用户名: 密码: 验证码:
聚乳酸固载环糊精的制备及细胞相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了开发一种具有良好生物相容性和生物特异性的生物医用材料,本研究以D,L-乳酸为起始原料,在新型镧钛复合氧化物的的作用下催化乳酸脱水制备丙交酯。丙交酯在锌酸亚锡作用下开环聚合得到聚乳酸,在此基础上,通过一系列化学改性,将低聚糖环糊精共价接枝到聚乳酸分子骨架上,得到一种新型的糖伪饰聚乳酸基全降解生物材料。采用傅立叶红外光谱仪(FTIR)、核磁共振波谱仪(NMR)、GPC-十八角激光散射仪(MALLS)、差示扫描量热计(DSC)和一些常规化学分析方法对合成的材料进行测试与表征,并考察了材料的亲/疏水性、体外降解行为、生物相容性。主要研究内容和结论如下:
     ⑴反应性聚乳酸的制备
     ①首先以乳酸为原料,通过镧钛复合氧化物催化乳酸制备丙交酯(LA),镧钛复合氧化物的引入使乳酸低聚物的裂解温度整体下降,丙交酯的纯度得到提高,经DSC测定,丙交酯的熔点为126.4℃,X射线光电子能谱分析结果表明,丙交酯没有受到放射性元素镧的污染。
     ②丙交酯在锌酸亚锡作用下开环聚合得到聚乳酸,用多角度激光光散射仪测定实验所得PLA的分子量和分子量分布分别为:Mw=22480;Mn=19548;PD=1.15。
     ③通过马来酸酐单体在过氧化二苯甲酰引发下与聚乳酸发生自由基反应,向缺乏反应基团的聚乳酸分子提供高反应活性的酸酐键。FTIR和1HNMR分析结果表明,马来酸酐成功引入到聚乳酸分子骨架上。并确定了较佳的反应条件是:反应物重量比PLA:MAH=10:1,BPO用量4wt%(相对于MAH用量),反应时间10h、反应温度95℃。罗丹明比色法测定结果表明,在此条件下制备的MPLA中马来酸酐的接枝率为2.45%,MALLS检测表明MPLA的分子量和分子量分布分别为Mw=20473,Mn=16510,PD=1.24。
     ⑵合成了6-单-乙二胺-β-CD(β-CD-6-E)单体
     ①FTIR、1H NMR和DSC-TGA的分析结果表明,通过将对甲基苯磺酰氯配成乙腈溶液在10℃下滴加到β-环糊精(β-CD)的NaOH溶液中,β-CD转变成了6-单-对甲基苯磺酰β-环糊精酯(β-CD-6-OTs)中间体,且产物在181.7℃开始分解,187℃有一个强分解峰。考察了反应条件对产率的影响,得到最佳的反应工艺条件为:TsCl:β-CD的摩尔比为1.5,TsCl的乙腈液在10度下缓慢滴加,反应温度23~25℃,反应时间2h,最终产物pH值调整至7~8,这时产物产率可达到14%。
     ②红外光谱、核磁共振波谱仪以及元素分析仪(EA)分析的结果表明,β-CD-6-OTs与过量乙二胺在75~80℃反应4h能得到6-单-乙二胺-β-CD环糊精。
     ⑶通过MPLA分子中的酸酐键和β-CD-6-E分子中的胺基之间发生N-酰化反应合成环糊精改性的聚乳酸材料(PLA-β-CD)。FTIR、1H NMR的分析结果表明,在几乎不改变聚乳酸材料主链结构的前提下,通过N-酰化反应,能将环糊精固载到MPLA的分子骨架中;DSC分析显示合成得到的PLA-β-CD的玻璃化转变峰值温度为59.8℃,表明采用本研究的分离提纯技术可得到纯净的聚乳酸固载环糊精(PLA-β-CD)聚合物。较佳反应工艺条件是:反应物投料比为nβ-CD-6-E:nMPLA=1.2:1,反应温度:35~40℃,反应时间:2小时,PLA-β-CD产率可达到55%。苯酚-硫酸法测定结果表明,在此条件下制备的聚合物中环糊精的含量为12.7%。
     ⑷考察了PLA和PLA-β-CD的理化性能,包括材料的亲/疏水性能和降解性能。其中,亲/疏水性能的评价指标是静态水接触角和吸水率,降解性能的评价采用体外降解试验。
     ①静态水接触角和吸水率的测定结果表明:PLA-β-CD改性材料的静态水接触角与聚乳酸相比,静态水接触角由76.7o降低到72.1o。吸水率由单一聚乳酸的18.3%提高到23.9%。说明PLA-β-CD材料比PLA有更好的亲水性;
     ②PLA-β-CD材料在蒸馏水中降解时pH值的变化结果在5周以前,体系的pH值在相同时间点比PLA略高,5周以后在整个降解期间的pH值略低于相同时间点PLA的pH值,且陡降时间比纯PLA略提前一周;
     ③PLA-β-CD在PBS中降解失重率的测定结果表明:材料在PBS介质中降解经历阶段与聚乳酸材料的失重率变化趋势趋于一致,但降解速率有所提高;表明本研究得到的PLA-β-CD改性材料在亲水性改善的同时,并没有出现马来酸酐的引入导致聚乳酸材料酸性增强的现象。
     ⑸采用细胞形态学观察法和细胞增殖法,初步考察了材料与大鼠成骨细胞的细胞相容性。通过对基底材料上细胞形态、早期粘附和铺展的比较研究,结果表明PLA-β-CD上细胞不仅形态上优于其他组,而且在数量上也有优势;通过MTT法测定了成骨细胞在材料上培养2、4、6、8天的增殖活力。实验结果表明,成骨细胞在PLA-β-CD的增殖活力明显大于PLA上的增殖活力。这说明由环糊精改性聚乳酸比PLA表现出更好的细胞相容性。糖-蛋白质相互作用是信号传导、细胞黏附、增殖、分化和免疫应答等很多细胞识别过程的基础,无论是单糖还是多糖都对多肽、蛋白质都有较好的亲和性,对细胞也具有较好的亲和性。根据以上实验结果,预期PLA-β-CD可在生物医学领域尤其是组织工程领域和药物缓释载体中得到广泛的应用。
Aiming to develop a biomaterial with excellent biocompability and biospecificy and physiological functions, in this thesis, D,L-lactide was prepared from D,L-lactic acid by adopting a new lanthanum-titanium composite oxides as the catalyst. First, poly(D,L-lactic acid) (PLA) was prepared from D,L-lactide with the use of Sn(Oct)2, and then, with a series of chemical reactions in the bulk, it was modified by introducingβ-cyclodextrin(β-CD) oligosaccharide into PDLLA backbone, at last, a novel PLA was acquired, which was based on fully biodegradable matrix materials modified by polysaccharides. To explore the structures and properties of the obtained polymers, characterizations included multi-angle laser light scattering (MALLS), fourier transform infrared spectrometry (FTIR), nuclear magnetic resonance spectrometer (NMR), differential scanning calorimeter (DSC) and some classical chemical analysis methods, and then, surface wettability, biodegradation and biocompatibility of the synthetic materials were investigated, too. The main works and conclusions are listed as below:
     ⑴Synthesis of reactable poly(D,L-lactic acid).
     ①With D,L-lactic acid as raw material and lanthanum-titanium composite oxides as catalyst, the D,L-lactide was synthesized. The catalyst of lanthanum-titanium composite oxides is high efficient in decreasing the dehydrate temperature, pyrolysis temperature and viscosity of the reacting system, consequently the oligomer of lactic acid was kept in the reactor instead of escaping with lactide, which prevents the contamination of lactide by oligomer. Glass transition temperature of the D,L-lactide tested by DSC was 126.4℃, and analysis of X-ray photoelectron spectroscopy (XPS) indicated that the lactide was found to be hardly contaminated by La-radioactivity.
     ②Poly(D,L-lactic acid) was synthesized by melt ring-opening polymerization of D,L-lactide with Sn(Oct)2 as catalyst. Molecular weight (Mw=22480, Mn=19548), and polydispersity (PD=1.15) of PLA were detected by MALLS.
     ③To introduce highly reactive anhydride into backbone of PLA lacking of reaction group, free radical copolymerization happened between PLA and maleic anhydride(MAH) with the help of benzoyl peroxide (BPO) as an initiator. It is demonstrated by FTIR and 1HNMR that the MAH had been imported in PLA backbone successfully, and the relative optimum reactive conditions of MPLA were obtained: weight ratio of PLA to MAH was 10:1, weight ratio of BPO to MAH was 0.04, and reaction time was 10h, reaction temperature was 95℃. The results of rhodamine-carboxyl interaction method showed that under such conditions, the MAH grafting ratio in MPLA was 2.45%. Molecular weight and polydispersity of MPLA were detected by MALLS about Mw=20473, Mn=16510 and PD=1.24, respectively.
     ⑵Preparation of mono(6-(2-aminoethyl)-amino-6-deoxy)-β-cyclodextrin。
     ①It was indicated by FTIR, 1HNMR and DSC-TGA analysis that mono-6-O-6- tosyl-β-cyclo-dextrin(β-CD-6-OTs) had been successfully prepared by dropping p-TsCl acetonitrile solution intoβ-CD NaOH solution under 10℃, and then the reaction mixture was heated up to 25°C and lasted for 2h. Decomposition temperature ofβ-CD-6-OTs determined by DSC-TGA was 181.7℃and a strong decomposition peak was 187℃. The effect of reaction conditions on the yield ratio ofβ-CD-6-OTs was investigated, and the optimum conditions were: molar ratio of p–TsCl toβ-CD was 1.5, reaction time was 2h, reaction temperature was 23~25℃, the mixture was adjusted with 20%-hydrochloric acid solution to ca. pH7~8, theβ-CD-6-OTs yield could reach to 14%.
     ②It was shown by FTIR, 1HNMR and EA analysis thatβ-CD-6-E had been successfully prepared by the reaction ofβ-CD-6-OTs and excess ethylenediamine at 75℃for 4h.
     ⑶It was exhibited by FTIR, 1H NMR and DSC analysis that, by N-acylation reaction,β-CD was able to be introduced into the backbone of MPLA(maleic anhydride modified poly(d,l-lactic acid)) and the main chain structure of MPLA was maintained. And the glass transition temperature of PLA-β-CD acquired was 59.8℃by DSC analysis, the unique Tg of PLA-β-CD indicated that the purification method was efficient enough to produce pure PLA-β-CD. The optimum conditions were: molar ratio ofβ-CD-6-E to MPLA was 1.2, reaction temperature was 35~40℃, reaction time was 2h, the yield of PLA-β-CD was found to be 55%. It was indicated by Phenol-sulfuric Acid method that the content ofβ-CD was 12.7% under the above conditions.
     ⑷The properties of various poly(D,L-lactic acid) based substrate films were investigated, including surface wettability and biodegradation. The surface wettability evaluation was based on static water contact angle and water adsorption ratio, while the degradation experimentation in vitro was used to estimate the bio degradation behavior.
     ①The tests indicated that the static water contact angle of copolymer PLA-β-CD was decreased appreciably from 76.7o to 72.1o comparing with PLA, while the water absorption ratio was increased from 18.3% to 23.9%. The results revealed that hydrophilicity of PLA-β-CD was better than PLA.
     ②In the whole degradation period of PLA-β-CD materials in distilled water, the change rule of the pH value was: At first, the pH value of PLA-β-CD is slightly higher than that of PLA within the first 5 weeks, and then, the former is a little lower than the latter in all other degradation period after that time, and the rapid drop time of PLA-β-CD advanced 1 week comparing with PLA.
     ③Tests indicated that: the degradation stages of material PLA-β-CD in medium PBS tended to be accordance with the weight loss change trend of PLA, but the degradation rate improved to some extent. It demonstrated that the hydrophilicity of PLA-β-CD acquired by this research was improved, while the acidity of PLA had not enhanced by the introduction of MAH.
     ⑸Biocompatibility of PLA-β-CD and PLA with osteoblasts obtained from newborn Wistar calvaria was preliminarily investigated by means of cell morphology and cell proliferation. The morphology of the cells was observed by phase contrast microscope and cell proliferation determined by MTT assay. The morphology observations revealed that the osteoblasts cultured on PLA-β-CD spread was wider than PLA and the cell density on PLA-β-CD was higher than PLA. Cell proliferation was determined by MTT assay at 2、4、6、8d, The results showed that proliferation power of osteoblasts cultured on PLA-β-CD notablely stronger than PLA. The results revealed the much better biocompatibility of PLA-β-CD with osteoblasts than that of PLA. Carbohydrate-protein interactions are the fundamentals of many cellular processes, such as signal ransduction, cell adhesion, proliferation, differentiation and immune response. Saccharide show an affinity for peptide and protein, while show an affinity for cells. Therefore, PLA-β-CD was a promising biomedical material and hopeful to gain potentially wide application in biomedical fields, especially in tissue engineering and drug delivery system.
引文
[1]李玉宝.生物医学材料[M].北京:化学工业出版社. 2003.
    [2]郑磊,王前.骨组织工程基质材料的现状及展望[J].生物医学工程学杂志. 2001, 18(3): 470-474.
    [3] Yolles S, Leafe T D, Woodland J H, et al. Long acting delivery systems for narcotic antagonistsⅡ: release rates of natrexone from poly(latic acid) composites[J]. Pharm Sci.1975, 64(2): 348-349.
    [4]汪朝阳,赵耀明.生物降解材料聚乳酸合成史略[J].化学通报. 2003, 9: 641-644.
    [5] Shenderovn A, Bruke T G, Schwendeman SP. The acidic microclimate in poly (lactide-co-glyc-olide) microspheres stabilizes camptothecins[J]. Pharm Res. 1999, 16(2): 241-249.
    [6] Bittner B, Mader K, Kroll C, et al. Tetracycline-HCL-loaded poly(DL-lactide-co-glycolide) Microspheres prepared by a spray drying technique: influence of gamma irradiation on radical Formation and polymer degradation[J]. Contro Rel. 1999, 59(1): 23-27.
    [7] Tomala P, Vasenius J, Vainionpaa S, et al. A1: ultra-high strength absorbadle self-reinforced polylactide(SR-PGA) compositerods for internal fixation of bone fractures: in vitro and in vivo study. Biomed Mater Res. 1991, 25(1): 1-22.
    [8] Tomala P, Rokkanen P, Kilpikari J. Bone fracture surgical device[P]. US patent 4655203, 1987.
    [9] Suurornen R, Pohjonen T, Taurio R, et al. Strength retention of self-reinforced poly-l-lactides- Crews and plates, In vivo and in vitro study[J]. J Mater Sci Mater in Med. 1992, 3(7): 426-431.
    [10] Bos R R, Boering G, Rozema F R, et al. Resorbable poly(L-lactide) plates and screws for the fixation of zygomatic fractures[J]. J Oral Maxillofac Surg. 1987, 45(9): 751-753.
    [11] Alexander G, travis J K, Albert CC, et al. Adhesion of perichondrial cells to a polylactic acid scaffold[J]. Orthop Res. 2003, 21: 584-589.
    [12] Watanabe J, Ishibara K. Change in cell adhesion property on cytocompatible interface using Phospholipids polymer grafted with poly(D,L-lactic acid) segment for tissue engineering[J]. Sci Technol Adv Mater. 2003, 4: 539-544.
    [13] Carothers W H, Dorough G L, Natta FJ. Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters[J]. J Am Chem Soc. 1932, 54: 761-772.
    [14] Filachione E M, Fisher C H. Lactic acid condetisation polymers[J]. Ind Eng Chem. 1944, 36(3): 223-228.
    [15] Lowe C E. Preparation of high molecular weight polyhydroxyacetic ester[P]. US Patent 2668162, 1954.
    [16] Kulkarni R K, Pani K C, Leonard F. Polylactic acid for surgical implants[J]. J Arch Surg. 1996, 93: 839-843.
    [17] Leenslag J W, Pennings A J, Bos R R, et al. Resorbable materials of poly(L-lactide). VI. Plates and screws for internal fracture fixation.[J]. Biomaterials. 1987, 8(1): 70-73.
    [18] Leenslag J W, Pennings A J, Bos R R, et al. Resorbable materials of poly(L-lactide). VII. In vivo and in vitro degradation[J]. Biomaterials. 1987, 8(4): 311-314.
    [19] Cook A D, Hrkach J S, Gao N N, et al. Characterization and development of RGD-peptide- modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial[J]. J Biomed Mater Res. 1997, 35: 513-523.
    [20] Zhu Y B, Gao C Y, Liu X Y, et al. Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells[J]. Biomacromolecules. 2002, 3: 1312-1319.
    [21] Pan J, Wang Y L, Qin S H, et al. Grafting reaction of poly(D,L)lactic acid with maleic anhydride and hexanediamine to introduce more reactive groups in its bulk[J]. J Biomed Mater Res B. 2005, 74B: 476-480.
    [22] Holmes T C. Novel peptide-based biomaterial scaffolds for tissue engineering[J]. Trends Biotechnol. 2002, 20(1): 16-21.
    [23]崔福斋,郑传林.仿生材料[M].北京:化学工业出版社. 2004.
    [24] Barrera D A, Zylstra E, Lansbury P T, et al. Synthesis and RGD peptide modification of a new biodegradable copolymer: poly(lactic acid-co-lysine)[J]. J Am Chem Soc. 1993,115: 11010-11011.
    [25] Elisseeff J, Anseth K, Langer R, et al. Synthesis and characterization of photo-cross-linked polymers based on poly(l-lactic acid-co-l-aspartic acid)[J]. Macromolecules, 1997, 30: 2182-2184.
    [26]罗彦凤.聚(DL-乳酸)的改性及体外降解和细胞相容性研究[D].重庆.重庆大学. 2003.
    [27]罗彦凤,王素军,牛旭锋,等. RGDS和胶原改性聚(DL-乳酸)的合成与表征[J].高分子材料科学与工程, 2008, 24(5): 44-47.
    [28] Niu X F, Wang Y L, Luo Y F, et al. Arg-Gly-Asp (RGD) modified biomimetic polymeric materials. J Mater Sci Technol. 2005, 21(4): 571-576.
    [29] Healy K E. Molecular engineering of materials for bioreactivity[J]. Curr Opin Solid StateMater Sci. 1999, 4: 381-387.
    [30] Healy K E, Rezania A, Stile R A. Designing biomaterials to direct biological responses[J]. Ann NY Acad Sci. 1999, 875: 24-35.
    [31] Francis Suh J K, Matthew H W T. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review[J]. Biomaterials. 2000, 21(24): 2589-2598.
    [32] Ferreira M H, Gil A M S, Cabrita, et al. Biocatalytic synthesis of highly ordered degradable dextran-based hydrogels[J]. Biomaterials. 2005, 26(23): 4707-4716.
    [33] Grainger D A, Meyer W R, Dechemey A H, et el. The use of hyaluronic acid polymers to reduce postoperative adhesions[J]. J.Gynecol Surg. 1991, 7(2): 97-99.
    [34]黄毅,黄金花,谢青季,等.糖-蛋白质相互作用[J].化学进展. 2003, 20(6): 943-950.
    [35]赵晓东,刘文广,姚康德. L-聚乳酸/低分子量壳聚糖共混膜的制备和特性[J].离子交换与吸附. 2003, 18(3): 470-474.
    [36] Zhu H G, Ji J, Lin R Y, et al. Surface engineering of poly(D,L-lactic acid) by entrapment of alginate-amino acid derivatives for promotion of chondrogenesis[J]. Biomaterials. 2002, 23(15): 3141-3148.
    [37] Oochi T, Kontani T, Saito T, et al. Suppression of cell attachment and protein adsorption onto amphiphilic polylactide-grafted dextran films[J]. J Biomater Sci Polymer Edn. 2005, 16(8): 1035–1045.
    [38]蔡晴,贝建中,王身国.聚乳酸接枝葡聚糖共聚物的合成及其体外降解行为的研究[J].高分子学报, 2004, 5: 719-725.
    [39]何山,谢德明.壳聚糖与端羧基PLGA接枝共聚物的制备与表征.暨南大学学报(自然科学版)暨南大学学报(自然科学版), 2008, 29(5): 491-494.
    [40] Yao F, Chen W, Wang H, et al. A study on cytocompatible poly(chitosan-g-l-lactic acid).[J]. Polymer. 2003, 44(21): 6435-6441.
    [41]周嘉嘉,陈汝福,卢红伟等.两亲多糖纳米胶束作为药物缓释载体的制备及释药研究[J].中山大学学报(医学科学版). 2006, 27(6): 667-671.
    [42] Ding Z, Chen J, Gao S, et al. Immobilization of chitosan onto poly-L-lactic acid film surface by plasma graft polymerization to control the morphology of fibroblast and liver cells[J]. Biomaterials. 2004, 25(6): 1059-1067.
    [43]洪奕,龚逸鸿,高长有,等.壳聚糖涂层聚乳酸细胞微载体的制备和性能[J].材料研究学报,2005,19(6): 589-593.
    [44]施云峰,谢德明,周长忍.壳聚糖与丙交酯接枝共聚物的制备与表征[J].材料科学与工程学报, 2008, 26(1): 114-124.
    [45] Gong Q X, Wang L Q, Tu K H. In situ polymerization of starch with lactic acid in aqueous solutionand the microstructure characterization[J]. Carbohydr. Polym. 2006, 64: 501-509.
    [46] Ovitt T M, Coates G W. Stereochemistry of lactide polymerization with chiral catalysts: New opportunities for stereocontrol using polymer exchange mechanisms[J]. J. Am. Chem. Soc. 2002, 124(7): 1316-1326.
    [47]朱久进,王远亮,胡勇,等.聚乳酸的合成、微观结构及性能[J].包装工程. 2005, 26(2): 1-3.
    [48] James L. Large-scale production, properties and commercial applications of polylactic acid polymers[J]. Poly Degrad Stabil. 1998, 59: 145-152.
    [49] Suming L, Mathieu T, Henri G, et al. Enzymatic degradation of etereocopolymers derived from L-, DL- and meso-lactide[J]. Poly Degrad Stabil. 2000, 67: 85-90.
    [50] Hans R. Kricheldorf. Synthesis and app lication of polylactides[J]. Chemosphere. 2001, 43: 49-54.
    [51]王槐三,寇晓康.高分子化学教程[M].北京:科学出版社.2002.
    [52]潘祖仁.高分子化学[M].北京:化学工业出版社.2008.
    [53]麦杭珍,汪朝阳,严冰,等.乳酸直接聚合的热力学、动力学研究[J].化学研究与应用. 2002, 14(5): 534–536.
    [54]马强,杨青芳,姚军燕.聚乳酸的合成研究[J].高分子材料科学与工程. 2004, 20(3): 21-24.
    [55] Anders S, Mikael S.Properties of lactic acid based polymers and their correlation with composition[J]. Prog Polym Sci. 2002, 27: 1123-1163.
    [56] Ajioka M, Enomoto K, Suzuki K, et al.Basic properties of polylactic acid produced by the direct condensation polymerization of lactic acid[J]. Bull Chem Soc. JP.1995, 68(8): 2125-2131.
    [57] Benecke H P, Markle R A, Sinclair R G. Catalytic production of lactide directly from lactic acid[P]. US patent 5332839, 1994.
    [58] Kohn P E, Van den Berg.The ring-opening polymerization of D,L-lactide in the initiated with terabenylin[J].J Appl Polym Sci. 1984, 29: 42.
    [59] Kulkarni R K, Pani K C, Neuman C, et al. Polylactic acid for surgical implants[J]. Arch Surg. 1966, 93: 839-843.
    [60] Muller R, Boehringer I. Process for the preparation of lactide[P]. US: 5053522, 1991.
    [61] Masaki N, Hisashi O. Thermal catalytic depolymerization of poly(L-lactic acid) oligomer into D,L lactide effects of Al,Ti,Zn,and Zr compounds as catalysts[J]. Chem Pharm Bull. 1999,47(4): 467-471.
    [62] Poly(D,L-lactic acid) surface modified by silk fibroin: effects on the culture of osteoblast in vitro[J]. Biomaterials. 2003, 23: 1153-1160.
    [63]朱久进,王远亮.丙交酯的合成与聚合[J].化工新型材料, 2005, 33(4): 20-22.
    [64] Hummel G J, Harkema S, Kohn F E, et al. Structure of 3,6-Dimethyl-1,4-dione[D-,D-(L-, L-)Lactide][J]. Acta Cryst. 1982, B38: 1679-1681.
    [65] Manfred M, Joachim H, Bingen W, et al. Meso-lactide[P]. US: 5214159, 1993.
    [66] Reinhold G. Manufacture of lactide[P]. US: 1095205, 1914.
    [67] Thayer C A, Bellis H E. Process for the synthesis of lactide or glycolide from lactic acid or glycolide acid oligomers[P]. US: 5374743, 1994.
    [68] Bhatia K K. Process for rapid conversion of oligomers to cyclic esters[P]. US: 5091544, 1992.
    [69]朱久进,谷俐.王远亮,等.高产丙交酯的合成[J].重庆大学学报. 2003, 26(11): 41-42.
    [70] Yoshiaki Y, Tomohiro A. Method for purification of lactide[P]. US: 5502215, 1996.
    [71] Hiroshi O, Hong P. Process for the Production of Lactide[P]. European Patent: 0339882, 1989.
    [72] Kohn P E, Van den Berg. The ring-opening polymerization of D,L-lactide in the initiated with terabenylin[J]. J Appl Polym Sci. 1984, 29: 4265-4277.
    [73] Sinclair R G. Copolymers of D,L-lactide and epsilon caprolactone[P]. US: 4045418, 1977.
    [74]宇恒星,王朝生,等.聚乳酸的聚合方法[J].化工新型材料. 2002, 30(3): 16-18.
    [75] Hans R. Syntheses and application of polylactides[J]. Chemosphere. 2001, 43: 49-54.
    [76] Garlotta D. A literature review of poly(lactic acid)[J]. J Polym Environ. 2001, 9(2): 63-84.
    [77] Stridsberg K M, Ryner M, Albertsson A-C. Controlled ring-opening polymerization: polymers with designed macromolecular architecture[J]. Adv Polym Sci. 2001, 157: 41-65.
    [78] Albertsson A-C, Varma I K. Aliphatic polyesters: synthesis, properties and applications[J]. Adv Polym Sci. 2001, 157: 1-40.
    [79] Albertsson A-C, Varma I K. Recent development in ring opening polymerization of lactones for biomedical applications[J]. Biomacromolecules, 2003, 4: 1466-1486.
    [80] Kasperczyk J, Bero M. Stereoselective polymerization of racemic DL-lactide in the presence of butyllithium and butylmagnesium. Structural investigations of the polymers[J]. Polymer, 2000, 41: 391-395.
    [81]胡玉山,白东仁,张政朴等.聚乳酸合成的最新进展[J].离子交换与吸附, 2000, 16(3): 280-288.
    [82]申有青,张富尧,张一峰等.稀土化合物催化内酯开环聚合II.异丙氧基稀土催化D,L-丙交酯开环聚合.高分子学报, 1995, 2: 222-227.
    [83] Vert M, Schwach G, Engel R, et al. Something new in the field of PLA/GA bioresorbable polymers[J]. J Contr Rel. 1998, 53: 85-92.
    [84] Korhonen H, Helminen A, Seppala J V. Synthesis of polylactides in the presence of co-initiators with different numbers of hydroxyl groups[J]. Polymer, 2001, 42: 7541-7549.
    [85] Nijenhuis A J, Grijpma D W, Pennings A J. Lewis acid catalyzed polymerization of L-lactide. Kinetics and mechanism of the bulk polymerization[J]. Macromolecules, 1992, 25(24): 6419-6424.
    [86] Schwach G, Coudane J, Engel R, et al. More about the polymerization of lactides in the presence of stannous octoate[J]. J Polym Sci Pol Chem. 1997, 35(16): 3431-3440.
    [83]牛旭峰.马来酸酐改性聚乳酸的研究[D].重庆大学, 2006.
    [84] Kang I-K, Kwon B K, Lee J H, et al. Immobilization of proteins on poly(methyl methacrylate) films[J]. Biomaterials, 1993, 14(10): 787-792.
    [85] Carlson D, Dubois P, Nie L, et al. Free radical branching of polylactide by reactive extrusion[J]. Polym Eng Sci. 1998, 38(2): 311-321.
    [86] Edlund U, Kallrot M, Albertsson A-C. Single-step covalent functionalization of polylactide surfaces[J]. J Am Chem Soc. 2005, 127: 8865-8871.
    [87] Langer R. Biomaterials in drug delivery and tissue engineering: One laboratory?s experience[J]. Accounts Chem Res. 2000, 33(2): 94-101.
    [88] Mani R, Bhattacharya M, Tang J. Functionalization of polyesters with maleic anhydride by reactive extrusion[J]. J Polym Sci Pol Chem. 1999, 37: 1693-1702.
    [89] Kalambur S, Rizvi S S H. An overview of starch-based plastic blends from reactive extrusion[J]. J Plast Film Sheet. 2006, 22: 39-58.
    [90] Villiers A. Sur la fermentation de la fécule par láction du ferment butyrique[J]. Compt Rend Acad Sci. 1891, 112: 536.
    [91] French D, Pulley A O, Effenberger J A, et al. Studies on the Schardinger dextrins.Ⅻ. The molecular size and structure of the deta-, epsilon-, zeta-, and eta-dextrins[J]. Arch Biochem Biophys. 1965, 111(1): 153-160.
    [92] Storsberg J, Ritter H. Cyclodextrins in polymer synthesis:a‘‘green”route to fluorinated polymers via cyclodextrin complexes in aqueous solution[J]. Macromot Chem Phys, 2002, 203: 812-818.
    [93]李蔓荻,韩立炜.β-环糊精及其衍生物在药剂学中的应用.中国中医药信息杂志[J]. 2005, 12(3): 100-102.
    [94]吴剑峰.环糊精及其衍生物在药学领域的应用[J].时珍国医国药. 2004年15(3): 181-182.
    [95]王永键,张政朴,何炳林.环糊精聚合物的高分子效应[J].化学进展.2000, 13(3): 318-324.
    [96] Estelle R, Gisele V, Catherine A. Synthesis of a novel linear water-solubleβ-cyclodextrin[J]. Int J polym. 2005, 54: 594-599.
    [97]李宁,张韵慧,熊晓.环糊精聚合物在药物研究中的应用[J].高分子通报, 2005, 6: 1-6.
    [98] Tomjima T, katsura H, Han A M, et al. Preparation of an cyclodetrin-linked chitosan derivative via reductive amination srtategy[J]. J Polym.Sci: Part A: Polym Chem, 1998, 36: 1965-1968.
    [99]刘琼,范晓东.环糊精高分子[J].高分子通报, 2002, (5): 41-48.
    [100] Petter R C, Salek J S, Sikorski C T, et al. Cooperative binding by aggregated mono-6-(alkylamino)-β-cyclodextrins[J]. J Am Chem Soc, 1990, 112(10): 3860-3868.
    [101] Hanessian S, Benalil A, Laferriere C. The synthesis of functionzlized cyclodextrins as scaffolds and templates for molecular diversity, catalysis, and inclusion phenomena[J]. J org Chem, 1995, 60(15): 4786-4797.
    [102]刘育,张毅氐,孙世新等.一种简便、有效的合成6-OTs-β-CD的新方法[J].高等学校化学学报. 1995, 16(10): 1567-1568.
    [103] Melton L D, Slessor K N, Carbohydr. 6A-azido-6A-deoxy-cyclodextrins from the 6A-o-p-tolenesulfonyl-cyclodextrins[J]. Carbohydr Res, 1971, 18(1): 29-37.
    [104] Bonom R P, Cucinotta V, Alessandro F D, et al. Conformational features and coordination properties of functionalized cyclodextrins. Formation, stability, and structure of proton and copper(Ⅱ) complexes of histamine-bearing beta-cyclodextrin in aqueous solution[J]. Inorg Chem ,1991, 30(13): 2708-2713.
    [105] Matsui Y, Tanemura E, Nonomura T. Complexation of inorganic anions with heptaks(6-butylamino-6-deoxy)-β-cyclodextrin and its analogs in acidic media[J]. Bull Chem Soc Jpn, 1993, 66:2827-2831.
    [106] Liu Y, Zhang Y M, Qi A D, et al .Molecular recognition study on a supramolecular system. Inclusion complexation of modifiedβ-cyclodextrins with amino acids: Enhanced enantioselectivity for L/D-leucine[J]. J Org Chem, 1997, 62(6): 1826-1830.
    [107]张毅民,刘春阳,王学功等.6-OTs-β-环糊精的合成工艺进展.化学工业与工程[J]. 2006, 23(6): 539-543.
    [108] Petter R C, Salek J S, Sikorski C T, et al. Cooperative binding by aggregated mono-6-(alkylamino)-β-cyclodextrins[J]. J Am Chem Soc, 1990, 112(10): 3860-3868.
    [109] Vitzitu D, Walkinshaw C S, Gorin B I, et al. Erratum: Enthalpies of formation of hexaethylethane, octamethylhexane, and tritert-butyl-methane. Extremely strainedhydrocarbons[J] . J Org Chem, 1997, 62(25): 8760-8766.
    [110] Ivanyi R, Jicsinszky L, Juvancz Z. Chiral separation of pyrethroic acids with single isomer permethyl monoamino beta-cyclodextrin selector[J]. Electrophoresis. 2001, 22(15): 3232-3236.
    [111] Zhong N, Byun H S. An improved synthesis of 6-O-monotosyl-6-deoxy-β-cyclodextrin[J]. Tetrahedron Lett, 1998, 39: 2919-2920.
    [112] Zhu J J, Chen Z M, Wang Y L. Preparation of Mono(6-(2-aminoethyl)–amino-6-deoxy)-β-cycl-odextrin and its Modified Poly(dl-lactic acid) [C]. International Symposium on Chem Eng New Mater, Aug. Harbin. China, 2009,8: 99-102..
    [113] Murakami T, Harata K, Morimoto S. Regioselective sulfonation of a secondary hydroxyl group of cyclodextrins[J]. Tetrahedron Lett, 1987, 28: 321-324.
    [114]申宝剑,童林荟,张宏伟,等.β-环糊精2位碳仲羟基的选择性磺酰化[J].有机化学, 1991, 11(3): 265-268.
    [115] Ueno A, Breslow R. Selective sulfonation of a secondary hydroxyl group ofβ-cyclodextrin[J]. Tetrahedron Lett, 1982, 23(34): 3451-3454.
    [116]黄怡,范晓东.碱性水溶液中β-环糊精的选择性磺酰化[J].西北大学学报(自然科学版). 2003, 33(1): 41-44.
    [117]童林荟.环糊精化学——基础与应用[M].北京:科学出版社, 2001: 221.
    [118]何仲贵.环糊精包合技术.北京. 2008.北京.人民卫生出版社. 2008,1: 6.
    [119] Bostman O, Pihlajamaki H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review[J]. Biomaterials. 2000, 21(24): 2615-2621.
    [120] Nouvel C, Raynaud, Marie, E, et al. Biodegradable nanoparticles made from polylactide-grafted dextran copolymers[J]. J Colloid Interf Sci. 2009, 330(2): 337-343.
    [121] Jin S, Gonsalves K E. Synthesis of poly(l-lactide-co-serine) and its graft copolymers with poly(ethylene glycol)[J]. Polymer 1998, 39 (21): 5155-5162.
    [122] Quirk R A, Chan W C, Davines M C, et al. Poly(L-lysine)-GRGDS as a biomimetic surface modifer for poly(lactic acid) [J]. Biomaterials. 2001, 22: 865-872.
    [123] Gao H, Yang Y W, Fan Y G, et al. Conjugates of poly(DL-lactic acid) with ethylenediamino or diethylenetriamino bridged bis(β-cyclodextrin)s and their nanoparticles as protein delivery systems[J]. J Control Rel. 2006, 112: 301-311.
    [124]潘彤,张国林,马建标.β-环糊精/聚(DL-丙交酯)接枝共聚物的合成与表征[J].高分子学报, 2006, 2: 330-334.
    [125] Dubois M, Gilles K A, Hamilton J K, et a1. Colorimetric method for determination of sugars and related substances[J]. Anal Chem, 1956, 28: 350-356.
    [126]宁慧青.不同食用菌多糖含量的比较[J].山西化工, 2007, 27(3): 44-45.
    [127]罗彦凤,王远亮,牛旭锋,等.二胺改性聚乳酸的合成与表征[J].高分子材料科学与工程, 2005, 21(2): 139-142.
    [128] Wu X S, Wang N. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. PartⅡ: Biodegradation[J]. J Biomater Sci: Polymer Edn. 2001, 12(1): 21-34.
    [129]朱莉芳,闫玉华.聚乳酸的合成与降解机理.生物骨科材料与临床研究[J]. 2006, 3(1): 42-47.
    [130] Temenoff J S, Mikos A G著.王远亮,等译.生物材料:生物材料-生物学与材料科学的交叉/(美)[M].北京.科学出版社, 2009.
    [131] F.奥斯伯, R E金斯顿, J G赛德曼等著.颜子颖,王海林译.精编分子生物学实验指南[M].北京:科学出版社, 1998.
    [132]肖衍繁,李文斌.物理化学[M].天津大学出版社, 2001.
    [133]德鲁.迈尔斯著,吴大诚,朱谱新,王罗新,等译.表面、界面和胶体-原理及应用[M].北京.化学工业出版社, 2005.
    [134]傅献彩.沈文霞.姚天扬.物理化学[M].北京:高等教育出版社, 1999.
    [135] Jiang H L, Zhu K J. Synthesis, characterization and in vitro degradation of a new family of alternative poly(ester-anhydrides) based on aliphatic and aromatic diacids[J]. Biomaterials. 2001, 22: 211-218.
    [136]蔡晴,贝建中,王身国,等.乙交酯/丙交酯共聚物的体内外降解行为及生物相容性研究[J].功能高分子学报. 2000, 13(3): 249-254.
    [137]张亮,靳安民,郭志民.三维多孔骨修复材料DL-PLA及β-TCP/DL-PLA的体外降解研究[J].骨与关节损伤杂志. 2001, 16(3):184-186.
    [138]罗彦凤,王远亮,牛旭峰,等.新型改性聚乳酸及其体外生物可降解性研究[J].高技术通讯. 2005, 15(2): 55-59.
    [139]陈佳.低聚乳酸水解料合成丙交酯及改性聚(D,L-乳酸)材料研究[D].重庆,重庆大学. 2007: 94.
    [140] Cannizzaro S M, Padera R F, Langer R, et al. A novel biotinylated degradable polymer for cell-interactive applications[J]. Biotechnol Bioeng. 1998, 58:529-535.
    [141] Wachem P B V, Beugeling T, Feijen J, et al. Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities[J]. Biomaterials, 1985, 6(6):403-408.
    [142]赵洁,全大萍,廖凯荣.含不同侧氨基密度的PLGA-(ASP-Diol)x-PLGA共聚物的合成与表征.高等学校化学学报[J]. 2005, 26(8):1570-1573.
    [143] Kimura Y, Shirotani K, Yamane H, et al. Ring-opening polymerization of 3(s)-[(benzyloxyc-arbonyl)methyl]-1,4-dioxane-2,5-dione: a new route to a poly(α-hydroxy acid) with pendant carboxyl groups[J]. Macromolecules, 1988, 21:3338-3340.
    [144] Teramoto N, Kogure H, Kimura Y, et al. Thermal properties and biodegradability of the co-polymers of L-lactide,ε-caprolactone, and ethylene glycol oligomer with maleate units and their crosslinked products[J]. Polymer, 2004, 45:7927-7933.
    [145] Kimura Y, Shirotani K, Yamane H, et al. Copolymerization of 3-(S)-[(benzyloxycarbonyl) methyl]-1,4-dioxane-2,5-dione and L-lactide: a facile synthetic method for functionalized Bioabsorbadle polymer[J]. Polymer, 1993,34(8):1741-1748.
    [146] Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives[J]. J Biomater Sci Polym E. 2001, 12(1): 107-124.
    [147]杨子彬.基础医学卷—生物医学工程学[M].黑龙江:黑龙江科学技术出版社, 2000: 396-397.
    [148]牛云,何旭,张丽红,等.生物衍生骨支架材料制备及在体内的组织相容性[J].中国组织工程研究与临床康复. 2008, 12(7): 1385-1389.
    [149]杨晓芳,奚廷裴.生物材料生物相容性评价研究进展[J].生物医学工程学杂志, 2001, 18(1):123-128.
    [150] Johnson H J, Northup S J, Seagraves P A, et al. Biocompatibility test procedures for materials evaluation in vitro: II. Objective methods of toxicity assessment[J]. J Biomed Mater Res. 1985, 19(5): 489-508.
    [151] Johnson H J, Northup S J, Seagraves P A, et al. Biocompatibility test procedures for materials evaluation in vitro: I. Comparative test system sensitivity[J]. J Biomed Mater Res. 1983, 17(4): 571-586.
    [152]动物细胞培养-基本技术指南[M].Culture of Animal Cells: a Manual of Basic Technique. [英] R. I.弗雷谢尼著.章静波,徐存拴等,译.北京:科学出版社, 2004.
    [153] Horbett T A, Schway M B, Ratner B D. Hydrophilic-hydrophobic copolymers as cell substrates: effect on 3T3 cell growth rates[J]. J Colloid Interf Sci. 1985, 104(1): 28-39.
    [154] Tziampazis E, Kohn J, Moghe PV. PEG-variant biomaterials as selectively adhesive protein templates: model surfaces for controlled cell adhesion and migration[J]. Biomaterials, 2000, 21(5): 511-520.
    [155] Tamada Y, Ikada Y. Effect of preadsorbed proteins on cell adhesion to polymer surfaces[J]. J Colloid Interf Sci, 1993,155:334-9.
    [156] Moamman T. Rapid colorimetric assay for celluar growth and survial: appication to proliferation cytotoxicity assays[J]. J Immu Meth.1983,65(1): 55-63.
    [157] Cai K, Yao K, Cui Y, et al. Influence of different surface modification treatments onpoly(D,L-lactic acid) with silk fibroin and their effects on the culture of osteoblast in vitro[J]. Biomaterials. 2002, 23(7): 1603-1611.
    [158] Bruining M J, Blaauwgeers H G, Kuijer R, et al. Tailoring of new polymeric biomaterials for the repair of medium-sized corneal perforations[J]. Biomacromolecules. 2000, 1(3): 418-423.
    [159] Ciapetti G, Cenni E, Pratelli L, et al. In vitro evaluation of cell/biomaterial interaction by MTT assay[J]. Biomaterials, 1993, 14(5): 359-364.
    [160]黄毅,黄金花,谢青季,等.糖-蛋白质相互作用[J].化学进展, 2008, 20(6): 942-950.
    [161] Lee J H, Jung H W, Kang I K, et al. Cell behaviour on polymer surfaces with different functional groups[J]. Biomaterials, 1994, 15(9): 705-711.
    [162] Tamada Y, Ikada Y. Fibroblast growth on polymer surfaces and biosynthesis of collagen[J]. Biomed Mater Res. 1994, 28(7): 783-789.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700