用户名: 密码: 验证码:
家蚕性别决定相关基因Bmhrp28和BmPSI的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
性别决定是生物界基本的科学问题之一。家蚕属于鳞翅目昆虫,其性别决定机制与目前研究的最为清楚的模式昆虫果蝇相比,既有共同性,也有特殊性,因此家蚕性别决定机制的研究可为我们更好地理解昆虫性别决定提供一个新的模式。另外,其研究在产业上也具有重要的应用价值。家蚕泌丝结茧,具有很高的经济价值。家蚕为雌雄异体,而雄蚕的经济价值显著高于雌蚕。雄茧的平均出丝率要比雌茧高,并且雄蚕体质强健、好养、饲料效率高、茧丝品质好。因此,家蚕性别决定研究一直是蚕业的重要课题。
     家蚕性染色体类型为ZW型。近几年来,家蚕性别决定级联途径中的下游双性基因Bmdsx已克隆,并已经证明在家蚕雌雄分化中扮演了关键作用。最近,研究人员鉴定出Bmdsx上游的两个调控因子,分别为BmPSI和Bmhrp28。但对于这两个基因的具体作用及其相互关系尚未阐明。基于此,本研究利用家蚕的全基因组序列、表达序列标签(ESTs)数据以及基因芯片数据,对Bmhrp28和BmPSI进行了克隆和分析。同时采用了RT-PCR、原核表达、RNAi、酵母双杂交、免疫共沉淀等技术对Bmhrp28和BmPSI的功能进行了研究。获得主要结果如下:
     1.Bmhrp28和BmPSI的克隆、序列分析及mRNA表达
     根据文献报道与GenBank登录的Bmhrp28和BmPSI的基因序列,设计引物,进行克隆,经酶切和测序验证获得两个基因包括完整ORF序列的阳性克隆。在基因结构上,Bmhrp28的ORF长为771 bp,编码256个氨基酸残基,预测其蛋白质分子量为28.2 kD,等电点为8.72,位于第21号染色体nscaf3044上,含有7个外显子、6个内含子。而BmPSI的ORF长为2112bp,编码703个氨基酸残基,预测其蛋白质分子量为76.4kD,等电点为6.07,位于第20号染色体nscaf2789上,含有14个外显子、13个内含子。两个基因的外显子、内含子边界处均符合GT-AG规则。蛋白质结构域分析显示,Bmhrp28和BmPSI所编码蛋白均为RNA结合蛋白。Bmhrp28含有两个RRM结构域,BmPSI含有四个KH结构域和A、B两个功能域。RRM和KH结构域均为RNA结合的区域,此结构域在RNA的选择性剪接、加工、转录等过程中发挥作用。Bmhrp28和BmPSI蛋白质结构域部分与果蝇同源基因hrp48和PSI的结构域部分相似性较高,在果蝇中hrp48和PSI作为调控因子参与P元件转座酶的选择性剪接。
     为了探明这两个基因在家蚕组织时期的表达特征,我们利用家蚕ESTs数据、全基因组芯片数据以及半定量RT-PCR方法进行了表达谱分析。ESTs数据分析结果显示,Bmhrp28和BmPSI均具有EST证据。在家蚕卵巢细胞、胚胎、卵巢等组织器官中找到Bmhrp28的EST证据。在家蚕精巢、卵巢、丝腺、胚胎等组织器官中则具有BmPSI的EST证据。
     家蚕全基因组芯片的组织表达数据分析结果显示,Bmhrp28在幼虫5龄3天各组织中表达量非常低,只在精巢中有少量表达,在其它组织几乎不表达。而BmPSI在各个组织中均有表达,在卵巢和后部丝腺的表达较高,从整体上看,其表达量比Bmhrp28高。各个发育时期的表达数据表明,Bmhrp28从5龄4天到蛾期的表达量也非常低。而BmPSI在各个时期广泛表达,雌雄差异不大。早期胚胎的表达数据显示,Bmhrp28在雌雄间具有不同的表达模式,雌个体中在产卵后48 h表达水平最高,随后表达呈逐渐下降趋势;而在雄个体中,48 h几乎不表达,至60 h达到高峰,之后逐渐下降。而BmPSI与Bmhrp28相比,在雄个体中的模式类似,但在产卵后72 h达到高峰,而在雌中表达量几乎处于低水平,变化不大。
     为了进一步验证表达谱,我们进行了半定量RT-PCR检测。结果显示,Bmhrp28和BmPSI在家蚕幼虫5龄3天雌雄各个组织中广泛表达。并且Bmhrp28的表达量比BmPSI的表达量更低。在早期胚胎各发育时间点的表达情况显示,Bmhrp28和BmPSI较为相似,从未受精卵到产卵后24 h表达量都很低。在雄性早期胚胎里,基因的表达量逐渐增加,到产卵后96 h表达量达到高峰,而随后表达量降低。在雌性早期胚胎里,产卵后48 h表达量最高,随后开始降低。早期胚胎发育过程是性别决定的关键阶段,而较为相似的表达模式暗示Bmhrp28和BmPSI在此过程中可能是协同作用行使功能。
     2.Bmhrp28和BmPSI的原核表达以及多克隆抗体的制备
     为了进一步研究基因功能,我们将Bmhrp28和BmPSI分别连入经改造的p28和pET-MBP表达载体进行原核表达。将构建好的重组表达质粒命名为Bmhrp28/p28和BmPSI/pET-MBP,并将其分别转化到BL21(DE3)表达菌株和Rosetta(DE3)表达菌株。通过IPTG诱导表达,分别得到了分子量约为31 kD和120 kD的重组蛋白,目的蛋白分子量约为28.2 kD和76.4 kD,加上6×His标签序列和MBP标签序列,大小约为31 kD和120 kD,与预测分子量相吻合。经蛋白组分鉴定发现,诱导表达的两个重组蛋白均主要以可溶形式表达。
     通过亲和层析和电洗脱的方法分别纯化原核表达的BmHRP28和BmPSI蛋白,将纯化的蛋白免疫成年健康公兔,制备多克隆抗体。利用western blotting分析表明,BmHRP28和BmPSI的抗体是由其蛋白作为抗原而产生的,可以用做后续实验。
     3.Bmhrp28和BmPSI的RNAi研究
     已有研究表明,Bmhrp28和BmPSI均能结合到Bmdsx的第四外显子上,而Bmdsx作为家蚕性别决定路径中的双性基因,下游有其正调控因子贮藏蛋白SP1和卵黄原蛋白Vg,主要在雌性中表达;负调控因子信息素结合蛋白PBP,主要在雄性中表达。基于此特征,本研究采用体外合成短链siRNA介导RNAi的方式,利用家蚕限性白卵早期胚胎(雄)为材料,在产卵后48 h进行显微注射,后让其继续发育到96 h进行荧光定量PCR检测在干扰Bmdsx上游基因Bmhrp28和BmPSI后,Bmdsx下游基因PBP、SP1和Vg的表达差异,进而对Bmhrp28和BmPSI在家蚕性别决定中的功能进行研究。研究结果显示,干扰BmPSI,下游基因PBP表达量降低,SP1和Vg表达量增加,暗示BmPSI作为Bmdsx上游调控因子在家蚕性别决定路径中具有重要作用。而干扰Bmhrp28,下游基因PBP表达量虽然也有所降低,但SP1和Vg的表达量并未增加。我们推测Bmhrp28作为Bmdsx的上游调控因子虽然同样参与了家蚕性别决定路径,但是功能可能弱于BmPSI。
     4.家蚕Bmdsx上游调控因子Bmhrp28与BmPSI相互关系的研究
     为确定Bmhrp28与BmPSI的相互关系,我们采用酵母双杂交和免疫共沉淀的方法进行研究。首先利用酵母双杂交技术,在无自激活的前提下,将待检测的目标基因共转酵母,通过检测三个报告基因(HIS3、URA3、LacZ)是否表达从而确定目标基因之间的相互关系。本研究中,首先将Bmhrp28连入pPC86载体(AD),BmPSI连入pDBLeu载体(BD)。在检测无自激活后,将pPC86-Bmhrp28和pDBLeu-BmPSI共转酵母。结果显示,在SC/-Leu-Trp-His+3-AT平板与SC/-Leu-Trp-Ura平板上均无可生长的阳性克隆,在LacZ膜检中无显蓝色的阳性结果,即HIS3、URA3、LacZ三个报告基因均未检测到表达。由此可见Bmhrp28与BmPSI之间没有直接相互作用或者相互作用极弱。为了进一步验证该结果,我们采用免疫共沉淀检测Bmhrp28与BmPSI之间的相互关系。首先以精巢组织抽提物为材料,加入BmHRP28抗体去沉淀其抗原,与BmHRP28相互作用的其它蛋白也会一并沉淀下来,再用BmPSI抗体检测沉淀蛋白产物中是否存在BmPSI。结果显示,BmHRP28抗体沉淀的蛋白产物中,既存在BmHRP28,也存在BmPSI。结合之前酵母双杂交的结果表明,Bmhrp28与BmPSI并不是直接相互作用,而是共存于一个蛋白复合体在家蚕性别决定路径中行使功能。
     5.构建家蚕酵母双杂交早期胚胎cDNA文库并筛选Bmhrp28、BmPSI蛋白复合体中其它调控因子
     为了进一步筛选Bmhrp28、BmPSI蛋白复合体中的其它调控因子,我们构建了酵母双杂交早期胚胎cDNA文库。此文库以家蚕限性白卵品种(雄)为材料,将cDNA连入pDONR222载体,产生Gateway入门文库。随后将入门文库转到pDEST22载体上,获得酵母双杂交cDNA文库。经鉴定,该文库的总克隆数为1.36×10~7。从平板上随机挑取40个转化子菌落,提取文库质粒DNA进行PCR检测。结果显示,该文库插入的平均片段人小大于1.3 kb,重组率大于95%。取文库1μL稀释10~6倍后涂板检测,共长出77个菌落。扩增后的文库效价为7.7×10~(10)cfu/mL。鉴定结果表明,该文库达到构建文库的标准,可以用做下一步文库的筛选。
     我们采用酵母双杂交的方法,在无自激活的前提下,将pDBLeu-BmPSI筛选已构建的家蚕酵母双杂交早期胚胎cDNA文库。菌落在SC/-Trp/-Leu/-His+30mM 3-AT平板上生长7天后,共长出22个酵母转化菌落。将酵母菌落在SC-Trp-Leu二缺平板上划线保种,并挑取少量菌落检测LacZ报告基因的表达。通过LacZ检测的阳性克隆在SC-Trp-Leu-Ura平板上划线。从通过LacZ和URA3检测的酵母菌中抽提出猎物质粒与诱饵质粒做共转化验证。最终1个阳性克隆通过检测。对该阳性克隆进行测序并分析发现,该基因为家蚕的一个剪接体蛋白(Bmspx,spliceosomal protein on the X in silkworm)。在基因结构上,该基因的ORF长为1029 bp,编码342个氨基酸残基,预测分子量为37.0 kD,等电点为6.36,位于第8号染色体nscaf2827上,含有6个外显子、5个内含子,外显子、内含子边界处均符合GT-AG规则。蛋白质结构域分析显示,该基因所编码的蛋白具有两个RRM结构域,同样为RNA结合蛋白。与其他物种中的同源基因的蛋白质序列比对结果显示,BmSPX与果蝇SPX,以及伊蚊、蜜蜂、赤拟谷盗、牛、人、猪、老鼠、马、斑马鱼等的SF384(splicing factor 3b subunit 4)同源性达85%以上,特别是在RRM结构域处非常保守。应用家蚕全基因组芯片的组织表达数据分析显示,Bmspx在幼虫5龄3天各组织均有表达,但仅在精巢中高量表达,这可能与其在家蚕性别决定中的潜在功能相关。而各个发育时期的表达数据表明,从5龄4天到蛾期,Bmspx在各时期广泛表达,雌雄差异不大。早期胚胎的表达数据显示,Bmspx在雌雄中表达模式较为类似,在产卵后48 h表达水平最高,但自48 h开始表达呈逐渐下降趋势,到产卵后96 h表达水平最低。
     Bmspx编码RNA结合蛋白,且只在精巢中高量表达,作为Bmhrp28、BmPSI蛋白复合体中的一个调控因子能与BmPSI直接相互作用。综合研究结果我们推测,家蚕性别决定双性基冈Bmdsx上游的调控受BmPSI、Bmhrp28、Bmspx等控制。Bmspx与BmPSI相互作用,但Bmspx与Bmdsx以及复合体中的另一成员Bmhrp28之间的关系尚未研究清楚。如果Bmspx能结合到Bmdsx上并与Bmhrp28直接相互作用,那么Bmspx则是Bmhrp28与BmPSI之间的桥梁,使Bmdsx上游调控复合体组分之间的关系更为清晰。对于该基因与Bmdsx、Bmhrp28的相互关系以及在家蚕性别决定路径中的具体作用,我们将进一步研究。
Sex determination is one of the scientific issues in the biosphere.As a lepidopteran insect, domesticated silkworm Bombyx mori,the researches of its sex determination have intercommunity and particularity compared with the Drosophila melanogaster which has the clearest research on sex determination mechanism,so the researches on sex determination mechanism of silkworm can provide us a new model for the better understanding of the insect sex determination,and has important practical value in the sericultural industry.Silkworm is unisexual insect,of which the economic value of male is notably higher than that of female.The average rate of cocooning, physical character,efficiency of feeding,and quality of cocoon are better in male.Therefore,the researches on sex determination of silkworm are always the important issue in the sericulture.
     The sex chromosomes of silkworm are ZW.In recent years,in the sex determination of silkworm the double sex gene Bmdsx which is in the downstream of cascade has been cloned and identified that it plays an important role in the male and female differentiation of silkworm. Recently,scientists has identified two regulational factors BmPSI and Bmhrp28 in the upstream of Bmdsx,but failed to clarify the role and relationship of them yet.Based on this,this study cloned and analyzed Bmhrp28 and BmPSI by using whole genome sequences,ESTs and microarray data. Meanwhile the study performed further functional research on the Bmhrp28 and BmPSI by RT-PCR,prokaryotic expression,RNAi,yeast two-hybrid,Co-Immunoprecipitation and so on. The main results are as follows:
     1.Cloning,sequence analysis and mRNA expression of Bmhrp28 and BmPSI
     Two pairs of primers were synthesized based on the Bmhrp28 and BmPSI which were reported in the former papers and GenBank.Two positive clones including complete ORF of the two genes were obtained.The ORF of Bmhrp28 is 771 bp,which codes 256 aa.Its putative molecular weight is 28.2 kD and pI is 8.72.It locates on nscaf3044 of the 21~(st) chromosome and contains 7 exons and 6 introns.The ORF of BmPSI is 2112 bp,which codes 703 aa.Its putative molecular weight is 76.4 kD and pl is 6.07.It locates on nscaf2789 of the 20~(th) chromosome and contains 14 exons and 13 introns.The boundaries of each exons and introns are consistent with the GT-AG rules. Domain prediction shows that both the Bmhrp28 and BmPSI are RNA binding proteins.Bmhrp28 contains two RRM domains while BmPSI contains four KH domains and two functional domains named as A and B.Both RRM and KH are RNA binding domains which are involved in RNA alternative splicing,processing,and transcription.The functional domains of Bmhrp28 and BmPSI are conserved with their homologous genes hrp48 and PSI in Drosophila melanogaster,which act as regulational factor in the alternative splicing of P element transposase.
     In order to discover the space-time expression profile of the two genes in Bombyx mori,we performed an expression analysis by using ESTs data,genome-wide microarray data and semi-quantitative RT-PCR.ESTs evidences of Bmhrp28 were found in BmN cell,embryo and ovary and that of BmPSI were found in testis,ovary,silkgland,and embryo.
     The genome-wide microarray data indicates that the expressions level of Bmhrp28 in each tissue of fifth-instar day 3 larvae are very low,except a gleam expression in testis.But the BmPSI exhibits a higher expression level in each tissue,especially in ovary and posterior silkgland and expression level is higher than Bmhrp28 as a whole.The expression data in developmental stages shows that Bmhrp28 slightly expresses from fifth-instar day 4 to moth stage.But BmPSI exhibits a stable expression level and there is no conspicuous difference between male and female.The expression data of early embryo indicates that Bmhrp28 has different expression patterns between male and female.In female the highest expression level is 48 h after oviposition and then begins to decrease,but in male there is no change at 48 h after oviposition and the expression reaches the peak at 60 h after oviposition and then begins to decrease.Compared to Bmhrp28,the expression pattern of BmPSI is similar in male but expression reaches the peak at 72 h after oviposition,while in female the expression is always at a low level and little change.
     Semi-quantitative RT-PCR was carried out to validate the microarray data.Bmhrp28 and BmPSI are widely expressed in both male and female fifth-instar day 3 larvae,while expression level of Bmhrp28 is lower than that of BmPSI.In early embryo they are almost the same,lowly expressed from unfertilized eggs to 24 h after oviposition.In the male early embryo,the expression gradually increases until it reaches the peak at 96 h after oviposition,and then begins to decrease. In the female early embryo,the expression reaches the peak at 48 h after oviposition and then begins to decrease.The developmental stage of early embryo is a key stage of sex-determination, and the similar expression patterns indicate that Bmhrp28 and BmPSI might be processed synergistically in this progress.
     2.Prokaryotic expression and polyclonal antibody preparation of Bmhrp28 and BmPSI
     The cDNA of Bmhrp28 and BmPSI were ligated into modified p28 and pET-MBP plasmids to construct prokaryotic expression vector which named as Bmhrp28/p28 and BmPSI/pET-MBP, respectively.They were transformed into expression strain BL21(DE3) and Rosetta(DE3) and then induced by IPTG.A 31 kD and a 120 kD recombinant protein were obtained.The molecular weights were a little higher than the original protein because a 6×His-tag and a MBP-tag were added.Protein composition identification showed that the two recombinant proteins were expressed in dissoluble form.
     With the methods of affinity chromatograph and electroelution respectively,we purify recombinant BmHRP28 and BmPSI,and then immunized male rabbits with the two proteins to prepare polyclonal antibodies.Western blotting results show the antibodies are induced by the recombinant BmHRP28 and BmPSI,thus they are capable for the further researches.
     3.The functional study of Bmhrp28 and BmPSI with RNAi
     Existing studies have shown that both Bmhrp28 and BmPSI bound to the forth exon of Bmdsx. Bmdsx,the double sex gene in the sex determination pathway of Bombyx mori,as the positive regulation factor SP1 and Vg downstream,is predominantly expressed in the female.However,its negative regulation factor PBP is mainly expressed in the male.Based on these,we microinjected the in vitro synthesized siRNA into the 48 h embryo of white egg strains of sex-limited silkworm,and then the embryo was allowed to develop until 96 h.Real-time PCR was used to detect the expression difference of PBP,SP1 and Vg downstream Bmdsx to study the functions of Bmhrp28 and BmPSI in the silkworm sex determination pathway after the Bmhrp28 and BmPSI upstream Bmdsx were silenced.As a results,the expression of downstream PBP was dropped down,while the expression of SP1 and Vg increased,implying that BmPSI,the upstream regulation factor of Bmdsx,has an important function in the silkworm sex determination pathway. The expression of SP1 and Vg did not increase after Bmhrp28 was silenced,although the expression of the downstream gene PBP had a relatively small reduction.It is inferred that Bmhrp28 might have lower function than BmPSI although Bmhrp28 did participated in the silkworm sex determination pathway as the upstream regulation factor.
     4.Study on interaction between the upstream regulation fators of silkworm Bmdsx,Bmhrp28 and BmPSI
     The study used yeast two-hybrid and Co-Immunoprecipitation to identify the interaction between Bmhrp28 and BmPSI.First,in the absence of self-activation using yeast two-hybrid,the tested genes were co-transformed yeast in order to determine the relationship between target genes by detecting the three reporter genes(HIS3,URA3,LacZ).In this research,Bmhrp28 and BmPSI were connected into pPC86 and pDBLeu vectors,respectively.In the absence of self-activation, pPC86-Bmhrp28 and pDBLeu-BmPSI were co-transfected yeast.As a result,there were no positive clones on the SC/-Leu-Trp-His+3-AT and SC/-Leu-Trp-Ura plates and there was no positive result in the membrane detecting of LacZ.The expressions of the three reporter genes HIS3,URA3,LacZ were not detected.Thus there was no or little direct interaction between Bmhrp28 and BmPSI.In order to further validation of the result,we used Co-Immunoprecipitation to identify the relationship between Bmhrp28 and BmPSI.Anti-BmHRP28 antibody precipitated its antigen in the testis extract and at the same time protein which interacted with BmHRP28 was also precipitated.Then anti-BmPSI antibody was used to detect if BmPSI was in the precipitation product.The results showed that both of BmHRP28 and BmPSI were existed in the precipitation deposited by anti-BmHRP28 antibody.Considering the results of yeast two-hybrid,we presumed that between Bmhrp28 and BmPSI there were no direct interaction,but they might play a role in the sex determination of silkworm in a protein complex.
     5.Constructing yeast two-hybrid cDNA library of silkworm early embryo and screening other regulation factors in the regulator complexes
     In order to explore whether there were other regulation factors to regulate Bmdsx in the Bmhrp28 and BmPSI protein complex,the present study constructed yeast two-hybrid cDNA library of early embryo.The white egg strain of sex-limited silkworm(male) was used to extract the mRNA for cDNA library construction.The cDNAs were connected to pDONR222 vector to generate gateway entry-library.And then entry-library was transferred to pDEST22 vector to gain yeast two-hybrid cDNA library.The total number of clones in library was 1.36×10~7.Randomly we picked 40 colonies and extracted plasmid DNA to PCR detection.The results showed that the average size of insert fragments was larger than 1.3 kb and recombination rate was greater than 95%.1μL cDNA library was diluted 10~6 to coat on plates and grew 77 colonies.After amplification the library titer was 7.7×10~(10) cfu/mL.Identification results showed that the library could be used for the library screening.
     In order to further identify other possible regulation factors in the regulator complex,we performed yeast two-hybrid.In the absence of self-activation,we used pDBLeu-BmPSI to screen the yeast two-hybrid cDNA library.After colonies grew on SC/-Trp/-Leu/-His plates added 30mM 3-AT for seven days,there were 22 transformations of yeast colonies.We crossed on the SC-Trp-Leu plates to save strain and picked a small colony to detect expression of report gene LacZ.LacZ positive clones were detected by the SC-Trp-Leu-Ura plates.Prey plasmid was extracted from LacZ and URA3 yeast co-transformed with the bait plasmid for validation.At last only one positive clone was tested.The cloning and sequencing of this positive clone showed that this gene was a spliceosomal protein on the X in silkworm.This gene ORF is 1029 bp,which encodes 342 aa.Its molecular weight is 37.0 kD and pI is 6.36.It locates on nscaf2827 of 8~(th) chromosome and contains 6 exons and 5 introns.The boundaries of each exons and introns are consistent with the GT-AG rules. Domain prediction shows that this gene,which has two same RRM domains as Bmhrp28,also is RNA binding protein.Compared with SPX protein sequence of Drosophila and SF3B4 of Aedes aegypti,Apis mellifera,Tribolium castaneum,Bos Taurus,Homo sapiens,Sus scrofa,Mus musculus, Equus caballus,Danio rerio etc.,BmSPX has homologe more than 85%and has very high identity in the RRM domains.Shown by genome-wide microarray expression data of tissues,Bmspx expresses in every tissue in fifth-instar day 3 but only has high expression level in testis that may have related to its potential function in sex determination of silkworm.However the expression data of each development period shows Bmspx is widely expressed in various periods and there is little difference between female and male.The expression data of early embryo indicates Bmspx has a similar expression pattern between female and male that expression reaches the peak at 48 h after oviposition,and then begins to decrease and the lowest expression level is at 96 h after oviposition. The function of this in the sex determination of silkworm still needs to be studied.
     Bmspx encodes an RNA binding protein which highly expresses only in testis.As one of the regulators of Bmhrp28-BmPSI protein complex,Bmspx can directly interact with BmPSI.Based on the results we speculate that upstream regulation of sex determination gene Bmdsx is controlled by BmPSI,Bmhrp28,Bmspx and so on.Bmspx interacts with BmPSI,but the relationships between Bmspx and Bmdsx,Bmspx and Bmhrp28 are not clear yet.If Bmspx can be binded to the Bmdsx and directly interact with Bmhrp28,then Bmspx could be a "bridge" between Bmhrp28 and BmPSI, therefore,the structure of upstream regulatory complex of Bmdsx would be more clearer.Further studies will be carried out to discover the relationship among Bmspx,Bmdsx and Bmhrp28,and also the specific role of Bmspx in the sex determination of silkworm as well.
引文
[1] Koopman, P., et al., Male development of chromosomally female mice transgenic for Sry. Nature, 1991. 351(6322): p. 117-21.
    
    [2] McClung, C, Notes on the accessory chromosome. Anat. Anz., 1901. 20: p. 220-226.
    [3] McClung, C, The accessory chromosome-Sex determinant? Biological Bulletin, 1902. 3: p.43-84.
    [4] Wilson, E., Studies on chromosomes. V. The chromosomes of Metapodius. A contribution to the hypothesis of the genetic continuity of chromosomes. J Exp Zool, 1906. 6: p. 147-205.
    [5] Welshons, W.J., and L. B., The Y-chromosome as the bearer of male-determining factors in the mouse. Proc. Natl. Acad. Sci. U. S., 1959. 45: p. 560-566.
    [6] Jacobs, P.A., and J. A. Strong, A case of human intersexuality having a possible XXY sex-determining mechanism. Nature, 1959. 183: p. 302.
    [7] Ford, C.E., K. W. Jones, P. E. Polani, J. G. de Almeida and J. H. Briggs, A sex chromosome anomaly in a case of gonadal dysgenesis (Turner's syndrome). Lancet, 1959. 2: p. 711-713.
    [8] Schutt, C. and R. Nothiger, Structure, function and evolution of sex-determining systems in Dipteran insects. Development, 2000. 127(4): p. 667-77.
    [9] The Honeybee Genome Sequencing Consortium, Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006. 443(7114): p. 931-49.
    [10] Hilfiker-Kleiner, D., et al., Genetic control of sex determination in the germ line and soma of the housefly, Musca domestica. Development, 1994. 120(9): p. 2531-8.
    
    [11] Willhoeft, U. and G. Franz, Identification of the sex-determining region of the Ceratitis capitata Y chromosome by deletion mapping. Genetics, 1996. 144(2): p. 737-45.
    
    [12] Bedo, D.G., Differential sex chromosome replication and dosage compensation in polytene trichogen cells of Lucilia cuprina (Diptera: Calliphoridae). Chromosoma, 1982. 87(1): p. 21-32.
    [13] Shearman, D.C. and M. Frommer, The Bactrocera tryoni homologue of the Drosophila melanogaster sex-determination gene doublesex. Insect Mol Biol, 1998. 7(4): p. 355-66.
    [14] Ullerich, F.H., [Identification of the genetic sex chromosomes in the monogenic blowfly Chrysomya rufifacies (Calliphoridae, Diptera)]. Chromosoma, 1975. 50(4): p. 393-419.
    [15] Hashimoto, H., The role of the W chromosome in the sex determination of Bombyx mori. Jpn J Genet, 1933. 8: p. 245-247.
    [16] Bridges, C., Non-disjunction as proof of the chromosome theory of heredity (part 1). Genetics, 1916. 1:p. 1-52.
    [17] Bridges, C., Non-disjunction as proof of the chromosome theory of heredity (part 2). Genetics, 1916. 1: p 107-16.
    
    [18] Bridges, C, Triploid intersexes in Drosophila melanogaster. Science, 1921. 54: p. 252-254.
    [19] Bridges, C, Sex in relation to chromosomes and genes. American Naturalist, 1925. 59: p. 127-137.
    [20] Cline, T.W., The Drosophila sex determination signal: how do flies count to two? Trends Genet, 1993. 9(11): p. 385-90.
    [21] Maine, E.M., et al., The Sex-lethal gene of Drosophila: DNA alterations associated with sex-specific lethal mutations. Cell, 1985. 43(2 Pt 1): p. 521-9.
    [22] Maine, E.M., et al., Sex-lethal, a link between sex determination and sexual differentiation in Drosophila melanogaster. Cold Spring Harb Symp Quant Biol, 1985. 50: p. 595-604.
    [23] Penalva, L.O. and L. Sanchez, RNA binding protein sex-lethal (Sxl) and control of Drosophila sex determination and dosage compensation. Microbiol Mol Biol Rev, 2003. 67(3): p. 343-59, table of contents.
    [24] Wieschaus, E., Nothiger, R., The role of the transformer gene in the development of the genitalia and analia of Drosophila melanogaster. Dev Biol, 1982. 90: p. 320-334.
    [25] Amrein, H., Gorman, M., Nothiger, R, The sex-determining gene tra-2 of Drosophila encodes a putative RNA binding protein. Cell, 1988. 55: p. 1025-1035.
    [26] Inoue, K.., et al., Binding of the Drosophila transformer and transformer-2 proteins to the regulatory elements of doublesex primary transcript for sex-specific RNA processing. Proc Natl Acad Sci USA, 1992. 89(17): p. 8092-6.
    [27] Burtis, K.C. and B.S. Baker, Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell, 1989. 56(6): p. 997-1010.
    [28] Bopp, D., Bell, L. R., Cline, T. W. and Schedl, P., Developmental distribution of female-specific Sex-lethal proteins in Drosophila melanogaster. Genes Dev, 1991. 5: p. 403-415.
    [29] Bell, L.R., et al., Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similarity to RNA binding proteins. Cell, 1988. 55(6): p. 1037-46.
    [30] Cline, T.W., Evidence that sisterless-a and sisterless-b are two of several discrete "numerator elements" of the X/A sex determination signal in Drosophila that switch Sxl between two alternative stable expression states. Genetics, 1988. 119(4): p. 829-62.
    [31] Duffy, J.B. and J.P. Gergen, The Drosophila segmentation gene runt acts as a position-specific numerator element necessary for the uniform expression of the sex-determining gene Sex-lethal. Genes Dev, 1991. 5(12A): p. 2176-87.
    [32] Erickson, J.W. and T. W. Cline, A bZIP protein, sisterless-a, collaborates with bHLH transcription factors early in Drosophila development to determine sex. Genes Dev, 1993. 7(9): p. 1688-702.
    [33] Deshpande, G, J. Stukey, and P. Schedl, scute (sis-b) function in Drosophila sex determination. Mol Cell Biol, 1995. 15(8): p. 4430-40.
    [34] Barbash, D.A. and T.W. Cline, Genetic and molecular analysis of the autosomal component of the primary sex determination signal of Drosophila melanogaster. Genetics, 1995. 141(4): p. 1451-71.
    [35] Hoshijima, K., et al., Transcriptional regulation of the Sex-lethal gene by helix-loop-helix proteins. Nucleic Acids Res, 1995. 23(17): p. 3441-8.
    [36] Kramer, S.G., et al., Direct activation of Sex-lethal transcription by the Drosophila runt protein. Development, 1999. 126(1): p. 191-200.
    [37] Cronmiller, C, P. Schedl, and T.W. Cline, Molecular characterization of daughterless, a Drosophila sex determination gene with multiple roles in development. Genes Dev, 1988.2(12A):p. 1666-76.
    [38] Pultz, M.A. and B.S. Baker, The dual role of hermaphrodite in the Drosophila sex determination regulatory hierarchy. Development, 1995. 121(1): p. 99-111.
    [39] Younger-Shepherd, S., et al., deadpan, an essential pan-neural gene encoding an HLH protein, acts as a denominator in Drosophila sex determination. Cell, 1992. 70(6): p. 911-22.
    [40] Paroush, Z., et al., Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins. Cell, 1994. 79(5): p. 805-15.
    [41] Cabrera, C.V. and M.C. Alonso, Transcriptional activation by heterodimers of the achaete-scute and daughterless gene products of Drosophila. EMBOJ, 1991. 10(10): p. 2965-73.
    [42] Parkhurst, S.M., D. Bopp, and D. Ish-Horowicz, X:A ratio, the primary sex-determining signal in Drosophila, is transduced by helix-loop-helix proteins. Cell, 1990. 63(6): p. 1179-91.
    [43] Parkhurst, S.M. and D. Ish-Horowicz, Common denominators for sex. Curr Biol, 1992. 2(12): p. 629-31.
    [44] Estes, P.A., L.N. Keyes, and P. Schedl, Multiple response elements in the Sex-lethal early promoter ensure its female-specific expression pattern. Mol Cell Biol, 1995. 15(2): p. 904-17.
    [45] Keyes, L.N., T.W. Cline, and P. Schedl, The primary sex determination signal of Drosophila acts at the level of transcription. Cell, 1992. 68(5): p. 933-43.
    [46] Bell, L.R., et al., Positive autoregulation of sex-lethal by alternative splicing maintains the female determined state in Drosophila. Cell, 1991. 65(2): p. 229-39.
    [47] Horabin, J.I. and P. Schedl, Regulated splicing of the Drosophila sex-lethal male exon involves a blockage mechanism. Mol Cell Biol, 1993. 13(3): p. 1408-14.
    [48] Albrecht, E.B. and H.K.. Salz, The Drosophila sex determination gene snf is utilized for the establishment of the female-specific splicing pattern of Sex-lethal. Genetics, 1993. 134(3): p.801-7.
    [49] Flickinger, T.W. and H.K. Salz, The Drosophila sex determination gene snf encodes a nuclear protein with sequence and functional similarity to the mammalian U1A snRNP protein. Genes Dev, 1994. 8(8): p. 914-25.
    [50] Granadino, B., et al., Evidence of a dual function in fl(2)d, a gene needed for Sex-lethal expression in Drosophila melanogaster. Genetics, 1992. 130(3): p. 597-612.
    
    [51] Hilfiker, A., et al., The gene virilizer is required for female-specific splicing controlled by Sxl, the master gene for sexual development in Drosophila. Development, 1995. 121(12): p. 4017-26.
    [52] Sosnowski, B.A., J.M. Belote, and M. McKeown, Sex-specific alternative splicing of RNA from the transformer gene results from sequence-dependent splice site blockage. Cell, 1989. 58(3): p.449-59.
    [53] Hoshijima, K., et al., Control of doublesex alternative splicing by transformer and transformer-2 in Drosophila. Science, 1991. 252(5007): p. 833-6.
    [54] Pultz, M.A., G.S. Carson, and B.S. Baker, A genetic analysis of hermaphrodite, a pleiotropic sex determination gene in Drosophila melanogaster. Genetics, 1994. 136(1): p. 195-207.
    [55] Chase, B.A. and B.S. Baker, A genetic analysis of intersex, a gene regulating sexual differentiation in Drosophila melanogaster females. Genetics, 1995. 139(4): p. 1649-61.
    [56] Taylor, B.J., et al., Behavioral and neurobiological implications of sex-determining factors in Drosophila. Dev Genet, 1994. 15(3): p. 275-96.
    [57] Ryner, L.C., et al., Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell, 1996. 87(6): p. 1079-89.
    [58] Finley, K.D., Taylor, B. J., Milstein, M. and McKeown, M, dissatisfaction, a gene involved in sex-specific behavior and neural development of Drosophila. Genetics, 1997. 94: p. 913-918.
    [59] An, W. and P.C. Wensink, Integrating sex- and tissue-specific regulation within a single Drosophila enhancer. Genes Dev, 1995. 9(2): p. 256-66.
    [60] Cho, S. and P.C. Wensink, DNA binding by the male and female doublesex proteins of Drosophila melanogaster. J Biol Chem, 1997. 272(6): p. 3185-9.
    [61] Cho, S. and P.C. Wensink, Linkage between oligomerization and DNA binding in Drosophila doublesex proteins. Biochemistry, 1998. 37(32): p. 11301-8.
    [62] Lucchesi, J.C., Dosage compensation in Drosophila and the 'complex' world of transcriptional regulation. BioEssays, 1996. 18: p. 541-547.
    [63] Bashaw, G.J. and B.S. Baker, The msl-2 dosage compensation gene of Drosophila encodes a putative DNA-binding protein whose expression is sex specifically regulated by Sex-lethal. Development, 1995. 121(10): p. 3245-58.
    [64] Kelley, R.L., et al., Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell, 1995. 81(6): p. 867-77.
    [65] Zhou, S., et al., Male-specific lethal 2, a dosage compensation gene of Drosophila, undergoes sex-specific regulation and encodes a protein with a RING finger and a metallothionein-like cysteine cluster. EMBOJ, 1995. 14(12): p. 2884-95.
    [66] Bernstein, M. and T.W. Cline, Differential effects of Sex-lethal mutations on dosage compensation early in Drosophila development. Genetics, 1994. 136(3): p. 1051-61.
    [67] Steinmann-Zwicky, M., H. Schmid, and R. Nothiger, Cell-autonomous and inductive signals can determine the sex of the germ line of Drosophila by regulating the gene Sxl. Cell, 1989. 57(1): p. 157-66.
    [68] Bopp, D., Horabin, J. I. Lersch, R. A. Cline, T. W. Schedl, P., Expression of the Sex-lethal gene is controlled at multiple levels during Drosophila oogenesis. Development, 1993. 118(3): p. 797-812.
    [69] Schupbach, T., Normal female germ cell differentiation requires the female X chromosome to autosome ratio and expression of sex-lethal in Drosophila melanogaster. Genetics, 1985. 109(3):p. 529-48.
    [70] Staab, S., A. Heller, and M. Steinmann-Zwicky, Somatic sex-determining signals act on XX germ cells in Drosophila embryos. Development, 1996. 122(12): p. 4065-71.
    [71] Steinmann-Zwicky, M, Sxl in the germline of Drosophila: a target for somatic late induction. Dev Genet, 1994. 15(3): p. 265-74.
    [72] Hinson, S. and R.N. Nagoshi, Regulatory and functional interactions between the somatic sex regulatory gene transformer and the germline genes ovo and ovarian tumor. Development, 1999. 126(5): p. 861-71.
    [73] Salz, H.K., The genetic analysis of snf: a Drosophila sex determination gene required for activation of Sex-lethal in both the germline and the soma. Genetics, 1992. 130(3): p. 547-54.
    
    [74] Oliver, B., Y.J. Kim, and B.S. Baker, Sex-lethal, master and slave: a hierarchy of germ-line sex determination in Drosophila. Development, 1993. 119(3): p. 897-908.
    [75] Pauli, D., B. Oliver, and A.P. Mahowald, The role of the ovarian tumor locus in Drosophila melanogaster germ line sex determination. Development, 1993. 119(1): p. 123-34.
    [76] Hager, J.H. and T.W. Cline, Induction of female Sex-lethal RNA splicing in male germ cells: implications for Drosophila germline sex determination. Development, 1997. 124(24): p. 5033-48.
    [77]SchuLtt,C.,A.Hilfiker,and R.Nothiger,virilizer regulates Sex-lethal in the germline of Drosophila melanogaster.Development,1998.125(8):p.1501-7.
    [78]Gilbert,W.,Why genes in pieces? Nature,1978.271(5645):p.501.
    [79]Early,P.R.,J.Davis,M.Calame,K.Bond,M.Wall,R.Hood,L.,Two mRNAs can be produced from a single immunoglobulin mu gene by alternative RNA processing pathways.Cell,1980.20(2):p.313-9.
    [80]Rosenfeld,M.G.,et al.,Calcitonin mRNA polymorphism:peptide switching associated with alternative RNA splicing events.Proc Natl Acad Sci USA,1982.79(6):p.1717-21.
    [81]Sharp,P.A.,Split genes and RNA splicing.Cell,1994.77(6):p.805-15.
    [82]Gelfand,M.S.,et al.,ASDB:database of alternatively spliced genes.Nucleic Acids Res,1999.27(1):p.301-2.
    [83]Lopez,A.J.,Alternative splicing of pre-mRNA:developmental consequences and mechanisms of regulation.Annu Rev Genet,1998.32:p.279-305.
    [84]Boise,L.H.,et al.,bcl-x,a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death.Cell,1993.74(4):p.597-608.
    [85]Yang,J.C.,Chen,Y.H.,Mo,J.D.,Chen,C.,The research progress on alternative splicing of pre-mRNA.Life Science,2002.4(3):p.150-153.
    [86]Harrison,D.A.,Sex determination:controlling the master.Curr Biol,2007.17(9):p.R328-30.
    [87]Suzuki,M.G.,et al.,Analysis of the biological functions of a doublesex homologue in Bombyx mori.Dev Genes Evol,2003.213(7):p.345-54.
    [88]Suzuki,M.G.,et al.,Role of the male BmDSX protein in the sexual differentiation of Bombyx mori.Evol Dev,2005.7(1):p.58-68.
    [89]Suzuki,M.G.,et al.,Establishment of a novel in vivo sex-specific splicing assay system to identify a trans-acting factor that negatively regulates splicing of Bombyx mori dsx female exons.Mol Cell Biol,2008.28(1 ):p.333-43.
    [90]Wang,Z.L.,et al.,BmHrp28 is a RNA-binding protein that binds to the female-specific exon 4of Bombyx mori dsx pre-mRNA,insect molecular biology,2009.
    [91]Siebel,C.W.,R.Kanaar,and D.C.Rio,Regulation of tissue-specific P-element pre-mRNA splicing requires the RNA-binding protein PSI.Genes Dev,1994.8(14):p.1713-25.
    [92]Hammond,L.E.,et al.,Mutations in the hrp48 gene,which encodes a Drosophila heterogeneous nuclear ribonucleoprotein particle protein,cause lethality and developmental defects and affect P-element third-intron splicing in vivo.Mol Cell Biol,1997.17(12):p.7260-7.
    [93]Ignjatovic,T.,et al.,Structural basis of the interaction between P-element somatic inhibitor and U1-70k essential for the alternative splicing of P-element transposase.J Mol Biol,2005.351(1): p. 52-65.
    [94] Moore, J.M., Query, C. C, and Sharp, P. A. , Splicing of precursors to messenger RNAs by the spliceosome. In RNA world 1993. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.: p. 303-357.
    [95] Laski, F.A., D.C. Rio, and G.M. Rubin, Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell, 1986. 44(1): p. 7-19.
    [96] Rio, D.C., F.A. Laski, and G.M. Rubin, Identification and immunochemical analysis of biologically active Drosophila P element transposase. Cell, 1986. 44(1): p. 21-32.
    [97] Misra, S. and D.C. Rio, Cytotype control of Drosophila P element transposition: the 66 kD protein is a repressor of transposase activity. Cell, 1990. 62(2): p. 269-84.
    [98] Siebel, C.W., L.D. Fresco, and D.C. Rio, The mechanism of somatic inhibition of Drosophila P-element pre-mRNA splicing: multiprotein complexes at an exon pseudo-5' splice site control Ul snRNP binding. Genes Dev, 1992. 6(8): p. 1386-401.
    [99] Chmiel, N.H., D.C. Rio, and J.A. Doudna, Distinct contributions of KH domains to substrate binding affinity of Drosophila P-element somatic inhibitor protein. RNA, 2006. 12(2): p. 283-91.
    [100] Siebel, C.W. and D.C. Rio, Regulated splicing of the Drosophila P transposable element third intron in vitro: somatic repression. Science, 1990. 248(4960): p. 1200-8.
    [101] Siebel, C.W., A. Admon, and D.C. Rio, Soma-specific expression and cloning of PS/, a negative regulator of P element pre-mRNA splicing. Genes Dev, 1995. 9(3): p. 269-83.
    [102] Dreyfuss, G., et al., hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem, 1993. 62: p. 289-321.
    [103] Labourier, E., M.D. Adams, and D.C. Rio, Modulation of P-element pre-mRNA splicing by a direct interaction between PSI and Ul snRNP 70K protein. Mol Cell, 2001. 8(2): p. 363-73.
    [104] Adams, M.D., R.S. Tarng, and D.C. Rio, The alternative splicing factor PSI regulates P-element third intron splicing in vivo. Genes Dev, 1997. 11(1): p. 129-38.
    [105] Chain, A.C., et al., Identification of a cis-acting sequence required for germ line-specific splicing of the P element ORF2-ORF3 intron. Mol Cell Biol, 1991. 11(3): p. 1538-46.
    [106] Yano, T., et al., Hrp48, a Drosophila hnRNPA/B homolog, binds and regulates translation of oskar mRNA. Dev Cell, 2004. 6(5): p. 637-48.
    [107] Goodrich, J.S., K.N. Clouse, and T. Schupbach, Hrb27C, Sqd and Otu cooperatively regulate gurken RNA localization and mediate nurse cell chromosome dispersion in Drosophila oogenesis. Development, 2004. 131(9): p. 1949-58.
    [108] Norvell, A., et al., Specific isoforms of squid, a Drosophila hnRNP, perform distinct roles in Gurken localization during oogenesis. Genes Dev, 1999. 13(7): p. 864-76.
    [109] Geng, C. and P.M. Macdonald, Imp associates with squid and Hrp48 and contributes to localized expression of gurken in the oocyte. Mol Cell Biol, 2006. 26(24): p. 9508-16.
    [110] Query, C.C., R.C. Bentley, and J.D. Keene, A common RNA recognition motif identified within adefmed Ul RNA binding domain of the 70K Ul snRNP protein. Cell, 1989. 57(1): p. 89-101.
    [111] Nelissen, R.L., et al., The association of the Ul-specific 70K. and C proteins with Ul snRNPs is mediated in part by common U snRNP proteins. EMBOJ, 1994. 13(17): p. 4113-25.
    [112] Hasimoto, H., The role of the W-chromosome in the sex determination of Bombyx mori. Jpn .) Genet, 1933. 8: p. 245-7.
    [113] Tazima, Y., The Genetics of the Silkworm. London/Englewood Cliffs Logos Press, 1964: p. 253pp.
    [114] Traut, W., Pachytene mapping in the female silkworm, Bombyx mori L. (Lepidoptera). Chromosoma, 1976. 58(3): p. 275-84.
    
    [115] Traut, W. and F. Marec, Sex chromatin in lepidoptera. Q Rev Biol, 1996. 71(2): p. 239-56.
    [116] Traut, W., et al., Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma, 1999. 108(3): p. 173-80.
    [117] Sahara, K., et al., W-derived BAC probes as a new tool for identification of the W chromosome and its aberrations in Bombyx mori. Chromosoma, 2003. 112(1): p. 48-55.
    [118] Abe, H., et al., Identification of novel random amplified polymorphic DNAs (RAPDs) on the W chromosome of the domesticated silkworm, Bombyx mori, and the wild silkworm, B. mandarina, and their retrotransposable element-related nucleotide sequences. Genes Genet Syst, 1998. 73(4): p. 243-54.
    [119] Abe, H., et al., Partial deletions of the W chromosome due to reciprocal translocation in the silkworm Bombyx mori. Insect Mol Biol, 2005. 14(4): p. 339-52.
    [120] Abe, H., et al., Retrotransposable elements on the W chromosome of the silkworm, Bombyx mori. Cytogenet Genome Res, 2005. 110(1-4): p. 144-51.
    [121] Traut W, S.K., Otto TD, Marec F, Molecular differentiation of sex chromosome probed by comparative genomic hybridisation. Chromosoma, 1999. 108:p. 173-80.
    [122] Xia, Q., et al., A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science, 2004. 306(5703): p. 1937-40.
    [123] Mita, K., et al., The genome sequence of silkworm, Bombyx mori. DNA Res, 2004. 11(1): p. 27-35.
    [124] Wu, C, et al., Construction and characterization of bacterial artificial chromosome libraries from the silkworm, Bombyx mori. Mol Gen Genet, 1999. 261(4-5): p. 698-706.
    [125] Ajimura et al., Are the zinc-finger motif genes, z1 and z20, located in the W chromosome involved in the sex-determination of the domesticated silkworm, Bombyx mori? Abstracts from Seventh International Workshop on the Molecular Biology and Genetics of the Lepidoptera. J Insect Sci, 2006.
    [126] Fujii, T. and T. Shimada, Sex determination in the silkworm, Bombyx mori: a female determinant on the W chromosome and the sex-determining gene cascade. Semin Cell Dev Biol, 2007. 18(3):p. 379-88.
    [127] Yoshido, A., et al., The Bombyx mori karyotype and the assignment of linkage groups. Genetics, 2005. 170(2): p. 675-85.
    [128] Fujii H, B.Y., Doira H, Kihara H, Kawaguchi Y, Genetical stocks and mutations of Bombyx mori: important genetic resources. Fukuoka: Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, 1998: p. 54.
    [129] Koike, Y, et al., Genomic sequence of a 320-kb segment of the Z chromosome of Bombyx mori containing a kettin ortholog. Mol Genet Genomics, 2003. 269(1): p. 137-49.
    [130] Fujii, T., et al., The female-killing chromosome of the silkworm, Bombyx mori, was generated by translocation between the Z and W chromosomes. Genetica, 2006. 127(1-3): p. 253-65.
    [131] Fujii, T., et al., Isolation and characterization of sex chromosome rearrangements generating male muscle dystrophy and female abnormal oogenesis in the silkworm, Bombyx mori. Genetica, 2007. 130(3): p. 267-80.
    [132] Warmke, J.W., A.J. Kreuz, and S. Falkenthal, Co-localization to chromosome bands 99E1-3 of the Drosophila melanogaster myosin light chain-2 gene and a haplo-insufficient locus that affects flight behavior. Genetics, 1989. 122(1): p. 139-51.
    [133] Cripps, R.M., et al., Recovery of dominant, autosomal flightless mutants of Drosophila melanogaster and identification of a new gene required for normal muscle structure and function. Genetics, 1994. 137(1): p. 151-64.
    [134] Mogami K, H.Y, Isolation of Drosophila flightless mutants which affect myofibrillar proteins of indirect flight muscle. Mol Gen Genet, 1981. 183: p. 409-17.
    [135] Hurst, L.D. and J.P. Randerson, An exceptional chromosome. Trends Genet, 1999. 15(10): p. 383-5.
    [136] Saifi, G.M. and H.S. Chandra, An apparent excess of sex- and reproduction-related genes on the human X chromosome. Proc Biol Sci, 1999. 266(1415): p. 203-9.
    [137] Bortoluzzi, S., et al., A comprehensive, high-resolution genomic transcript map of human skeletal muscle. Genome Res, 1998. 8(8): p. 817-25.
    [138] Eric JV, B.T., How mammalian sex chromosome acquired their peculiar gene content. BioEssays, 2004. 26:p. 159-69.
    [139]Saccone G,P.A.,Polito LC.,Sex determination in flies,fruitflies and butterflies.Genetica,2002.116:p.15-23.
    [140]Yamamoto,D.,et al.,From behavior to development:genes for sexual behavior define the neuronal sexual switch in Drosophila.Mech Dev,1998.73(2):p.135-46.
    [141]Ohbayashi,F.,et al.,A homologue of the Drosophila doublesex gene is transcribed into sex-specific mRNA isoforms in the silkworm,Bombyx mori.Comp Biochem Physiol B Biochem Mol Biol,2001.128(1):p.145-58.
    [142]Suzuki,M.G.,et al.,The mechanism of sex-specific splicing at the doublesex gene is different between Drosophila melanogaster and Bombyx mori.Insect Biochem Mol Biol,2001.31(12):p.1201-11.
    [143]Funaguma,S.,et al.,The Bmdsx transgene including trimmed introns is sex-specifically spliced in tissues of the silkworm,Bombyx mori.J Insect Sci,2005.5:p.17.
    [144]McKeown,M.,J.M.Belote,and R.T.Boggs,Ectopic expression of the female transformer gene product leads to female differentiation of chromosomally male Drosophila.Cell,1988.53(6):p.887-95.
    [145]Nagoshi,R.N.,et al.,The control of alternative splicing at genes regulating sexual differentiation in D.melanogaster.Cell,1988.53(2):p.229-36.
    [146]Nagoshi,R.N.,and B.S.Baker.,Regulation of sex-specific RNA splicing at the Drosophila doublesex gene:cis-acting mutations in exon sequences alter sex-specific RNA splicing patterns.Genes Dev,1990.4:p.89-97.
    [147]Ohbayashi,F.,et al.,Molecular structure of the copia-like retrotransposable element Yokozuna on the W chromosome of the silkworm,Bombyx mori.Genes Genet Syst,1998.73(6):p.345-52.
    [148]Garrett-Engele,C.M.,et al.,intersex,a gene required for female sexual development in Drosophila,is expressed in both sexes and functions together with doublesex to regulate terminal differentiation.Development,2002.129(20):p.4661-75.
    [149]Suzuki,M.,Imanishi,S.,Shimada,T.,Matsumoto,S.,Abstract of the 77th Annual Meeting of Japanese Society of Sericultural Science.2007.213.
    [150]Ohbayashi,F.,Structural and functional analyses on the Bombyx mori genes homologous to Drosophila doublesex and fruitless.Ph.D.thesis,The University of Tokyo,2001.
    [151]赵敏,刘劲,朱虹,查幸福,夏庆友,向仲怀.家蚕sans fille基因的分子克隆及序列分析.蚕业科学,2006.32(1):p.6-11.
    [152]Mita,K.,et al.,Expression of the Bombyx mori beta-tubulin-encoding gene in testis.Gene,1995.162(2):p.329-30.
    [153]Tojo,S.N.,M.Kobayashi,M.,Storage proteins in the silkworm,Bombyx mori.Insect Biochem, 1980.10:p.289-303.
    [154]Mine,E.,et al.,Developmental and sex-dependent regulation of storage protein synthesis in the silkworm,Bombyx mori.Dev Biol,1983.97(2):p.329-37.
    [155]lzumi,S.,et al.,Cloning of mRNA sequence coding for sex-specific storage protein of Bombyx mori.Bioehim Biophys Aeta,1988.949(2):p.181-8.
    [156]Sakurai,H.,et al.,Structure and expression of gene coding for sex-specific storage protein of Bombyx mori.J Biol Chem,1988.263(16):p.7876-80.
    [157]Yano,K.,et al.,Vitellogenin gene of the silkworm,Bombyx mori:structure and sex-dependent expression.FEBS Lett,1994.356(2-3):p.207-11.
    [158]Yano,K.,et al.,Structure and expression of mRNA for vitellogenin in Bombyx mori.Biochim Biophys Acta,1994.1218(1):p.1-10.
    [159]Pelosi,P.and R.Maida,Odorant-binding proteins in insects.Comp Bioehem Physiol B Bioehem Mol Biol,1995.111(3):p.503-14.
    [160]Steinbrecht RA,L.M.,Ziegelberger G.Immunolocalization of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx.Cell Tissue Res,1995.282:p.203-217.
    [161]向仲怀主编,黄科霆,夏建国,鲁成副主编,蚕丝生物学.2005(北京:中国林业出版社).
    [162]大林文,铃木正彦,岛田透,家蚕性别决定.蚕学通讯,2002年,12月.第22卷,第4期.
    [163]Strunnikov,V.A.,Control over reproduction,sex and heterosis of the silkworm.Harwood Academic Publisher,1995.
    [164]靳永年.家蚕斑纹限性品种实用化进展与选育技术.中国蚕学,1998.1:p.20-22.
    [165]潘庆中,陈中林,陈劲伟等,利用催青温湿度敏感性状控制家蚕性别.科学通报,1992.2:p.1133-1136.
    [166]徐安英,方缓,黄君霆,辐射诱发家蚕雄核发育的研究.核农学报,1994(8(3)):p.189-192.
    [167]吴德龙,魏洪义,匡英秋,朱铭件,施翔,吴斌,余明星,林华萍,家蚕性别控制化学诱导物的研究.江西农业大学学报,2004.第26卷第6期:p.874-877.
    [168]Bouvrette,D.J.,S.J.Price,and E.C.Bryda,K homology domains of the mouse polycystic kidney disease-related protein,Bicaudal-C(Biccl),mediate RNA binding in vitro.Nephron Exp Nephrol,2008.108(1):p.e27-34.
    [169]Burd,C.G.and G.Dreyfuss,Conserved structures and diversity of functions of RNA-binding proteins.Science,1994.265(5172):p.615-21.
    [170]Xia,Q.,et al.,Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm,Bombyx mori.Genome Biol,2007.8(8):p.R162.
    [171]Livak,K.J.and T.D.Schmittgen,Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.Methods,2001.25(4):p.402-8.
    [172]Fields,S.and O.Song,A novel genetic system to detect protein-protein interactions.Nature,1989.340(6230):p.245-6.
    [173]Fields,S.and R.Sternglanz,The two-hybrid system:an assay for protein-protein interactions.Trends Genet,1994.10(8):p.286-92.
    [174]Miller J,S.I.,Using the yeast two hybrid system to identify interacting protein.Methods Mol Biol,2004.261:p.247-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700