用户名: 密码: 验证码:
孔隙介质弹性波—电磁场耦合效应测井的波场模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究流体饱和孔隙介质中弹性-电磁耦合波场的解析与数值模拟方法。孔隙介质中的弹性波场本身是固相骨架变形与孔隙流体渗流的耦合场,而由于孔隙液体含非均匀分布的带电离子,弹性波场还与电磁波场耦合,这种双重的耦合作用被称为震电效应。探索基于震电效应的勘探和测井新方法,是当前勘探地球物理界,特别是油气勘探开发界关注的研究方向。为了弄清震电波场的激发和传播规律以及各种地层参数对震电波场的影响,需要研究震电波场的模拟方法,特别是可以用于非均匀孔隙地层中震电波场模拟的数值算法。
     本文以声电测井为背景,基于井内为流体、井外为流体饱和孔隙地层的介质模型,研究井内点声源激发的井孔声场及其诱导电磁场和井内电流源激发的井孔电诱导声场的解析和数值模拟方法,为开展这声电测井的可行性研究奠定基础。主要内容包括:
     在忽略诱导电磁场对声场影响的前提下,先独立计算井中点声源激发的声场,再通过引入赫兹矢量,求解声波诱导电磁场的解析表达式。并将波场推广到非井轴对称情形,结合多极声电测井,采用实轴积分法模拟声波诱导电磁场的全波波形。分析渗透率、孔隙度、弯曲度、流体粘度、矿化度等地层参数对声场及其诱导电磁场波形的影响,并对比声波测井和声-电测井响应对各种地层参数的敏感度。
     采用两种不同方法推导井内沿井轴放置的电偶极子激发的电磁场及其诱导声场的解析表达式。一种是直接求解Pride震电耦合方程组;另一种是在忽略诱导声场对电磁场影响的前提下,先独立计算电磁场,再求解其诱导声场。应用实轴积分法模拟电诱导声场的全波波形。通过对两种方法模拟波形的比较,验证忽略诱导声场对电磁场影响的简化计算的可行性。分析井孔电诱导声场波形的特点,以及各种地层参数对井孔电诱导声场波形的影响。
     针对井中水平电流环激发的电-声测井,通过直接求解Pride方程组的方式,推导电场及其诱导声场的解析表达式,并采用实轴积分法模拟全波波形。研究这种测井方法在横波速度测井方面的应用价值。
     实现了对井内流体、井外为水平分层孔隙地层中弹性波场数值模拟的速度-应力交错网格时域有限差分(FDTD)算法。相比于前人的孔隙弹性波FDTD算法,本文算法考虑惯性力对粘性流体流动的影响,适用于测井频率范围内的模拟。使用目前公认吸收效果最好的完全匹配层(PML)吸收边界条件消除由计算边界的截断带来的人工反射,并采用了不分裂场量的PML处理方式。分别采用两种不同的方式解决不同介质交界面上场量的差分离散化问题。一种是利用界面两侧介质的差分方程和场量在界面上的连续性条件推导出一组显式边界条件差分方程;另一种是在界面上仍采用均匀介质中场量的差分方程形式,但是方程中的参数取界面两侧介质中对应参数的平均值,作者称其为参数平均法。针对不同源频率和地层参数的多个算例,将FDTD算法模拟的波形与实轴积分法计算的结果进行详细地比较,验证FDTD算法的正确性。然后,采用FDTD算法模拟井外水平分层地层中声波测井的全波波形和波场分布情况。
     证明了在弹性波的交错网格FDTD算法中应用参数平均法与利用场量的连续性条件进行推导的等价性。另外,在采用统一的方程组表示固体、流体和孔隙介质中弹性波的情况下,将参数平均法扩展到处理任意由上述三种介质组成的交界面问题,实现可以数值模拟含有固体、流体和孔隙介质组成的复杂模型结构中弹性波传播问题的FDTD算法。该算法的实现对孔隙介质中弹性波FDTD算法的规范化和推广使用具有重要意义。
     分别提出电-声和声-电测井的有限差分模拟方法,实现对水平分层孔隙地层中井孔电诱导声场和声诱导电场的数值模拟。电-声测井的有限差分模拟,采用先计算电场再计算其诱导声场的简化计算方法。考虑到低频电偶极子激发的电磁场可看成似稳场,将问题转化为求解关于电位的泊松方程。采用有限差分法模拟电位点的空间分布。在电场已知的前提下,对FDTD模拟点声源激发声波测井的算法进行修改,实现这种由井外孔隙地层中电场空间的不均匀分布和时变特性所诱导的声场响应的模拟。声-电测井的有限差分模拟,在不考虑诱导电场对声场影响的前提下,先利用声波测井的FDTD模拟算法获得不同时刻声场的空间分布。与空间位置固定的电流源产生的电磁场不同,孔隙介质中声波诱导的电磁场是由空间波动的电流源产生的。诱导电场可看作是低频似稳场,将问题转化为在不同时刻模拟这种空间波动电流源导致的井内外电位分布,进而采用有限差分法模拟电场。在井外为均匀孔隙地层情况下,分别将有限差分模拟的声诱导电场和电诱导声场波形与实轴积分法计算的结果进行比较,验证有限差分算法的正确性。采用有限差分算法模拟井外孔隙地层中存在水平介质分界面的电-声测井诱导声场和声-电测井诱导电场的全波波形和波场分布,并分析电诱导声场和声诱导电场的波场特点。
     本文针对测井问题提出的震电波场模拟算法,对于震电测井仪器设计具有指导意义,对于震电勘探和天然地震诱导电磁场模拟具有参考意义。
Analytical and numerical methods are proposed to model the coupled poroelastic (or acoustic) and electric fields in fluid-saturated porous media. The poroelastic field itself is a coupled field of the solid strain and the pore fluid filtration, and it is coupled with the electromagnetic field due to the net charged ions in the pore fluid. This double coupling is called as seismoelectric effects. Seismoelectric exploration and seismoelectric well logging have caught the attention of geophysics and petroleum research engineers due to their potential usage in petroleum exploration. It is important to have a thorough understanding of the characteristics of the seismoelectric wave-fields and their relations to the formation parameters. This cannot be achieved without modeling the seismoelectric wave-fields correctly and efficiently. Numerical methods that can be applied in heterogeneous porous media are especially important and must be explored. But the simulation of seismoelectric wave-fields is a challenging task due to the difficulty in solving the coupling field.
     In this thesis, the acoustic field and its converted electromagnetic field of the seismoelectric logs excited by a point acoustic source in the fluid-filled borehole are modeled. In addition, the converted acoustic field of the electroseismic logs excited by an electric source in the borehole is simulated.
     The first two chapters are devoted to the semi-analytical methods for simulation of seismoelectric and electroseismic logging. By supposing the acoustic field is not influenced on its induced electromagnetic field, the analytical expressions for the induced electromagnetic field are derived by introducing Hertz vectors in Chapter 2. The full waveforms of the acoustic field and the electromagnetic field in the borehole are calculated when the borehole acoustic sources are respectively a monopole, a dipole and a quadrupole. The influence of formation parameters, such as the permeability, porosity, tortuosity, pore fluid viscosity and salinity, on the waveforms are investigated,
     In Chapter 3, two different methods are proposed to derive the analytical expressions for the electromagnetic field and its induced acoustic field of the electroseismic logs excited by a vertical electric dipole in the borehole. In the coupled method, the EM field and the acoustic field are modeled using Pride’s model, which couples Maxwell’s equations and Biot’s equations. In the uncoupled method, the EM field is uninfluenced by the converted acoustic field, resulting in separate acoustic formulation with an electrokinetic source term derived from the primary EM field. The difference of the transient full waveforms between the above two methods is remarkably small for all examples, thus confirming the validity of using the computationally simpler uncoupled method. The waveform characteristics of the electric-induced acoustic field and the influence of formation parameters on the waveforms are investigated.
     For the modeling of the electroseismic logs excited by a horizontal current loop, the analytical expressions for the electric field and its induced acoustic field are derived by solving Pride’s equations. In this logging problem, the transverse electric wave is coupled with the induced shear horizontal wave. Numerical simulations of the logs are calculated in different fluid-saturated porous formations, and the shear wave velocities are directly extracted from the simulated full waveforms. This logging method has potential application value in shear velocity logging.
     In the two subsequent chapters, I adapt the finite deference (FD) method to cater for acoustic, seismoelectric, and electroseismic wave propagation problems in heterogeneous porous media, with special efforts to treat the inner and outer boundary conditions.
     A velocity-stress finite-difference time-domain (FDTD) algorithm is proposed in Chapter 4 to simulate the acoustic fields in a fluid filled borehole embedded in fluid-saturated porous media. This algorithm considers both the low-frequency viscous force and the high-frequency inertial force in poroelastic media, extending its application to a wider frequency range compared to existing algorithms which are only valid in the low-frequency limit. The perfectly matched layer (PML) is applied as an absorbing boundary condition to truncate the computational region. A PML technique without splitting the fields is extended to the poroelastic wave problem. In the FDTD algorithm, two different method are respectively used to discrete the field quantities on the borehole wall between the fluid and porous media. One is to derive the discrete equations by using the boundary conditions. The other is to formulate in the same forms as those in the homogeneous media, but the average of the medium parameters on both sides of the interface are used instead, this method is called as parameter averaging technique. The FDTD algorithm is validated by comparisons against the analytical method in a variety of formations with different velocities and permeabilities. The acoustic logs in a horizontally stratified porous formation are simulated with the proposed FDTD algorithm.
     The validity of the parameter averaging technique used for the interface between two different porous media is proved by deriving the discrete equations with average parameters from the continuity conditions on the interface. By using a set of generic equations to express elastic waves in solid, fluid and porous media, this parameter averaging technique is applied to deal with not only the interfaces between two media of the same type but also those between solid, fluid, and porous media. And the 2-D FDTD algorithm in axisymmetric cylindrical coordinates is presented to simulate elastic wave propagation in combined structures with solid, fluid and porous subregions. This algorithm has important significance to normalize and popularize the FDTD method for the modeling of elastic waves in porous media.
     In the last chapter, FD algorithms are proposed to simulate the induced acoustic field of the electroseismic logging and the induced electric field of the seismoelectric logging in horizontally stratified porous formations. For the modeling of electroseismic logging, the EM field excited by the electric dipole is calculated separately by FD first, and is considered as a distributed exciting source term in a set of extended Biot’s equations for the induced acoustic wavefield in the formation. This set of equations is solved by a modified FDTD algorithm. For the modeling of seismoelectric logging, the acoustic field excited by the acoustic source is calculated by the FDTD algorithm first, and is considered as a wave-like exciting source term in the Poisson equation for the induced electric potential. This Poisson equation is solved by FD. The FD algorithms are validated by comparisons against the analytical method in homogeneous porous formation. The electroseismic and seismoelectric logs in heterogeneous porous formations with a horizontal interface are simulated with the FD algorithms.
引文
1 M. A. Biot. Theory of Propagation of Elastic Waves in a Fluid-saturated Porous Solid. I-Low-frequency Range. J. Acoust. Soc. Am. 1956, 28: 168-178
    2 M. A. Biot. Theory of Propagation of Elastic waves in a Fluid-saturated Porous Solid. II-Higher-frequency Range. J. Acoust. Soc. Am. 1956, 28: 178-191
    3 M. A. Biot. Mechanics of Deformation and Acoustic Propagation in Porous Media. J. Appl. Phys. 1962, 33: 1482-1498
    4 O. Coussy. Poromechanics. John Wiley & Sons Ltd, 2004: 1-298
    5 F. D. Morgan, E. R. Williams and T. R. Madden. Streaming Potential Properties of Westerly Granite with Applications. J. Geophys. Res. 1989, 94: 12449-12461
    6 S. R. Pride, F. D. Morgan. Electrokinetic Disspation Induced by Seismic Waves. Geophysics. 1991, 56: 1769-1778
    7 S. R. Pride. Governing Equations for the Coupled Electromagnetics and Acoustics of Porous Media. Phys. Rev. B. 1994, 50: 15678-15696
    8 O A波达波夫等著.震电勘探原理.裘慰庭,李天乐译.石油工业出版社, 1997: 1-158
    9 A. C. Fraser-Smith, A. Bermardi, P. R. McGill et al. Low-frequency Magnetic Field Measurements Near the Epicenter of The MS7.1 Loma Prieta Earthquake. Geophys. Res. Lett. 1990, 17(9): 1465—1468
    10 M. J. S. Johnston, R. J. Mueller and Y. Sasai. Magnetic Field Observation in the Near-field the 28 June 1992 MW7.3 Landers, California, Earthquake. Bull. Seismol. Soc. Am. 1994, 84: 792-798
    11郝建国,潘怀文,毛国敏等.准静电场异常与地震——一种可靠短临地震前兆信息探索.地震地磁观测与研究. 2000, 21(4): 3-166
    12 D. Karakelian, G. C. Beroza and L. Simon. Analysis of Ultra Lowfrequency Electromagnetic Field Measurements Associated with the 1999 M7.1 Hector Mine Earthquake Sequence. Bull. Seismol. Soc. Am. 2002, 92: 1513-1524
    13陈建毅.台湾花莲地震前电磁辐射异常分析.地震地磁观测与研究. 2003, 24(1): 46-48
    14王继军,赵国泽,詹艳等.中国地震电磁现象的观测与研究.大地测量与地球动力学. 2005, 25(2): 11-21
    15汤吉,詹艳,王立凤等. 5月12日汶川8.0级地震强余震观测的电磁同震效应.地震地质. 2008, 30(3): 739-745
    16胡恒山,王克协.井孔周围轴对称声电耦合波: (Ⅰ)理论.测井技术. 1999, 23(6): 427-432
    17胡恒山,王克协.井孔周围轴对称声电耦合波: (Ⅱ)声电效应测井数值模拟.测井技术. 2000, 24(1): 3-13
    18胡恒山.声电效应测井的理论、数值与实验研究.吉林大学博士学位论文. 2000: 1-128
    19 L. Tsang, D. Rader. Numerical Evaluation of the Transient Acoustic Waveform due to a Point Source in a Fluid-filled Borehole. Geophysics. 1979, 44: 1706–1720
    20 R. R. Thompson. The Seismic Electric Effect. Geophysics. 1936, 1: 327-335
    21 A. G. Ivanov. The Electroseismic Effect of the Second Kind. Izvestiya Akademii Nauk SSSR, Ser. Geogr. Geofiz. 1940, 5:699-727
    22 R. D. Russell, K. E. Butler, A. W. Kepic, et al. Seismoelectic Exploration. The Leading Edge. 1997, 16:1611-1615
    23 G. A. Sobolev, V. M. Demin, B. B. Narod et al. Tests of Piezoelectric and Plused-radio Methods for Quartz Vein and Base-metal Sulfides Prospecting at Giant Yellowknife Mine, N. W. T. and Sullivan Mine, Kimberley, Canada. Geophysics. 1984, 49: 2178-2185
    24 A. W. Kepic, M. Maxwell and R. D. Russell. Field Trials of a Seismoelectric Method for Detecting Massive Sulfides. Geophysics. 1995, 60: 365-373
    25 J. Frenkel. On the Theory of Seismic and Seismoelectric Phenomena in a Moist Soil. J. Physics (Soviet). 1944, 8(4): 230-241
    26 S. R. Pride. Electroseismic Wave Theory of Frenkel and More Recent Developments. J. Engin. Mech. 2005, 131: 898-907
    27 S. T. Martner, N. R. Sparks. The Electroseismic Effect. Geophysics. 1959, 24: 297-308
    28 R. Broding, S. Buchanan and D. Hearn. Field Experiments on the Electroseismic Effect. IEEE Trans. Geosci. Electronics. 1963, GE-1: 23-31
    29 S. R. Pride, M. W. Haartsen. Electroseismic Wave Properties. J. Acoust. Soc. Am. 1996,100(3): 1301-1315
    30 M. W. Haartsen, S. R. Pride. Electroseismic Waves from Point Sources in Layered Media. J. Geophys. Res. 1997, 102(B11): 24745-24769
    31 A. Thompson, G. Gist. Geophysical Applications of Electrokinetic Conversion. The Leading Edge. 1993, 12: 1169-1173
    32 K. E. Butler, R. D. Russel, A. W. Kepic et al. Measurement of the Seismoelectric Response from a Shallow Boundary. Geophysics. 1996, 61: 1769-1778
    33 O. V. Mikhailov, M. W. Haartsen and M. N. Toks?z. Electroseimic Investigation of the Shallow Subsurface: Field Measurements and Numerical Modeling. Geophysics. 1997, 62:97-105
    34 D. Beamish. Characteristics of Near-surface Electrokinetic Coupling. Geophys. J. Int. 1999, 137: 231-242
    35 M. W. Haartsen. Coupled Electromagnetic and Acoustic Wavefield Modeling in Poro-elastic Media and its Applications in Geophysical Exploration. Ph. D. Thesis. Massachusetts, MIT. 1995: 1-325
    36 O. V. Mikhailov, J. Queen and M. N. Toks?z. Using Borehole Electroseismic Measurements to Detect and Characterize Fractured (Permeable) Zones. Geophysics. 2000, 65: 1098–1112
    37 X. M. Tang, C. H. Cheng and M. N. Toks?z. Dynamic Permeability and Borehole Stoneley Waves: A Simplified Biot-Rosenbaum Model. J. Acoust. Soc. Am. 1991, 90: 1632-1646
    38 Z. Zhu, M. W. Haartsen and M. N. Toks?z. Experimental Studies of Electrokinetic Conversions in Fluid-saturated Borehole Models. Geophysics. 1999, 64: 1349-1356
    39 C. W. Hunt, M. H. Worthington. Borehole Electrokinetic Responses in Fracture Dominated Hydraulically Conductive Zones. Geophysical Research Letters. 2000, 27: 1315-1318
    40 Z. Zhu, M. N. Toks?z. Crosshole Seismoelectric Measurements in Borehole Models with Fractures. Geophysics. 2003, 68: 1519–1524
    41 Z. Zhu, M. N. Toks?z. Seismoelectric and Seismomagnetic Measurements in Fractured Borehole Models. Geophysics. 2005, 70: F45-F51
    42 S. X. Li, D. B. Pengra and P. Z. Wong. Onsager’s Reciprocal Relation and the Hydraulic Permeability of Porous Media. Phys. Rev. E. 1995, 51: 5748-5751
    43 D. B. Pengra, S. X. Li and P. Z. Wong. Determination of Rock Properties by Low-Frequency AC Electrokinetics. J. Geophy. Res. 1999, 104: 29485-29508
    44 D. B. Pengra, P. Z. Wong. Low-frequency AC Electrokinetics. Colloids and Surfaces A: Physicochemical and Engieering Aspects. 1999, 159: 283-292
    45 J. G. Berryman. Electrokinetic Effects and Fluid Permeability. Physica B. 2003, 338:270-273
    46 H. Deckman, E. Herbolzheimer and A. Kushnick. Determination of Electrokinetic of Coupling coefficients. 75th Annual Iternational Meeting, SEG, Expanded Abstracts. 2005, 24: 561-564
    47 Z. Zhu, M. W. Haartsen and M. N. Toks?z. Experimental Studies of Seismoelectric Conversions in Fluid-saturated Porous Media. J. Geophys. Res. 2000, 105: 28055-28064
    48 S. Garambois, M. Dietrich. Seismoelectric Wave Conversions in Porous Media: Field Measurements and Transfer Function Analysis. Geophysics. 2001, 66: 1417–1430
    49 G. I. Block, J. G. Harris. Conductivity Dependence of Seismoelectric Wave Phenomena in Fluid-saturated Sediments. J. Geophys. Res. 2006, 111: B01304
    50 C. Bordes, L. Jouniaux, M. Dietrich et al. First Laboratory Measurements of Seismo-magnetic Conversions in Fluid-filled Fontainebleau Sand. Geophysical Research Letters. 2006, 33: L01302
    51 B. Kulessa, T. Murray and D. Rippin. Active Seismoelectric Exploration of Glaciers. Geophysical Research Letters. 2006, 33: L07503
    52 J. C. Dupuis, K. E. Bulter. Vertical Seismoelectric Profiling in a Borehole Penetrating Glaciofluvial Sediments. Geophysical Research Letters. 2006, 33: L16301
    53 J. C. Dupuis, K. E. Bulter and A. W. Kepic. Seismoelectric Imaging of the Vadose Zone of a Sand Aquifer. Geophysics. 2007, 72: A81-A85
    54 S. S. Haines, S. R. Pride, S. L. Klemperer et al. Seismoelectric Imaging of Shallow Targets. Geophysics. 2007, 72: G9-G20
    55 A. N. Kuznetsov, I. P. Sokolova, I. P. Moroz et al. General Characterization of the Seismoelectric Effects of the First and Second Kinds in the Saratov Zavolzh’e Region, the Dnieper-Donets Basin, and Western Siberia. Izvestiya, Physics of solid Earth. 2007, 43: 309-313
    56 M. H. P. Strahser, R. Wolfgang and F. Schildknecht. Polarisation and Slowness of Seiemoelectric Signals: A Case Study. Near Surface Geophysics. 2007, 5: 97-114
    57 A. H. Thompson, S. Hornbostel, J. Burns et al. Field Tests of Electroseismic Hydrocarbon Detection. Geophysics. 2007, 72: N1-N9
    58 A. H. Thompson, J. R. Sumner and S. Hornbostel. Electromagnetic-to-seismic Conversion: A New Direct Hydrocarbon Indicator. The Leading Edge. 2007, 26:428-435
    59 S. C. Hornbostel and A. H. Thompson. Waveform Design for Electroseismic Exploration. Geophysics. 2007, 72: Q1-Q10
    60 Z. Zhu, M. N. Toks?z and D. R. Burns. Electroseismic and Seismoelectric Measurements of Rock Samples in a Water Tank. Geophysics. 2008, 73: E153-E164
    61 P. M. Reppert and F. D. Morgan. Frequency-Dependent Electroosmosis. Journal of Colloid and Interface Science. 2002, 254: 372-383
    62刘洪,李幼铭.对利用震电效应勘探油气水的几点看法.石油物探. 1994, 33(2): 94-101
    63裘慰庭.震电效应在油气勘探中的应用前景.石油仪器. 1996, 2(10): 8-12,14
    64刘洪.震电效应研究在资源勘探中的应用前景.地球物理学进展. 2002, 17: 211-217
    65陈本池.震电效应在油气勘探开发中的应用.物探与化探. 2007, 31(4): 333-338
    66 Y. G. Jiang, F. K. Shan, H. M. Jin et al. A Method for Measuring Electrokinetic Cofficients of Porous Media and its Potential Application in Hydrocarbon Exploration. Geophysical Research Letters. 1998, 25: 1581-1584
    67严洪瑞,刘洪,李幼铭等.震电勘探方法在大庆油田的实验研究.地球物理学报. 1999, 42: 257-267
    68石昆法.震电效应原理和初步实验结果.地球物理学报. 2001, 44(5): 720-728
    69胡恒山,李长文,王克协等.声电效应测井模型实验研究.测井技术. 2001, 25(2): 89-95
    70陈本池,牟永光,狄帮让等.井中震电勘探模型实验研究.石油物探. 2003, 42(1): 35-38
    71张元中,肖立志,楚泽涵等.模型井声电效应的实验研究.岩石力学与工程学报. 2004, 23(14): 2434-243
    72 N. M. Neishtadt, L. V. Eppelbaum and A. G. Levitski. Application of Piezoelectric and Seismoelectrokinetic Phenomena in Exploration Geophysics: Review of Russian and Israeli Experiences. Geophysics. 2006, 71: B41-B53
    73 T. A.ПОЛЯКОВА,Г.Я.ЧЕРНЯК.脉冲-谐波激励的电声测井.王勋弟译.国外测井技术. 1991, 6(1): 11-15
    74 G. Kokayashi, T. Toshioka, T. Tokahashi et al. Development of a Practical EKL (Electrokinetic Logging) System. SPWLA 43rd Annual Logging Symposium. 2002
    75 K. E. Butler, R. D. Russel. Subtraction of Powerline Harmonics from GeophysicalRecords. Geophysics. 1993, 58: 898-903
    76 K. E. Butler, R. D. Russel. Cancellation of Multiple Harmonic Noise Series in Geophysical Records. Geophysics. 2003, 68: 1083-1090
    77 K. E. Butler, A. Kepic and M. Rosid. An Experimental Seismoelectric Survey for Groundwater Exploration in the Australian Outback. 72nd Annual Iternational Meeting, SEG, Expanded Abstracts. 2002, 21: 1484-1487
    78 A. Kepic, M. Rosid. Enhancing the Seismoelectric Method via a Virtual Shot Gather. 74th Annual Iternational Meeting, SEG, Expanded Abstracts. 2004, 23: 1337-1340
    79 S. S. Haines, A. Guitton and B. Biondi. Seismoelectric Data Processing for Surface Surveys of Shallow Targets. Geophysics. 2007, 72: G1-G8
    80 A. Revil, R. A. Pezard and P. W. J. Glover. Streaming Potential in Porous Media 1. Theory of the Zeta Potential. J. Geophy. Res. 1999, 104: 20021-20031
    81 A. Revil, M. Pessel. Electroosmotic flow and the validity of the classical Darcy equation in silty shales. Geophysical Research Letters. 2002, 29, No. 9:1300
    82胡恒山,刘家琦,王洪滨等.对波达波夫和Pride震电波方程组的对比分析.地球物理学报. 2003, 46(1): 107-112
    83戴世坤.双相介质中的震电效应和震电波场传播理论,博士后研究工作报告,石油大学. 1996
    84 S. Garambois, M. Dietrich. Full Waveform Numerical Simulations of Seismoelectromagnetic Wave Conversions in Fluidsaturated Stratified Porous Media. J. Geophys. Res. 2002, 107: 40–58
    85 S. R. Pride, S. Garambois. The Role of Biot Slow Waves in Electroseismic Wave Phenomena. J. Acoust. Soc. Am. 2002, 111: 697-706
    86 B. S. White. Asymptotic Theory of Electroseismic Prospecting. SIAM J. Appl. Math. 2005, 65: 1443-1462
    87 B. S. White, M. Zhou. Electroseismic Prospecting in Layered Media. SIAM J. Appl. Math. 2006, 67: 69-98
    88 B. Ursin. Review of Elastic and Electromagnetic Wave Propagation in Horizontally Layered Media. Geophysics. 1983, 48: 1063-1081
    89胡恒山.孔隙地层井壁上的声波首波及其诱导电磁场的原因.物理学报. 2003, 52(8):1954-1959
    90胡恒山,刘家琦,王洪滨等.声电效应测井响应的似稳场近似模拟.地球物理学报. 2003, 46(2): 259-264
    91崔志文.多孔介质声学模型与多极源声电效应测井和多极随钻测井的理论与数值研究.吉林大学博士学位论文. 2004:52-84
    92 Z. W. Cui, K. X. Wang, H. S. Hu et al. Acousto-electric Well Logging by Eccentric Source and Extraction of Shear Wave. Chinese Physics. 2007, 16(3): 746-752
    93 Z. W. Cui, K. X. Wang, J. G. Sun et al. Numerical Simulation of Shear-Horizontal-Wave-Induced Electromagnetic Field in Borehole Surrounded by Porous Formation. 2007, 24(12): 3454-3457
    94 X. Zhan, S. Chi. Simulation of the Converted Electric Field during Multipole Logging While Drilling (LWD): 76th Annual International Meeting, Soc. Exploration Geophysics, Expanded Abstracts. 2006, 25: 446-450
    95 B. D. Plyushchenkov, V. I. Turchaninov. Solution of Pride’s Equations through Potentials. International Journal of Mordern Physics C. 2006, 17: 877-908
    96 Q. Han, Z. Wang. Time-domain Simulation of SH-Wave-Induced Electromagnetic Field in Heterogeneous Porous Media: A Fast Finite-element algorithm. Geophysics. 2001, 66:448-461
    97 C. C. Pain, J. H. Saunders, M. H. Worthington, et al. A Mixed Finite-element Method for Solving the Poroelastic Biot Equations with Electrokinetic Coupling. Geophys. J. Int. 2005, 160: 592-608
    98 S. S. Haines and S. R. Pride. Seismoelectric numerical modeling on a grid: Geophysics. 2006, 71: N57-N65
    99 L. Jouniaux, J. P. Pozzi. Streaming Potential and Permeability of Saturated Sandstones under Triaxial Stress: Consequences for Electrotelluric Anomalies to Earthquakes. J. Geophys. Res. 1995, 100(B6): 10197-10209
    100 M. Matsushima, Y. Honkura, N. Oshiman, et al. Seismoeletromagnetic Effect Associated with the Izmit Earthquake and its Aftershocks. Bull. Seismol. Soc. Am. 2002, 92: 350-360
    101 T. Ishido, H. Mizutani. Experimental and Theoretical Basis of Electrokinetic Phenomena in Rock-Water Systems and its Applications to Geophysics. J. Geophys. Res. 1981, 86(B3): 1763-1775
    102 S. R. Pride, F. Moreau and P. Gavrilenko. Mechanical and Electrical Response due to Fluid-pressure Equilibration Following an Earthquake. J. Geophys. Res. 2004, 109:B03302
    103王长清.现代计算电磁学基础.北京大学出版社. 2005
    104 Z. S. Alterman, F. C. Karal. Propagation of Elastic Waves in Layered Media byFinite Difference Methods. Bull. Seismol. Soc. Am. 1968, 58: 367-398
    105 R. M. Alford, K. R. Kelly and D. M. Boore. Accuracy of Finite-difference Modeling of the Acoustic Wave Equation. Geophysics. 1974, 39: 834-842
    106 K. R. Kelly, R. W. Ward, S. Treitel et al. Synthetic Seismograms: A Finite-differnece Approach. Geophysics. 1976, 41: 2-27
    107 R. A. Stephen, F. Cardo-Casas and C. H. Cheng. Finite-difference Synthetic Acoustic Logs. Geophysics. 1985, 50: 1588-1609
    108 K. S. Yee. Numerical Solution of Initial Boundary Value Problems Involving Maxwell Equations in Isotropic Media. IEEE Trans. Antennas Propagat. 1966, 14302-14307
    109 J. Virieux. P-SV Wave Propagation in Heterogeneous Media: Velocity-stress Finite-difference Method. Geophysics. 1986, 51: 889-1001
    110 C. J. Randall, D. J. Scheibner and P. T. Wu. Multipole Borehole Acoustic Waveforms: Synthetic Logs with Beds and Borehole washouts. Geophysics. 1991, 56: 1757-1769
    111 C. J. Randall. Multipole Acoustic Wave Forms in Nonaxisymmetric Boreholes and Formations. J. Acoust. Soc. Am. 1991, 90: 1620-1631
    112 H. D. Leslie, C. J. Randall. Multipole Sources in Boreholes Penetrating Anisotropic Formations. J. Acoust. Soc. Am. 1992, 91: 12-27
    113 S. Kostek, C. J. Randall. Modeling of a Piezoelectric Transducer and its Application to Full waveform Acoustic Logging. J. Acoust. Soc. Am. 1994, 95: 109-122
    114 R. Clayton, B. Engquist. Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations. Bull. Seismol. Soc. Am. 1977, 67: 1529–1540
    115 A. C. Reynolds. Boundary Conditions for the Numerical Solution of Wave Propagation Problems. Geophysics. 1978, 43: 1099–1110
    116 Z. P. Liao, H. L. Wong, B. P. Yang, et al. A Transmitting Boundary for Transient Wave Analysis. Sci. Sinica A. 1984, 27: 1063–1076
    117 R. L. Higdon. Absorbing Boundary Conditions for Elastic Waves. Geophysics. 1991, 56: 231–241
    118 C. Cerjan, D. Kosloff, R. Kosloff, et al. A Nonreflecting Boundary Condition for Discrete Acoustic and Elastic Wave Equation. Geophysics. 1985, 50: 705–708
    119 R. Kosloff, D. Kosloff. Absorbing Boundary for Wave Propagation Problems. J. Comput. Acoust. 1986, 63: 363–376
    120 J. Sochacki, R. Kubichek, J. George et al. Absorbing Boundary Conditions andSurface Waves. Geophysics. 1987, 52: 60–71
    121 C. B. Peng, M. N. Toks?z. An Optimal Absorbing Boundary Condition for Elastic Wave Modeling. Geophysics. 1995, 60: 296–301
    122 J. P. Berenger. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. J. Comput. Phys. 1994, 114: 185-200
    123 J. P. Berenger. Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves. Journal of Computational Physics. 1996, 127: 363-379
    124 W. C. Chew, W. H. Weedon. A 3D Perfectly Matched Medium from Modified Maxwell’s Equations with Stretched Coordinates. Microwave Opt. Technol. Lett. 1994, 7: 599-604
    125 W. C. Chew, Q. H. Liu. Perfectly Matched Layers for Elastodynamics: A New Absorbing Boundary Condition. J. Comput. Acoust. 1996, 4: 341-359
    126 Y. H. Chen, W. C. Chew, M. L. Oristaglio. Application of Perfectly Matched Layers to the Transient Modeling of Subsurface EM Problems. Geophysics. 1997, 62: 1730-1736
    127 F. D. Hastings, J. B. Schneider, S. L. Broschat. Application of the Perfectly Matched Layer PML Absorbing Boundary Condition to Elastic Wave Propagation. J. Acoust. Soc. Am. 1996, 100: 3061–3069
    128 Q. H. Liu, J. Tao. The Perfectly Matched Layer for Acoustic Waves in Absorptive Media. J. Acoust. Soc. Am. 1997, 102: 2072-2082
    129 J. A. Roden, S. D. Gedney. Convolution PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media. Microwave Opt. Technol. Lett. 2000, 27: 334-339
    130 D. Komatisch, R. Martin. An Unsplit Convolutional Perfectly Matched Layer Improved at Grazing Incidence for the Seismic Wave Equation. Geophysics. 2007, 72: SM155-SM167
    131 R. Martin, D. Komatitsch, A. Ezziani. An Unsplit Convolutional Perfectly Matched Layer Improved at Grazing Incidence for Seismic Wave Propagation in Poroelastic Media. Geophysics. 2008, 73: T51-T61
    132 T. Wang, X. M. Tang. Finite-difference Modeling of Elastic Wave Propagation: A Nonsplitting Perfectly Matched Layer Approach. Geophysics. 2003, 68: 1749-1755
    133 A. Taflove, S. C. Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain Method: Second Ed. Norwood, MA: Artech House, 2000
    134葛德彪,闫玉波.电磁场时域有限差分方法.第二版.西安电子科技大学出版社, 2005: 11-80
    135 S. Hassanzadeh. Seismic Modeling in Fluid-Saturated Porous Media: An Approach to Enhanced Reservior Characterization. Geophysics. 1991, 56: 424-435
    136 X. Zhu, G. A. McMechan. Numerical Simulation of Seismic Responses of Poroelastic Reservoirs Using Biot Theory. Geophysics. 1991, 56: 328-339
    137 N. Dai, A. Vafidis, E. R. Kanasewich. Wave Propagation in Heterogeneous, Porous Media: A Velocity-Stress, Finite-Difference Method. Geophysics. 1995, 60: 327-340
    138 T. Ozdenvar, G. A. McMechan. Algorithm for Staggered-Grid Computations for Poroelastic, Elastic, Acousic, and Scalar Wave Equations. Geophysical Prospecting. 1997, 45: 403-420
    139 J. Zhang. Quadrangle-Gride Velocity-Stress Finite Difference Method for Poroelastic Wave Equations. Geophys. J. Int. 1999, 139: 171-182
    140 H. Dong, A. M. Kaynia, C. Madshus et al. Sound Propagation over Layered Poro-Elastic Ground Using a Finite-Difference Model. J. Acoust. Soc. Am. 2000, 108: 494–502
    141 Y. Q. Zeng, Q. H. Liu. A Staggered-Grid Finite-Difference Method with Perfectly Matched Layers for Poroelastic Wave Equations. J. Acoust. Soc. Am. 2001, 109: 2571-2580
    142 Y. Q. Zeng, J. Q. He, Q. H. Liu. The Application of the PML in Numerical Modeling of Wave Propagation in Poroelastic Media. Geophysics. 2001, 66: 1258-1266
    143 R. Song, J. Ma, K. Wang. The Application of the Nonsplitting Perfectly Matched Layer in Numerical Modeling of Wave Propagation in Poroelastic Media. Applied Geophysics. 2005, 2(4): 216-222
    144 Y. J. Masson, S. R. Pride, K. T. Nihei. Finite Difference Modeling of Biot’s Poroelastic Equations at Seismic Frequencies. J. Geophys. Res. 2006, 111: B10305
    145 J. F. Lu, A. Hanyga. Wave Field Simulation for Heterogeneous Porous Media with Singular Memory Drag Force. Journal of Computational Physics. 2005, 208: 651-674
    146 D. L. Johnson, J. Koplik, R. Dashen. Theory of Dynamic Permeability and Tortuosity in Fluid-Saturated Porous Media. J. Fluid Mech. 1987, 176: 379-402
    147 Y. J. Masson, S. R. Pride. Poroelastic Finite Difference Modeling of Seismic Attenuation and Dispersion due to Mesoscopic-Scale Heterogeneity. J. Geophys.Res. 2007, 112: B03204
    148 S. R. Pride, A. F. Gangi, F. D. Morgan. Deriving the Equations of Motion for Porous Isotropic Media. J.Acoust.Soc.Am. 1992, 92: 3278-3290
    149 T. Plona. Observation of a Second Bulk Compressional Wave in a Porous Medium at Ultrasonic Frequencies. Appl. Phys. Lett. 1980, 36: 259-261
    150 O. Kelder M. J. Smeulders. Observation of the Biot Slow Wave in Water-Saturated Nivelsteiner Sandstone. Geophysics. 1997, 62: 1794-1796
    151诸国桢,朱喜福,刘亮.用光学的方法验证流体饱和孔隙介质中慢纵波的存在.声学学报. 2000, 25: 1-4
    152胡恒山,王克协,刘家琦.孔隙介质中快纵波的衰减特性与动力协调现象研究.计算物理. 2002, 19(3):203-207
    153王一平.工程电动力学.修订版.西安电子科技大学出版社, 2007: 44-46, 60
    154 A. L. Kurkjian, S. K. Chang. Acoustic Multipole Sources in Fluid-Filled Boreholes. Geophysics. 1986, 51: 148-163
    155张碧星.双相与双相柱状多层介质地层流体井孔中多极子声源激发场的理论分析与数值计算.吉林大学硕士学位论文, 1991: 33-38
    156张碧星,王克协,董庆德.双相介质井孔多极源声测井理论及分波分析与全波计算.地球物理学报. 1995, 38,增刊I: 178-192
    157法林,张士勇.薄球壳换能器的源函数来源和特性分析.测井技术. 1996, 20: 169-177
    158 L. Vernik. Predicting Lithology and Transport Properties from Acoustic Velocities Based on Petrophysical Classification of Siliclastics. Geophysics. 1994, 59: 420-427
    159胡恒山井中声源激发时孔隙地层中的弹性波及其诱导电磁场.哈尔滨工业大学博士后工作报告. 2002: 38-41
    160 A. E.薛定谔著.多孔介质中的渗流物理.王鸿勋,张朝琛,孙书琛译.石油工业出版社,1982: 105
    161伍先运,王克协,郭立等.利用声全波测井资料求取储层渗透率的方法与应用研究.地球物理学报. 1995, 38,增刊I: 224-231
    162 J. E. White. The Hula Log: a Proposed Acoustic Tool. Trans. Soc. Professional Well Log Analysis. 8th Annual Logging Symposium, 1967, Paper I
    163 S. T. Chen. Shear-Wave Logging with Dipole Sources. Geophysics. 1988, 53: 659-667
    164 C. V. Kimball. Shear Slowness Measurement by Dispersion Processing of theBorehole Flexural Mode. Geophysics. 1998, 63: 337-344
    165 J. H. Rosenbaum. Synthetic Microseismograms: Logging in Porous Formations. Geophysics. 1974, 39: 14-32
    166何峰江,陶果.声波测井三维交错网格有限差分模拟的漂移失稳及改进方案.测井技术. 2003, 27(5): 360-363
    167宋若龙.非轴对称套管井声场并行计算及声波固井质量评价理论与方法研究.吉林大学博士学位论文. 2008: 47
    168吕英华.计算电磁学的数值方法.清华大学出版社, 2006: 134
    169 J. Claerbout. Multidimensional Recursive Filters via a Helix. Geophysics. 1998, 63: 1532-1541

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700