用户名: 密码: 验证码:
网格状带齿加筋体强度、筋—土界面特性及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网格状带齿加筋形式汲取了传统的网格状加筋和条带式立体加筋的优点,其加筋效果不仅表现在水平筋的摩擦作用,更重要的是竖向齿筋对土体具有良好的侧阻能力,和传统加筋方式相比,能大幅提高加筋结构承载力和稳定性,具有较重要的理论意义及工程应用前景。然而,其加筋机制还不是十分清楚,计算方法仍不成熟,理论研究明显落后于工程实践,需要进一步深入研究。本文通过三轴试验、拉拔试验、室内模型试验、基于非连续性介质的颗粒流数值模拟及理论分析,对网格状带齿加筋体的强度特性及其加固机理等方面进行了系统研究。论文主要研究工作包括以下三个方面:
     (1)通过一系列三轴试验和拉拔试验,分析了网格状带齿加筋体的强度和筋-土界面特性,验证了网格状带齿加筋技术的有效性。通过试验结果发现,网格状带齿加筋与传统的水平加筋相比其优势在于存在齿筋的侧阻力作用,能够极大地提高土体的强度。最后,基于极限平衡理论,分别建立了网格状带齿加筋体的强度模型和极限拉拔力模型,并将试验结果与模型计算值进行比较,二者基本吻合。
     (2)利用PFC2D颗粒流程序对拉拔试验进行了数值模拟,分析了土的颗粒位移、筋材受力以及式样在拉拔过程中孔隙率的变化规律,并着重对筋土界面的应力场、位移场所表现出来的细观特性进行了探讨,进一步从细观角度揭示了网格状带齿加筋体筋土界面相互作用机理和位移发展特性。数值模拟表明:齿筋对拉拔过程中起到重要的作用,对于拉拔力的贡献率达到50%左右;齿筋对筋-土界面附近的土颗粒有较大的影响,在齿间前方颗粒具有向前向上的运动趋势,而齿筋后方的颗粒则具有向前向下运动,在整个筋条范围内形成波浪状的破裂面。
     (3)设计了网格状带齿加筋垫层加固软土地基的室内模型试验方案,完成了4种工况的试验,研究了加筋方案对软土地基加固效果的影响。模型试验研究结果表明,在软土地基中加筋砂垫层能明显提高地基承载力、减小地基沉降、改善地基的受力性能,网格状带齿加筋路堤能够有效的提高路堤极限承载力,尤其在路堤承受较大荷载时,网格状带齿加筋的效果更加明显。同等试验条件下,网格状带齿加筋的加筋效果较传统的网格状筋的好。
Reinforcement of grid with ribs has the advantage of the traditional geogrid and H-V reinforcement, whose reinforcing effect not only shows in the friction of horizontal bar, more importantly, but also the vertical inclusions that provides resistance to restrict the lateral displacements of soil. Therefore, reinforcement of grid with ribs can greatly improve the bearing capacity and stability of the reinforced structure compared to traditional reinforcement, which has important theoretical meaning and engineering application future. However, theory study is obviously behind the engineering practice, for example, its unclear reinforcement mechanism and immature calculation method, which need further study. In this paper, triaxial test, pullout test, model test, numerical simulation using PFC (particle Flow Code) and theoretical analysis are conducted to study the strength behavior and reinforcing mechanism of reinforcement of grid with ribs. The research work of this paper includes three aspects as follows:
     (1) The Effectiveness of reinforcement of grid with ribs was verified by triaxial test and pullout test. The advantage of reinforcement of grid with ribs compared with the traditional reinforcement is due to its lateral resistance generated by the vertical inclusions, which can greatly improve soil strength. Based on the limit equilibrium theory, the strength model and the ultimate pullout force model of reinforcement of grid with ribs were established, the contrast between the test results and calculated results show that both are in good agreement.
     (2) Pullout test is simulated using PFC~(2D) (Particle Flow Code in Two Dimensions)to analyz the particle displacement, force and the change law of sample’s porosity which were difficult to observe in the experiments. The microscopic characteristics showed by stress field, displacement field were mainly discussed, and interface interaction mechanism of reinforcement-soil interface and displacement development characteristicsis were further revealed from microscopic viewpoint. Numerical simulation results show that: reinforcement of grid with ribs play an important role in the contribution for the growth rate of pullout force about 50%; the vertical inclusions have a great impact on the soil near reinforcement-soil interface, the soil particle in the front of the vertical inclusions tend to move upward, while the soil particle behind the vertical inclusions tend to move downward.The failure surface show ribs wavy in the reinforced structure.
     (3) Model tests of sand reinforced cushion by reinforcement of grid with ribs on soft ground were designed and four test cases were conducted to study the effect of reinforcement of grid with ribs on the soft ground.The test results show that reinforced cushion by reinforcement of grid with ribs can significantly increase the bearing capacity,reduce the settlement, and improve the mechanical behavior of soft ground. Under the same test conditions, the reinforcing effect of reinforcement of grid with ribs is much better than traditional geogrid.
引文
[1]张孟喜.立体加筋土[P].中国:ZL200520043841.7,2009.
    [2]周志刚,郑健龙.公路土工合成材料设计原理及工程应用[M].北京:人民交通出版社, 2001.
    [3] Vidal,M.H. The development and and future of reinforced earth[C]. Proceedings of symposium on earth reinforcement at the ASCE annual convention, Pittsburgh:Pennsylvania, 1978:1-61.
    [4] Megowna,Andrwaeskz,Ai-hasnaimm. Eeffet of inclusion porperties on the behavior of snad[J]. Geoteehnique, 1978, 28(3):327-346.
    [5] Tmuyamt,Antoninim,Annnaa. Metal versus nonwoven fiber bafrie earth reinforcement in dry sand:A comparative statistical analysis of model tests[J]. Geoteehnieal Testing Jounral, 1979, 2(1):44-56.
    [6]刘宗耀.近代土工合成材料的发展[J].岩土工程学报, 1988, 10(2):87-96.
    [7]土工合成材料工程应用手册编写委员会.土工合成材料工程应用手册[M].北京:中国建筑工业出版社, 1994.
    [8] Park T, Tan S A. Enhanced performance of reinforced soil walls by the inclusion of short fiber[J]. Geotextiles and Geomembranes, 2005, 23(4):348-361.
    [9] Gray D H, Ohashi H. Mechanics of fiber reinforcement in sand[J]. Journal of Geotechnical Engineering-ASCE, 1983, 109(3):335-351.
    [10] Maher M H, Gray D H. Static response of sands reinforced with randomly distributed fibers[J]. Journal of Geotechnical Engineering-ASCE, 1990, 116(11):1661-1677.
    [11] Santoni R L, Tingle J S, Webster S. Engineering properties of sand fiber mixtures for road construction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(3):258-268.
    [12] Foose G J, Benson G H, Bosscher P G. Sand reinforced with shredded waste tires[J]. Journal of Geotechnical Engineering-ASCE, 1996, 122(9):760-767.
    [13] Hataf N, Rabimi M M. Experimental investigation of bearing capacity of sand reinforced with randomly distributed tire shreds[J]. Construction and Building Materials, 2005, 20(10):910-916.
    [14] Kumar A, Walia B S, Mohan J. Compressive strength of fiber reinforced highly compressible clay[J]. Construction and Building Materials, 2005, 20(10):1063-1068.
    [15] Alrefeai T O. Behavior of granular soils reinforced with discrete randomly oriented inclusions[J]. Geotextiles and Geomembranes, 1991, 10(4):319-333.
    [16] Zhang M X, Javadi A A, Min X. Triaxial tests of sand reinforced with 3D inclusions[J]. Geotextiles and Geomembranes, 2006, 24(4):201-209.
    [17]张孟喜,闵兴.单层立体加筋砂土性状的三轴试验研究[J].岩土工程学报, 2006, 28(8):931-936.
    [18]张孟喜,王振武.双层立体加筋砂土的强度特性[J].岩石力学与工程学报2006, 25(1):3289-3298.
    [19]张孟喜,张贤波,段晶晶. H-V加筋黏性土的强度与变形特性[J].岩土力学, 2009, 30(6):1563-1568.
    [20]张孟喜,张石磊,黄瑾.低超载下条带式带齿加筋界面特性[J].岩土工程学报, 2007, 29(11):1623-1629.
    [21]张孟喜,黄超.刚性条带式带齿加筋土的极限拉拔力模型[J].岩土工程学报, 2009,31(9):1336-1344.
    [22]张孟喜,赵飞,侯娟.条形荷载下H- V加筋砂土地基模型试验研究[J].土木工程学报, 2008, 41(2):94-99.
    [23]张孟喜,张石磊. H-V加筋土性状的颗粒流细观模拟[J].岩土工程学报, 2008, 30(5):625-631.
    [24] Schlosser F., Long N. Recent results in French research on reinforced earth[J]. Journal of the Construction Division, 1974, 100 (CO3):223-237.
    [25] Broms B.B. Triaxial tests with fabrie-reinforeed soil[J]. Proeeedings of the International Conference on the Use of Fabric in Geotechnique, 1977, 1(1):129-134.
    [26] Ingold T.S. Reinforced clay subjected undrained triaxial loading[J]. Journal of the Geotechnical Engineering Division, 1983, 109(5):738-743.
    [27] Ingold T.S., Miller K.S. The Behavior of Geotextile Reinforced Clay Subjected to Undrained Loading[J]. Geo.Eng.Div.ASCE,, 1983, 109(7):883-897.
    [28] Gray D.H., Al-Refeai. Behavior of fabric vs. fiber-reinforced sand[J]. Joumal of Geotechnical Engineering ASCE, 1986, 112(8):804-820.
    [29]赵爱根.加筋黏土的抗剪强度特性[J].岩土工程学报, 1988, 10(1):69-75.
    [30]粱波,孙遇棋.饱和粘性加筋土的强度特性研究[J].兰州铁道学院学报, 1992, 11(2):49-59.
    [31]魏红卫,喻泽红,邹银生.排水条件对土工合成材料加筋黏性土特性的影响[J].水利学报, 2006, 7(37):838-845.
    [32]刘剑旗,王宁,赵易.不同含水量土工格栅加筋粘土三轴试验研究[J].建筑科学, 2009, 25(5):51-54.
    [33]雷胜友.加筋黄土的三轴试验研究[J].西安公路交通大学学报, 2000, 20(2):1-5.
    [34]黄英,符必昌.不同排水条件下加筋红土三轴试验研究[J].昆明理工大学学报, 2006, 31(1):56-60.
    [35]陈昌富,刘怀星,李亚平.草根加筋土的室内三轴试验研究[J].岩土力学, 2007, 28(10):2041-2045.
    [36]傅华,凌华,蔡正银.加筋土强度影响因素的试验研究[J].岩土力学, 2008, 28(supp):481-484.
    [37]保华富,周亦唐,赵川.聚合物土工格栅加筋碎石土试验研究[J].岩土工程学报, 1999, 21(2):217-221.
    [38]保华富,龚涛.土工格栅加筋碎石土的强度和变形特性[J].水利学报, 2001, 6):76-79.
    [39]赵川,周亦唐.土工格栅加筋碎石土大型三轴试验研究[J].岩土力学, 2001, 22(4):419-422.
    [40] Zhang Meng-Xi., Zhou.Huai, Javadi A.A.. Experimental and theoretical investigation of strength of soil reinforced with multi-layer horizontal-vertical orthogonal elements[J]. Geotextiles and Geomembranes, 2008, 26(1):1-13.
    [41] Roh H.S., Tatsuoka F. Effects of preloading and pre-stressing on the strength and stiffness of eo- synthetic reinforced clay in plane strain compression[J]. Geosynthetic International, 2001, 8(5):393-444.
    [42] Kongkitkul W., Tatsuoka F. Compressive strength of reinforced sand in plane strain compression and its approximate solution[J]. Geosynthetics, 2006, 1405-1408.
    [43] Kongkitkul W., Tatsuoka F., Hirakawa D. Effects of reinforcement type and loading history on the deformation of reinforced sand in plane strain compression [J]. Soils and Foundation, 2007, 47(2):395-414.
    [44] Kongkitkul W., Hirakawa D., Tatsuoka F. Effects of geosynthetic reinforcement type on thestrength and stiffness of reinforced sand in plane strain compression[J]. Soils and Foundations, 2007, 47(6):1109-1122.
    [45] Kongkitkul W., Hirakawa D., Tatsuoka F. Residual deformation of geosynthetic-reinforced sand in plane strain compression affected by viscous properties of geosynthetic reinforcement[J]. Soils and Foundations, 2008, 48(3):333-352.
    [46] Abramento M., Whittle A. J. Shear-lag analysis of planar soil reinforcedment in plane-strain compression[J]. Journal of Engineering Mechanics, ASCE, 1993, 119(2):270-291.
    [47] Peng F.L, Diki H., Tatsuoka F. Experimental study on effects of geogrid reinforcement shape and rigidity in reinforced sand[J]. Journal of Tongji University 2005, 33(5):604-609.
    [48] Koseki Junichi, Salas-Monge Regina, Sato Takeshi. Plane strain compression tests on cement-treated sand[J]. Geomechanics, ASCE, 2003, 429-443.
    [49]邓荣基.加筋土强度的试验研究[J].兰州铁道学院学报, 1994, 13(3):1-8.
    [50]李树勤.在平面应变条件下砂土本构关系的试验研究[D].北京:清华大学, 1982.
    [51]张启辉,李蓓,赵锡宏, et al.上海黏性土剪切带形成的平面应变试验研究[J].大坝观测与土工测试, 2000, 24(5):40-43.
    [52]邱金营.应力路径对砂土应力–应变关系的影响[J].岩土工程学报, 1995, 17(2):75–82.
    [53]马险峰,望月秋利,温玉君.基于改良型平面应变仪的砂土特性研究[J].岩石力学与工程学报, 2006, 25(9):1745-1754.
    [54]罗汀等.基于SMP准则的土的平面应变强度公式[J].岩土力学, 2001, 21(4):390-393.
    [55]李广信,黄永男,张其光.土体平面应变方向上的主应力[J].岩土工程学报, 2001, 23(3):357-361.
    [56]路德春,姚仰平,周安楠.土体平面应变条件下的主应力关系[J].岩石力学与工程学报, 2006, 25(11):2320-2326.
    [57]李蓓,赵锡宏,董建国.上海粘性土剪切带倾角的试验研究[J].岩土力学, 2002, 23(4):423-427.
    [58]彭明远.平面应变条件下单层H-V加筋砂(土)的强度特性研究[D].上海:上海大学, 2008.
    [59]介玉新,李广信.加筋土数值计算的等效附加应力法[J].岩土工程学报, 1999, 21(5):614-616.
    [60]孙遇祺.铁路公路灾害防治[M].北京:中国铁道出版社, 1998.
    [61] Harrison W J, Gerard C M. Elastic theory applied to reinforced earthy[J]. Journal of the Soil Mechanics and Foundation Division, 1972, 98(12):1325-1345.
    [62] Romstad K. M., Hemmann L. R., Shen C. K. Integrated study of reinforced earth-theoretical formulation[J]. Journal of the Geotechnical Engineering Division, 1976, 102(5):457-471.
    [63] Waldron L.J. Waldron. Shear resistance of root-permeated homogeneous and stratified soil[J]. Soil Science Society of America Journal 1977, 41(5):843-849.
    [64] Shukla S. K., Chandra S. Generalized mechanical model for geosynthetic reinforced foundation soil[J]. Geotextiles and Geomembranes, 1994, 13(12):813- 825.
    [65] Shewbridge S, Siart N. Deformation characteristics of reinoforced snad in dieret shear[J]. Journal of Geoteehnical Engineering, ASCE, 1989, 115(8):1134-1147.
    [66] Shewbridge. S. E., Sitar. N. Deformation-based model for reinforced sand[J]. Journal of Geotechnical Engineering-ASCE, 1990, 116(7):1153-1170.
    [67] Nejad E. Simplified elastoplastic macroscopic model for the reinforced earth material[J]. Mechanics Research Communications, 2000, 27(1):79-86
    [68]张孟喜,孙钧.土工合成材料加筋土应变软化特性及弹塑性分析[J].土木工程学报, 2000,33(3):104-107.
    [69] Sawicki A. Rheological model of geosynthetic- reinforced soil[J]. Geotextiles and Geomembranes, 1999, 17(1):33-49.
    [70] Andrawesk.Z. The Finite Element Method of Analysis Applied to soil-Geotextile Systems[J]. Geotextile systems[C]. 2nd Int.Conf. on Gertextiles, 1982,
    [71]王钊.土工织物加筋土坡的分析和模型试验[J].水利学报, 1990, 12):62-68.
    [72]殷建华. A one dimensional geosynthetic reinforced foundation model with non linear spring support[J].岩土工程学报, 1998, 20(1):76-79.
    [73] O'rourke T.D., Druschei S.J. Shear strength characterics of sand-polymer interfaces[J]. Journal of Geotechnical Engineering, 1990, 116(3):451-469.
    [74] Lee K. M., Manjunath V. R. Soil-geotextile interface friction by direct shear test[J]. Canadian Geotechnical Journal, 2000, 37(1):238-252.
    [75]吴景海,陈环,王玲娟.土工合成材料与土界面作用特性的研究[J].岩土工程学报, 2001, 23(1):90-93.
    [76]胡黎明,蹼家骆.土与结构物接触面物理力学特性实验研究[J].岩土工程学报, 2001, 21(4):431-435.
    [77] Wang Z., Richwien W. A study of soil-reinforcement interface friction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(1):92-94.
    [78]石名磊,张波.粘土与加筋材料界面作用特性试验研究[J].工业建筑, 2005, 35(4):50-54.
    [79] Palmeira E. M. The study of soil reinforcement interaction by means of large scale laboratory tests[D]. Univer. Of Oxford, 1987.
    [80] Palmeira E. M. Bearing force mobilization in pullout tests on geogrids[J]. Geotextiles and Geomembranes, 2004, 22(6):481-509.
    [81] Bergado D.T., Chai J.C. Pullout force /displacement relationship of extensible grid reinforcements[J]. Geotextiles and Geomembranes, 1994, 13(3):295- 316.
    [82] Lopes M. L., Ladeira M. Influence of the confine2ment soil density and disp lacement rate on soil-geo-grid interaction[J]. Geotextiles and Geomembranes, 1996, 14(5):543-554.
    [83]杨广庆,杨春玲.土工格栅拉拔试验影响因素分析[J].地下空间, 2004, 24(1):31-33.
    [84]徐林荣,吕大伟,顾绍付.筋土界面参数的拉拔试验过程划分研究[J].岩土力学, 2004, 25(5):709-714.
    [85]杨广庆,李广信,张保俭.土工格栅界面摩擦特性试验研究[J].岩土工程学报, 2006, 28(8):948-952.
    [86]张嘎,张建民.土与土工织物接触面力学特性的试验研究[J].岩土力学, 2006, 27(1):51-55.
    [87] Yoo C. Laboratory investigation of bearing capacity behavior of strip footing on geogrid- reinforced sand slope[J]. Geotextiles and Geomembranes, 2001, 19(5):279-298.
    [88]孙吉勇.复合地基加固技术在高填土路堤地基处理中的应用研究[D].西安:长安大学, 2005.
    [89] Bergado D.T., Long P.V. A case study of geotextile-reinfoced embankment on soft ground[J]. Geotextiles and Geomembranes, 2002, 20(6):343- 365.
    [90] Sawwaf M.A. Behavior of strip footing on geogrid-reinforced sand over a soft clay slope[J]. Geotextiles and Geomembranes, 2007, 25(1):50-60.
    [91] Alawaji H.A. Settlement and bearing capacity of geogrid-reinforced sand over collapsible soil[J]. Geotextile and Geomembranes, 2001, 19(2):75-88.
    [92] Borges J.L., Cardoso A.S. Structural behavior and parametric study of reinforced embankmentson soft clays[J]. Computers and Geotechnics, 2001, 28(3):209-233.
    [93] Ling H.I., Liu H.B. Performance of geosynthetic-reinforced asphalt pavements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(2):177-184.
    [94]刘金龙,栾茂田,王吉利,袁凡凡.土工织物加固软土路基的机理分析[J].岩土力学, 2007, 28(5):1009-1014.
    [95] Gobel C.H., Weisemann U.C. Effectiveness of a reinforcing geogrid in a railway subbase under dynamic loads[J]. Geotextiles and Geomembranes, 1994, 13(2):91-99.
    [96] Gerald P.R. Reinforced ballast behavior subjected to repeated load[J]. Geotextiles and Geomembranes, 2002, 20(1):39-61.
    [97]杨果林,李海深.加筋土挡墙动力特性模型试验与动力分析[J].土木工程学报, 2003, 36(6):105-110.
    [98]曹新文,蔡英.客运专线土工格室复合基床的试验研究[J].铁道工程学报, 2006, (1):22- 26.
    [99] Zhang M.X., Zhou H. Model test on sand retaining wall reinforced with denti-strip inclusions[J]. Science in China Series E: Technological Sciences, 2008, 51(12):2269-2279.
    [100]张孟喜,赵飞,侯娟.条形荷载下H-V加筋砂土地基模型试验研究[J].土木工程学报, 2008, 41(2):94-99.
    [101]马伟斌,韩自力,朱忠林.高速铁路路桥过渡段振动特性试验研究[J].岩土工程学报, 2009, 31(1):124-127.
    [102]俞仲泉,李少青.土工织物加固软基的离心模型试验[J].岩上工程学报, 1989, 11(2):67-72.
    [103]翁升,马时冬.土工布加筋垫层对路基变形和稳定的影响[J].岩土力学, 2001, 22(1): 42-46.
    [104]刘俊彦,罗强.采用上工合成材料作软上地基浅层处理的试验研究[J].岩土工程学报, 2002, (15):57-59.
    [105] Michalowski R.L., Shi L. Deformation patterns of reinforced Foundation sand at failure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 113(7):439-449.
    [106] Park Y.J., Gabr M.A., Borden R.H., Kim K.J., Kreider C.A. Limit equilibrium and deformation analyses of a geogrid-reinforced embankment[C]. Geo-Denver, 2007:1-12.
    [107] Bergado D.T., Chai J.C. FE analysis of grid reinforced embankment system on soft Bangkok clay[J]. Computers and Geotechnics, 1995, 17(4):447-471.
    [108] Li A.L., Rowe R.K. Effects of viscous behavior of geosynthetic reinforcement and foundation soils on the performance of reinforced embankments[J]. Geotextiles and Geomembranes, 2008, 26(4):317-334.
    [109] Perkins S.W. Numerical modeling of geosynthetic reinforced flexible Pavements[R]. 2001.
    [110]凌建明,曾四平,黄琴龙.动载作用下加筋土路基的计算模型研究[J].中南公路学报, 2007, 32(2):1-4.
    [111]刘飞禹,蔡袁强,徐长节.交通荷载作用下软基加筋道路加筋效果分析[J].岩土工程学报, 2007, 29(11):1659-1664.
    [112]张兴强,闫澍旺,邓卫东.交通荷载作用下加筋道路机理分析[J].岩土工程学报, 2001, 23(1):94-98.
    [113] Tamdjiria, V., Low, et al. Effect of reinforcement force distribution on stability of embankments[J]. Geotextiles and Geomembranes, 2002, 20(6):423-443.
    [114]蔡晓光,刘汉龙.复合加筋排水褥垫加固路基有限元计算[J].岩土力学, 2008, 29(8):2302-2306.
    [115] Zhang M.X., Javadi A.A. Analysis of geosynthetics reinforced soil structures with orthogonal anisotropy[J]. Geotechnical and Geological Engineering, 2006, 24(4):903- 917.
    [116]彭芳乐,小竹望,龙冈文夫.土工格栅加筋砂土的变形与破坏机理解析[J].岩土力学, 2004, 25(6):843-849.
    [117]彭芳乐,龙冈文夫,廖少明.土工格栅加筋砂土的二维等价有限元解析方法[J].同济大学学报(自然科学版), 2005, 33(2):143-148.
    [118] Babu G.L.S., Vasudevan A.K. Numerical simulation of fiber-reinforced sand behavior[J]. Geotextiles and Geomembranes, 2008, 26(2):181-188.
    [119]周健,王家全,孔祥利.砂土颗粒与土工合成材料接触界面细观研究[J].岩土工程学报, 2010, 32(1):61-67.
    [120] Shenbaga R.K., Hasan A. the effect of berms and tension cracks on the maximum reinforcement ofrce in embankments on soft soils[J]. Geotexitles and Geomembranes, 1994, 13(1):101-117.
    [121] Shenbaga R.K., Vijay K.P. Maximum required bisectorial reinforcement force in embankments on soft ground[J]. Geotexitles and Geomembranes, 1994, 13(2):247-261.
    [122] Shenbaga R.K. Directional dependency of reinforcement ofrce in reinforced embankments on soft soil[J]. Geotexitles and Geomembranes, 1996, 14(3):507-519.
    [123] Rowe R.K., Gnanendran C.T. Calculated and observed behaviour of a reinforced embankment over soft compressible soil[J]. Canadian Geotechnical Journal, 1996, 33(2): 324-338.
    [124]罗存喜.京沪高速铁路软基处理方法合理选择研究[R]. 1999.
    [125]林晓玲.土工织物在建筑软基中的应用[J].工业建筑, 1994, (4):54-55.
    [126]朱亚英.土工织物加筋垫层处理大面积建筑软基实践[J].土工基础, 1997, 11(3):52-55.
    [127]徐少曼,洪昌华.考虑加筋垫层的堤坝下软基稳定分析法[J].土木工程学保, 2000, 33(4):88-91.
    [128]翟剑钧,华勇清,李林福.土工格栅加筋垫层在航道驳岸软基处理中的应用[J].水运工程, 2000, 31(4):50-53.
    [129]马时冬.土工格栅加筋垫层的效果检验[J].岩石力学与工程学报, 2005, 24(3):490-495.
    [130]闫澍旺,王翠,于志强.加筋垫层土工织物中应力现场测试分析[J].岩土力学, 2007, 28(s):873-876.
    [131] Han J., Gabr M.A. Numerical Anaslysis of Geosynthetic Reinforced and Pile-Supported Earth Platform over Soft Soil[J]. Joural of Geotechnical and Geoenvironmental Engineering, 2001, 128(1):123-129.
    [132] Chandan G., Madhav M.R. Settlement response of a reinforced shallow earth bed[J]. Geotexitles and Geomembranes, 1994, 13(6):643-656.
    [133] Chandan G., Madhav M.R. Reinforced granular fill-soft soil system: Membrance effect[J]. Geotexitles and Geomembranes, 1994, 13(7):773-759.
    [134] Espionza R.D. Soil-Geotextile interation: Evaluation of membrane support[J]. Geotexitles and Geomembranes, 1994, 13(2):281-293.
    [135] Yin J.H. Comparative modeling study on reinforced beam on elastic foundation[J]. Joural of Geotechnical and Geoenvironmental Engineering, 1999, 126(3):265-271.
    [136] Shukla S.K., Chandra S. Modeling of geosynthetic reinfoeced engineering granular fill on soft soil[J]. Geosynthetics international, 1995, 2(3):603-617.
    [137] Shukla S.K., Chandra S. Time-dependent analysis of axi-symmetrically loaded reinforced granular fill on soft sub-grade[J]. Indian Geotechnial Journal, 1998, 28(2):195-213.
    [138]徐少曼,洪昌华.土工织物加筋堤坝软基的非线性分析[J].岩土工程学报, 1999, 21(4):438-443.
    [139] Indraratna B., Redana I.W. Laboratory determination of smear zone due to vertical dralninstallation[J]. Joural of Geotechnical and Geoenvironmental Engineering, 1998, 124(2): 180-184.
    [140] Yin J.H. Modeling geosynthetics reinforced granular base over soft soil[J]. Geoshnthetics International, 1997, 4(5):168-185.
    [141] Bergado D.T., Chai J.C., Miura N. An analysis of grid reinforced embankment system on soft Bangkok clay[J]. Computers and Geotechnics, 1995, 17(4):447-471.
    [142] Sharma J.S., Bolton M.D. Finite element analysis of centrifuge tests on reinforced embankments on soft clay[J]. Computers and Geotechnics, 1996, 19(1):1-22.
    [143] Alamgir M., Miura N., Poorooshasb H.B. Deformation analysis of soft reinforced by columnar inclusions[J]. Computers and Geotechnics, 1996, 18(4):276-290.
    [144] Shukla S.K., Chandra S. The effect of pre-stressing on the settlement characteristics of geosynthetic-reinforced soil[J]. Geotexitles and Geomembranes, 1994, 13(5):531-543.
    [145]徐少曼.提高土工织物加筋效果的新途径[J].岩土工程学报, 1997, 19(2):49-55.
    [146] Chandan G., Madhav M.R. reinforced granular fill-soft system: Confinement effect[J]. Georextiles and Geomembranes, 1994, 13(7):727-714.
    [147]雷胜友.现代加筋土理论与技术[M].北京:人民交通出版社, 2006.
    [148]熊正洪.也谈加筋土强度模型与应力—应变特性[J].工程力学, 1994, 11(1):60-69.
    [149] Irsyam M., Hryciw R. D. Friction and passive resistance in soil reinforced by plane ribbed inclusions[J]. Geotechnique, 1991, 41(4):485-498.
    [150]王吉力,马时冬.土与土工织物接触界面摩擦特性的试验研究[J].岩土力学, 1992, 13(4):35-44.
    [151]闫澎旺, Benbar.土工格栅与土体相互作用有限元分析[J].岩土工程学报, 1997, 19(6): 56-61.
    [152]丁金华,包承纲,丁红顺.土工格栅与膨胀岩界面相互作用的拉拔试验研究[C].第二届全国岩土与工程学术大会论文集, 2006:
    [153] Meyer, N., Nemheim, et al. Influence of the confining types of geogrids on Soil-Geogrid interaction pressure, soil density and coeflicient[C]. International e-Conference on Modern Trends in Foundation Engineering, 2004:
    [154] Sugimoto M., Alagiyawanna A.M.N. Influence of rigid and flexible face on geogrid pullout tests[J]. Geotextiles and Geomembranes, 2001, 19(4):257-277.
    [155] Dyer M. R. Observation of the stress distribution in crushed glass with applications to soil reinforcement[D]. Univer. Of Oxford, 1985.
    [156] Milligan G. W. E., Earl R.F. Observations of photo-elastic pullout tests on geotextiles and geogrids[C]. The 4th International Conference on Geotextiles, Geomembranes and Related Products, 1990:747-751.
    [157] Wikson F.F., Koerner R.M. Experimental behavior of polymeric geogrids in pullout[J]. Journal of Geotechnical Engineering, 1994, 120(4):661-677.
    [158] Milligan G W E Jewell R a, Sarsby W. Interaction between soil and geogrids [C]. On Polymer Grid Reinforcement in Civil Engineering, London:Thmas Telford, 1984:18-29.
    [159]罗强,刘俊彦,张良.土工合成材料加筋砂垫层减小软土地基沉降试验研究[J].岩土工程学报, 2003, 25(6):710-714.
    [160]王伟,王俭,薛剑豪.土工格栅加筋垫层加固软土地基模型试验分析[J].岩土力学, 2005, 26(12):1885-1891.
    [161]袁文忠.相似理论与静力学模型试验[M].成都:西南交通大学出版社, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700