Abbink A O, Darby B and Hourigan J.2008. Evidence of Miocene crustal shortening in the North Qilian Shan from Cenozoic stratigraphy of the western Hexi Corridor, Gansu Province, China. American Journal of Science,308(5): 657-678.
    Burchfiel B C, Deng Q, Molnar P, Royden L, Wang Y, Zhang P and Zhang W.1989. Intracrustal detachment within zones of continental deformation. Geology,17(8):748-752.
    Charreau J, Chen Y, Gilder S, Dominguez S, Avouac J, Sen S, Sun D, Li Y and Wang W.2005. Magnetostratigraphy and rock magnetism of the Neogene Kuitun He section (northwest China):implications for Late Cenozoic uplift of the Tianshan mountains. Earth and Planetary Science Letters,230(1-2):177-192.
    Charreau J, Gilder S, Chen Y, Dominguez S, Avouac J, Sen S, Jolivet M, Li Y and Wang W.2006. Magnetostratigraphy of the Yaha section, Tarim Basin (China):11 Ma acceleration in erosion and uplift of the Tian Shan mountains. Geology,34(3):181-184.
    Chen N, Gong S, Sun M, Li X, Xia X, Wang Q, Wu F and Xu P.2009. Precambrian evolution of the Quanji Block, northeastern margin of Tibet:Insights from zircon U-Pb and Lu-Hf isotope compositions. Journal of Asian Earth Sciences,35(3-4):367-376.
    Chen Y, Gilder S, Halim N, Cogn J P and Courtillot V.2002. New paleomagnetic constraints on central Asian kinematics:Displacement along the Altyn Tagh fault and rotation of the Qaidam Basin. Tectonics,21(5):1042.
    Chen Z, Wang X, Yin A, Chen B and Chen X.2004. Cenozoic Left-Slip Motion along the Central Altyn Tagh Fault as Inferred from the Sedimentary Record. International Geology Review, 46(9):839-856.
    Clark M K and Royden L H.2000. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow. Geology,28(8):703-706.
    Clift P D, Hodges K V, Heslop D, Hannigan R, Van Long H and Calves G.2008. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature,1(12):875-880.
    Copley A, Avouac J and Wernicke B P.2011. Evidence for mechanical coupling and strong Indian lower crust beneath southern Tibet. Nature,472(7341):79-81.
    Cowgill E, Yin A, Rumelhart P E, Wang X F and Zhang Q.1997. Kinematics of the Central Altyn Tagh Fault system, NW China. EOS (Transaction, American Geophysical Union),78:173.
    Cowgill E, Yin A, Feng W X and Qing Z.2000. Is the North Altyn fault part of a strike-slip duplex along the Altyn Tagh fault system? Geology,28(3):255-258.
    Cowgill E, Yin A, Harrison T M and Wang X.2003. Reconstruction of the Altyn Tagh fault based on U-Pb geochronology:Role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau. Journal of Geophysical Research,108(B7):1-28.
    Cowgill E, Arrowsmith J R, Yin A, Xiaofeng W and Zhengle C.2004a. The Akato Tagh bend along the Altyn Tagh fault, northwest Tibet 2:Active deformation and the importance of transpression and strain hardening within the Altyn Tagh system. GSA Bulletin,116(11-12): 1443-1464.
    Cowgill E, Yin A, Arrowsmith J R, Feng W X and Shuanhong Z.2004b. The Akato Tagh bend along the Altyn Tagh fault, northwest Tibet 1:Smoothing by vertical-axis rotation and the effect of topographic stresses on bend-flanking faults. GSA Bulletin,116(11-12):1423-1442.
    Cowgill E.2007. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting:Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China. Earth and Planetary Science Letters,254(3-4):239-255.
    Cowgill E and Gold R.2009. Building a latest Quaternary slip history for the central altyn tagh fault:implications for deep-time paleoseismology. Abstracts with Programs-Geological Society of America,41(7):659.
    Cowgill E, Gold R D, Chen X, Wang X, Arrowsmith J R and Southon J.2009. Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet. Geology,37(7):647-650.
    Darby B J, Ritts B D, Yue Y and Meng Q.2005. Did the Altyn Tagh fault extend beyond the Tibetan Plateau? Earth and Planetary Science Letters,240(2):425-435.
    Dayem K E, Molnar P, Clark M K and Houseman G A.2009a. Far-field lithospheric deformation in Tibet during continental collision. Tectonics,28(TC6005):1-9.
    Dayem K E, Houseman G A and Molnar P.2009b. Localization of shear along a lithospheric strength discontinuity:Application of a continuous deformation model to the boundary between Tibet and the Tarim Basin. Tectonics,28(3):TC3002.
    Delville N, Arnaud N. Montel J. Roger F, Brunel M. Tapponnier P and Sobel E R.2001. Paleozoic to Cenozoic deformation along the Altyn Tagh Fault in the Altun Shan Massif area, eastern Qilian Shan, northeastern Tibet, China In:Hendrix M S and Davis G A (eds). Paleozoic and Mesozoic tectonic evolution of central Asia:From continental assembly to intracontinental deformation. Boulder, Colorado:Geological Society of America Memoir,269-292.
    Dewey J F, Shackleton R M, Chang C and Sun Y.1988. The Tectonic Evolution of the Tibetan Plateau. Philosophical Transaction of the Royal Society of London, Series A,327:379-413.
    Dupont-Nivet G, Krijgsman W, Langereis C G, Abels H A, Dai S and Fang X.2007. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature,445: 635-638.
    Elliott J R, Biggs J, Parsons B and Wright T J.2008. InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. Geophysical Journal International,35(12):L12309.
    England P and Molnar P.1997. The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults. Geophysical Journal International,130(3):551-582.
    Fang X, Yan M, Van der Voo R, Rea D K, Song C, Pares J M, Gao J, Nie J and Dai S.2005. Late Cenozoic deformation and uplift of the NE Tibetan Plateau:Evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China. GSA Bulletin,117(9-10): 1208-1225.
    Fang X, Zhang W, Meng Q, Gao J, Wang X, King J, Song C, Dai S and Miao Y.2007. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters,258(1-2): 293-306.
    Folk R L and Ward W C.1957. Brazos River bar:a study in the significance of grain size parameters. Journal of Sedimentary Petrology,27:3-26.
    Fu K, Fang X, Gao J, Han W and Li L.2007. Response of grain size of Quaternary gravels to climate and tectonics in the northern Tibetan Plateau. Science in China Series D-Earth Sciences,50(1):81-91.
    Gan W, Zhang P, Shen Z, Niu Z, Wang M, Wan Y, Zhou D and Cheng J.2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research,112(B8):B08416.
    Garzione C N.2008. Surface uplift of Tibet and Cenozoic global cooling. Geology.36(12): 1003-1004.
    Gilder S, Chen Y and Sen S.2001. Oligo-Miocene magnetostratigraphy and rock magnetism of the Xishuigou section, Subei (Gansu Province, western China) and implications for shallow inclinations in central Asia. Journal of Geophysical Research,106(B12):30505-30521.
    Gold R D, Cowgill E, Arrowsmith J R, Gosse J, Chen X, Wang X and Feng.2009. Riser diachroneity, lateral erosion, and uncertainty in rates of strike-slip faulting:A case study from Tuzidun along the Altyn Tagh Fault, NW China. Journal of Geophysical Research,114(B4): B04401.
    Gold R D, Cowgill E, Arrowsmith J R, Chen X, Sharp W D, Cooper K M and Wang X.2011. Faulted terrace risers place new constraints on the late Quaternary slip rate for the central Altyn Tagh fault, northwest Tibet. Geological Society of America Bulletin,123(5-6): 958-978.
    Guo Z, Lu J and Zhang Z.2009. Cenozoic Exhumation and Thrusting in the Northern Qilian Shan,Northeastem Margin of the Tibetan Plateau:Constraints from Sedimentological and Apatite Fission-Track Data. Acta Geologica Sinica,83(3):562-579.
    Harrison T M, Copeland P, Kidd W S F and Yin A.1992. Raising Tibet. Science,255:1663-1670.
    Herquel G, Tapponnier P, Wittlinger G, Mei J and Danian S.1999. Teleseismic Shear wave splitting and lithospheric anisotropy beneath and across the Altyn Tagh Fault. Geophysical Journal International,26(21):3225-3228.
    Hough B G, Garzione C N, Wang Z. Lease R O, Burbank D W and Yuan D.2011. Stable isotope evidence for topographic growth and basin segmentation:Implications for the evolution of the NE Tibetan Plateau. GSA Bulletin,123(1-2):168-185.
    Huang B, Piper J D A, Peng S, Liu T, Li Z, Wang Q and Zhu R.2006. Magnetostratigraphic study of the Kuche Depression, Tarim Basin, and Cenozoic uplift of the Tian Shan Range, Western China. Earth and Planetary Science Letters,251(3-4):346-364.
    Jiang X, Jin Y and Mcnutt M K.2004. Lithospheric deformation beneath the Altyn Tagh and West Kunlun faults from recent gravity surveys. Journal of Geophysical Research,109(B5): B05406.
    Jin X, Wang J, Chen B and Ren L.2003. Cenozoic depositional sequences in the piedmont of the west Kunlun and their paleogeographic and tectonic implications. Journal of Asian Earth Sciences,21(7):755-765.
    Jolivet M, Brunei M, Seward D, Xu Z, Yang J, Roger F, Tapponnier P, Malavieille J, Arnaud N and Wu C.2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau:fission-track constraints. Tectonophysics,343(1-2):111-134.
    Krumbein W C.1934. Size frequency distribution of sediments. Journal of Sedimentary Petrology, 4:65-77.
    Le Guerroue E and Cobbold P R.2006. Influence of erosion and sedimentation on strike-slip fault systems:insights from analogue models. Journal of Structural Geology,28(3):421-430.
    Lease R O, Burbank D W, Gehrels G E, Wang Z and Yuan D.2007. Signatures of mountain building:Detrital zircon U/Pb ages from northeastern Tibet. Geology,35(3):239-242.
    Lease R O, Burbank D W, Clark M K, Farley K A, Zheng D and Zhang H.2011. Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau. Geology,39(4): 359-362.
    Li G, Pettke T and Chen J.201 la. Increasing Nd isotopic ratio of Asian dust indicates progressive uplift of the north Tibetan Plateau since the middle Miocene. Geology,39(3):199-202.
    Li Y, Wu Q, Zhang F, Feng Q and Zhang R.2011b. Seismic anisotropy of the Northeastern Tibetan Plateau from shear wave splitting analysis. Earth and Planetary Science Letters, 304(1-2):147-157.
    Lin X, Chen H, Wyrwoll K and Cheng X.2010. Commencing uplift of the Liupan Shan since 9.5Ma:Evidences from the Sikouzi section at its east side. Journal of Asian Earth Sciences, 37(4):350-360.
    Liu D, Fang X, Gao J, Wang Y, Zhang W, Miao Y, Liu Y and Zhang Y.2009. Cenozoic Stratigraphy Deformation History in the Central and Eastern of Qaidam Basin by the Balance Section Restoration and its Implication. Acta Geologica Sinica(English Edition),83(2): 359-371.
    Liu Y, Neubauer F, Genser J, Ge X, Takasu A, Yuan S, Chang L and Li W.2007. Geochronology of the initiation and displacement of the Altyn Strike-Slip Fault, western China. Journal of Asian Earth Sciences,29(2-3):243-252.
    Lu H J and Xiong S F.2009. Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault. Earth and Planetary Science Letters,288(3-4):539-550.
    Mattinson C, Menold C, Zhang J and Bird D.2007. High- and Ultrahigh-Pressure Metamorphism in the North Qaidam and South Altyn Terranes, Western China. International Geology Review,49(11):969-995.
    Mclane M.1995. Sedimentology. New York:Oxford University Press,12-36 p.
    Meng Q, Hu J and Yang F.2001. Timing and magnitude of displacement on the Altyn Tagh fault: constraints from stratigraphic correlation of adjoining Tarim and Qaidam basins, NW China. Terra Nova,13(2):86-91.
    Meng Q and Fang X.2008. Cenozoic tectonic development of the Qaidam Basin in the northeastern Tibetan Plateau. Geological Society of America Special Papers,444:1-24.
    Meriaux A S, Ryerson F J, Tapponnier P, Van der Woerd J, Finkel R C, Xu X, Xu Z and Caffee M W.2004. Rapid slip along the central Altyn Tagh Fault:morphochronologic evidence from Cherchen He and Sulamu Tagh. Journal of Geophysical Research,109(B06401):1-23.
    Meriaux A S, Tapponnier P, Ryerson F J, Xu X W, King G, Van der Woerd J. Finkel R C, Li H B, Caffee M W, Xu Z Q and Chen W B.2005. The Aksay segment of the northern Altyn Tagh fault:Tectonic geomorphology. landscape evolution, and Holocene slip rate. Journal of Geophysical Research,110(B4):B04404.
    Meyer B, Tapponnier P, Gaudemer Y, Peltzer G, Guo S and Chen Z.1996. Rate of left-lateral movement along the easternmost segment of the Altyn Tagh fault, east of 96°E (China). Geophysical Journal International,124(1):29-44.
    Meyer B, Tapponnier P, Bourjot L, Metivier F, Gaudemer Y, Peltzer G, Guo S and Chen Z.1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophysical Journal International,135(1):1-47.
    Miao Y, Fang X, Song Z, Wu F, Han W, Dai S and Song C.2008. Late Eocene pollen records and palaeoenvironmental changes in northern Tibetan Plateau. Science in China Series D:Earth Sciences,51(8):1089-1098.
    Molnar P and Tapponnier P.1975. Cenozoic Tectonics of Asia:Effects of a Continental Collision. Science,189(4201):419-426.
    Molnar P, England P and Martinod J.1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys.,31(4):357-396.
    Molnar P.2005. Mio-pliocene growth of the Tibetan Plateau evolution of East Asian climate. Palaeontologia Electronica,8(1):1-23.
    Molnar P and Stock J M.2009. Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics,28(3):TC3001.
    Molnar P and Dayem K E.2010. Major intracontinental strike-slip faults and contrasts in lithospheric strength. Geosphere,6(4):444-467.
    Molnar P, Boos W R and Battisti D S.2010. Orographic Controls on Climate and Paleoclimate of Asia:Thermal and Mechanical Roles for the Tibetan Plateau. Annual Review of Earth and Planetary Sciences,38(1):77-102.
    Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han J, Liebke U, Oliver G, Parrish R and Vezzoli G.2010. Timing of India-Asia collision:Geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research,115(B12): B12416.
    Palumbo L, Hetzel R, Tao M, Li X and Guo J.2009. Deciphering the rate of mountain growth during topographic presteady state:An example from the NE margin of the Tibetan Plateau. Tectonics,28(4):TC4017.
    Pares J M, Van Der Voo R, Downs W R, Yan M and Fang X.2003. Northeastward growth and uplift of the Tibetan Plateau:Magnetostratigraphic insights from the Guide Basin. Journal of Geophysical Research,108(B1):2017.
    Peltzer G, Tapponnier P and Armijo R.1989. Magnitude of Late Quaternary Left-Lateral Displacements Along the North Edge of Tibet. Science,246(4935):1285-1289.
    Rieser A B, Neubauer F, Liu Y and Ge X.2005. Sandstone provenance of north-western sectors of the intracontinental Cenozoic Qaidam basin, western China:Tectonic vs. climatic control. Sedimentary Geology,177(1-2):1-18.
    Ritts B D and Biffi U.2000. Magnitude of post-Middle Jurassic (Bajocian) displacement on the central Altyn Tagh fault system, northwest China. GSA Bulletin,112(1):61-74.
    Ritts B D and Biffi U.2001. Mesozoic Northeast Qaidam Basin:response to contractional reactivation of the Qilian Shan, and implications for the extent of Mesozoic intracontinental deformation in Central Asia In:Hendrix M S and Davis G A (eds). Paleozoic and Mesozoic tectonic evolution of central Asia:from continental assembly to intracontinental deformation: Boulder, Colorado, Geological Society of America Memoir,293-316.
    Ritts B D, Yue Y and Graham S A.2004. Oligocene-Miocene Tectonics and Sedimentation along the Altyn Tagh Fault, Northern Tibetan Plateau:Analysis of the Xorkol, Subei, and Aksay Basins. The Journal of Geology,112(2):207-229.
    Ritts B D, Yue Y, Graham S A, Sobel E R, Abbink O A and Stockli D.2009. From sea level to high elevation in 15 million years:Uplift history of the northern Tibetan Plateau margin in the Altun Shan. American Journal of Science,309(4):290-329.
    Royden L H, Burchfiel B C, King R W, Wang E, Chen Z, Shen F and Liu Y.1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science,276(5313):788-790.
    Shen Z, Wang M, Li Y, Jackson D D, Yin A, Dong D and Fang P.2001. Crustal deformation along the Altyn Tagh fault system, western China, from GPS. Journal of Geophysical Research,106(B12):30607-30621.
    Sobel E R.1999. Basin analysis of the Jurassic-Lower Cretaceous Southwest Tarim Basin, Northwest China. GSA Bulletin,111 (5):709-724.
    Sun J, Zhu R and Bowler J.2004. Timing of the Tianshan Mountains uplift constrained by magnetostratigraphic analysis of molasse deposits. Earth and Planetary Science Letters, 219(3-4):239-253.
    Sun J, Zhu R and An Z.2005a. Tectonic uplift in the northern Tibetan Plateau since 13.7 Ma ago inferred from molasse deposits along the Altyn Tagh Fault. Earth and Planetary Science Letters,235(3-4):641-653.
    Sun Z, Yang Z, Pei J, Ge X, Wang X, Yang T, Li W and Yuan S.2005b. Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China:Implications for tectonic uplift and block rotation in northern Tibetan plateau. Earth and Planetary Science Letters,237(3-4): 635-646.
    Tapponnier P and Molnar P.1977. Active faulting and tectonics in China. Journal of Geophysical Research,82:2905-2929.
    Tapponnier P, Xu Z, Roger F, Meyer B, Arnaud N, Wittlinger G and Yang J.2001. Oblique stepwise rise and growth of the tibet plateau. Science,294(5547):1671-1677.
    Unsworth M, Wei W, Jones A G, Li S, Bedrosian P, Booker J, Sheng J, Deng M and Tan H.2004. Crustal and upper mantle structure of northern Tibet imaged with magnetotelluric data. Journal of Geophysical Research,109(B2):B02403.
    Van der Woerd J, Xu X, Li H, Tapponnier P, Meyer B, Ryerson F J, Meriaux A S and Xu Z.2001. Rapid active thrusting along the northwestern range front of the Tanghe Nan Shan (western Gansu, China). J. Geophys. Res.,106(B12):30475-30504.
    Vincent S J and Allen M B.1999. Evolution of the Minle and Chaoshui basins, China; implications for Mesozoic strike-slip basin formation in Central Asia. GSA Bulletin,111(5): 725-742.
    Wallace K, Yin G and Bilham R.2004. Inescapable slow slip on the Altyn Tagh fault. Geophysical Journal International,31(9):L09613.
    Wan Y, Zhang J, Yang J and Xu Z.2006. Geochemistry of high-grade metamorphic rocks of the North Qaidam mountains and their geological significance. Journal of Asian Earth Sciences, 28(2-3):174-184.
    Wang A, Wang G, Xie D and Liu D.2006b. Fission Track Geochronology of Xiaonanchuan Pluton and the Morphotectonic Evolution of Eastern Kunlun since Late Miocene. Journal of China University of Geosciences,17(4):302-309.
    Wang C, Zhao X, Liu Z, Lippert P C, Graham S A, Coe R S, Yi H, Zhu L, Liu S and Li Y.2008a. Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy of Sciences,105(13):4987-4992.
    Wang E.1997. Displacement and timing along the northern strand of the Altyn Tagh fault zone, Northern Tibet. Earth and Planetary Science Letters,150(1-2):55-64.
    Wang E, Xu F, Zhou J, Wang S, Fan C and Wang G.2008b. Vertical-axis bending of the Altyn Tagh belt along the Altyn Tagh fault:Evidence from late Cenozoic deformation within and around the Xorkol Basin. Geological Society of America Special Papers,444:25-44.
    Wang F, Lo C, Li Q, Yeh M, Wan J, Zheng D and Wang E.2004. Onset timing of significant unroofing around Qaidam basin, northern Tibet, China:constraints from 40Ar/39Ar and FT thermochronology on granitoids. Journal of Asian Earth Sciences,24(1):59-69.
    Wang J, Wang Y J, Liu Z C, Li J Q and Xi P.1999. Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology,152(1-2):37-47.
    Wang L, Xiao A C, Gong Q L, Liu D, Wu L, Zhou S P, Shen Z Y, Lou Q Q and Sun X W.2010b. The unconformity in Miocene sequence of the western Qaidam Basin and its tectonic significance. Science China Earth Science,53(8):1126-1133.
    Wang S, Li X, Chen N, Wang X, Wang Q and Liu X.2006a. LA-ICPMS U-Pb Ages of Zircon from Metaleucosomes, Olongbuluke Microcontinent, North Qaidam, and Implications on the Response to the Global Rodinia Supercontinent Assembly Event in NW China. Journal of China University of Geosciences,17(3):238-245.
    Wang X, Wang B, Qiu Z, Xie G, Xie J. Downs W, Qiu Z and Deng T.2003. Danghe area (western Gansu, China) biostratigraphy and implications for depositional history and tectonics of northern Tibetan Plateau. Earth and Planetary Science Letters,208(3-4):253-269.
    Wang X, Qiu Z, Li Q, Wang B, Qiu Z, Downs W R, Xie G. Xie J, Deng T. Takeuchi G T, Tseng Z J, Chang M, Liu J, Wang Y, Biasatti D, Sun Z, Fang X and Meng Q.2007. Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam Basin in northern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology,254(3-4): 363-385.
    Wang Y, Zhang X, Wang E, Zhang J, Li Q and Sun G.2005a.40Ar/39Ar thermochronological evidence for formation and Mesozoic evolution of the northern-central segment of the Altyn Tagh fault system in the northern Tibetan Plateau. GSA Bulletin,117(9-10):1336-1346.
    Wang Y, Mosbrugger V and Zhang H.2005b. Early to Middle Jurassic vegetation and climatic events in the Qaidam Basin, Northwest China. Palaeogeography, Palaeoclimatology, Palaeoecology,224(1-3):200-216.
    Wang Y, Sun G and Li J.2010a. U-Pb (SHRIMP) and 40Ar/39Ar geochronological constraints on the evolution of the Xingxingxia shear zone, NW China:A Triassic segment of the Altyn Tagh fault system. GSA Bulletin,122(3-4):487-505.
    Washburn Z, Arrowsmith J R, Forman S L, Cowgill E, Xiaofeng W, Yueqiao Z and Zhengle C. 2001. Late Holocene earthquake history of the central Altyn Tagh fault, China. Geology, 29(11):1051-1054.
    Wei S, Chen Y J, Sandvol E. Zhou S, Yue H, Jin G, Hearn T M, Jiang M, Wang H, Fan W, Liu Z, Ge Z, Wang Y, Feng Y and Ni J.2010. Regional earthquakes in northern Tibetan Plateau: Implications for lithospheric strength in Tibet. Geophysical Journal International,37(19): L19307.
    Wittlinger G E, Rard. Tapponnier P, Poupinet G, Mei J, Danian S, Herquel G, Masson F E. D E and Ric.1998. Tomographic Evidence for Localized Lithospheric Shear Along the Altyn Tagh Fault. Science,282(5386):74-76.
    Wu C, Yang J, Robinson P T, Wooden J L, Mazdab F K. Gao Y, Wu S and Chen Q.2009. Geochemistry, age and tectonic significance of granitic rocks in north Altun, northwest China. Lithos,113(3-4):423-436.
    Wu L, Xiao A C, Wang L Q, Shen Z Y, Zhou S P, Chen Y Z, Wang L, Liu D and Guan J Y.2011. Late Jurassic-Early Cretaceous Northern Qaidam Basin, NW China:implications for the Earliest Cretaceous intracontinental tectonism. Cretaceous Research,32(4):552-564.
    Xia L, Li X, Ma Z. Xu X and Xia Z.2011. Cenozoic volcanism and tectonic evolution of the Tibetan plateau. Gondwana Research,19(4):850-866.
    Xia W, Zhang N, Yuan X, Fan L and Zhang B.2001. Cenozoic Qaidam Basin, China:A Stronger Tectonic Inversed, Extensional Rifted Basin. AAPG Bulletin,85(4):715-736.
    Yin A, Gehrels G E, Chen X and Wang X.1999. Evidence for 280km of Cenozoic left slip motion along the eastern segment of the Altyn Tagh fault. EOS (Transactions of the American Geophysical Union),80:F1018.
    Yin A and Harrison M T.2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences,28:211-280.
    Yin A, Rumelhart P E, Butler R, Cowgill E, Harrison T M, Foster D A, Ingersoll R V, Qing Z, Xian-Qiang Z, Xiao-Feng W, Hanson A and Raza A.2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. GSA Bulletin, 114(10):1257-1295.
    Yin A, Dang Y, Zhang M, Mcrivette M W, Burgess W P and Chen X.2007. Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions(Part 2):Wedge tectonics in southern Qaidam Basin and the eastern Kunlun Range. Special Paper-Geological Society of America, 433:369-390.
    Yin A, Dang Y, Zhang M, Chen X and Mcrivette M W.2008. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3):Structural geology, sedimentation, and regional tectonic reconstruction. GSA Bulletin,120(7-8):847-876.
    Yue Y and Liou J G.1999. Two-stage evolution model for the Altyn Tagh Fault, China. Geology, 27(3):227-230.
    Yue Y, Ritts B and Graham S.2001. Initiation and Long-Term Slip History of the Altyn Tagh Fault. International Geology Review,43(12):1087-1093.
    Yue Y, Ritts B D, Graham S A, Wooden J L, Gehrels G E and Zhang Z.2003. Slowing extrusion tectonics:lowered estimate of post-Early Miocene slip rate for the Altyn Tagh fault. Earth and Planetary Science Letters,217(1-2):111-122.
    Yue Y, Ritts B D, Hanson A D and Graham S A.2004. Sedimentary evidence against large strike-slip translation on the Northern Altyn Tagh fault, NW China. Earth and Planetary Science Letters,228(3-4):311-323.
    Yue Y, Graham S A, Ritts B D and Wooden J L.2005. Detrital zircon provenance evidence for large-scale extrusion along the Altyn Tagh fault. Tectonophysics,406(3-4):165-178.
    Zachos J, Pagani M, Sloan L, Thomas E and Billups K.2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science,292(5517):686-693.
    Zhang P, Molnar P and Downs W R.2001. Increased sedimentation rates and grain sizes 2-4Myr ago due to the influence of climate change on erosion rates. Nature,410(6831):891-897.
    Zhang P, Shen Z, Wang M, Gan W, Burgmann R, Molnar P, Wang Q, Niu Z, Sun J, Wu J, Hanrong S and Xinzhao Y.2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology,32(9):809-812.
    Zhang P, Molnar P and Xu X.2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau. Tectonics,26(5):TC5010.
    Zhang Q, Sandvol E, Ni J, Yang Y and Chen Y J.2011. Rayleigh wave tomography of the northeastern margin of the Tibetan Plateau. Earth and Planetary Science Letters,304(1-2): 103-112.
    Zhao J. Mooney W D, Zhang X, Li Z. Jin Z and Okaya N.2006. Crustal structure across the Altyn Tagh Range at the northern margin of the Tibetan Plateau and tectonic implications. Earth and Planetary Science Letters,241(3-4):804-814.
    Zheng H, Powell C M, An Z, Zhou J and Dong G.2000. Pliocene uplift of the northern Tibetan Plateau. Geology,28(8):715-718.
    Zhou J, Xu F, Wang T, Cao A and Yin C.2006. Cenozoic deformation history of the Qaidam Basin, NW China:Results from cross-section restoration and implications for Qinghai-Tibet Plateau tectonics. Earth and Planetary Science Letters.243(1-2):195-210.
    Zhu L, Wang C, Zheng H, Xiang F, Yi H and Liu D.2006. Tectonic and sedimentary evolution of basins in the northeast of Qinghai-Tibet Plateau and their implication for the northward growth of the Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology,241(1):49-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700