用户名: 密码: 验证码:
强湿陷性黄土地区挤密桩复合地基的理论分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国家经济的不断发展,我国西北黄土地区建设中遇到的大厚度湿陷性黄上地基处理问题越来越多,消除湿陷性黄土地基的湿陷性,降低压缩变形,提高承载力成为当前工程界探求解决的一项技术难题。本论文结合挤密桩复合地基在湿陷性黄土地区地基处理中的应用现状,对素土挤密桩复合地基、灰土挤密桩复合地基及生石灰挤密桩复合地基在大厚度湿陷性黄土地基处理中的理论和应用进行了深入研究,并取得了一定的成果。本论文的主要工作包括:
     首先,基于圆孔扩张理论,采用弹塑性理论分析了三种挤密桩复合地基成桩过程中桩间土体的应力变化规律,并把土体看作Mohr-Coulomb材料,得到了挤密桩圆孔扩张理论的统一解。
     其次,根据挤密桩复合地基的特点,详细研究了横向挤密条件下桩间土的物理力学参数变化规律,并建立了相应的桩间土物理力学参数变化规律的量化计算公式;同时,基于孔隙挤密原理,推导出了生石灰挤密桩加固地基时所需生石灰桩数和生石灰体积的计算公式。
     第三,通过对挤密桩复合地基承载力计算方法的研究,综合分析了各影响因素对生石灰挤密桩复合地基承载力的影响,并分别推导出了生石灰桩膨胀量的理论值、桩体侧向膨胀引起的单桩总侧阻力增量、膨胀率对桩土界面法向正应力的影响、膨胀率对单桩竖向承载力的影响及生石灰桩膨胀对桩间土承载力影响的量化公式。
     最后,利用数值模拟(FLAC 3D)和实际工程的现场、室内土工试验,综合评价了采用素土挤密桩、灰土挤密桩、生石灰挤密桩复合地基时桩间土的挤密效果及复合地基承载力。试验结果表明生石灰挤密桩复合地基承载力远大于现行规范值,可见在实际工程中,规范值偏于保守,建议在有试验条件的情况下适当提高生石灰挤密桩复合地基的承载力设计值。生石灰挤密桩复合地基探井开挖试验表明,在大厚度湿陷性黄土地区,由于地基土的含水率较低,在采用生石灰挤密桩进行地基处理时,现行28d休止期内生石灰不能达到充分熟化,对桩间土的挤密效果不能完全发挥,建议适当延长休止期,这将对工程建设有利。
     综上所述,本文工作较全面地研究了挤密桩复合地基的加固机理,并为挤密桩在大厚度湿陷性黄土地基处理的设计计算提供了可靠的理论和技术支撑,从而丰富和完善了挤密桩复合地基理论和技术
With the development of economy, more and more foundation treatment problems of collapse loess with large thickness in construction field should be solved on loess of northwest China. To eliminate the collapsibility, decrease the Compression Deformation and enhance the bearing strength of collapse loess has become a difficult technical problem that need to be solved by engineers. In this thesis, by associated with the practical situation of applications in compaction pile composite foundation in loess, the theories and applications of loess compaction pile, lime-loess compaction pile and quicklime compaction pile composite foundation were lucubrated, and some suggestions were given to serve reference for further projects. The main content of this thesis includes:
     Firstly, based on the cavity expansion method, the stress variety discipline of soil between compaction piles during three different types piling process were studied according to elasto-plasticity theory. Moreover, when the soil was considered as the ideal Mohr-Coulomb material, its unified solutions were obtained.
     Secondly, based on the characteristics of compaction pile composite foundation, the variety discipline of physical and mechanical parameters of soil between piles were researched under the condition of horizontal pack-press, and its calculating formula of physical and mechanical parameters and compression modulus are presented. On the other hand, based on the principle of pore extruding, the computational formula for calculating the amount of expanding material of quicklime pile was deduced.
     Thirdly, by studying the calculate method of compaction pile composite foundation, the effect of influence factors of its bearing capacity was analyzed. Furthermore, the theoretical value of quicklime pile's swell, the total pile side resistance increment which caused by quicklime lateral swelling, the influence of normal stress and vertical bearing capacity of quicklime expansion ratio at interface of pile-soil, and the quantitative management formula of soil between quicklime piles were deduced.
     Lastly, by utilizing laboratory and in-situ test of practical project and numerical simulation (FLAC 3D), the compaction effects of soil between piles and bearing capacity of composite foundation are synthetic evaluated. The test results of quicklime compaction pile show that the bearing capacity is great larger than guild regulations suggested value. So, it is suggest that the design ultimate bearing capacity can be improved in engineering practice. By the test result of dig well, it shows that the quicklime hasn't cured completely in 28 days, it is because that the water content is low in loess. So we proposed that the time limit of repose need to be extend for more than 28 days.
     In summary, the work of this thesis present a comprehensive study of the compaction pile composite foundation strengthening mechanism, and provide a new theoretical and technical support to compaction pile composite foundation in thick loess ground treatment design and calculation. This will enrich and improve the compaction pile composite foundation theory and technology.
引文
[1]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1997
    [2]钱鸿晋,王继唐,罗宇生等.湿陷性黄土地基[M].北京:中国建筑工业出版
    [3]关文章.湿陷性黄土工程性能新篇[M].西安:西安交通大学出版社,1992
    [4]张苏民.湿陷性黄土Q3增变形特征[J].岩土工程学报,1990,12(4):21-31
    [5]郭正堂.黄土的力学性质与工程工程地质问题现状[J].第四纪研究,1992(2):177-178
    [6]刘厚健.论关中原区Q2黄土建筑工程性能[J].西北地质,1994,15(3):47-53
    [7]马笃恒.灰土桩复合地基在处理黄土地基中的应用[D].沈阳:东北大学硕士学位论文,2002
    [8]张蕾.黄土湿陷性浅析[J].青海水利,1995,(2):58-60
    [9]陈月源.黄土的结构空隙与黄土湿陷性的关联分析[J].地质试验,1998,14(1)
    [10]赵景波,陈云.黄土湿陷性及其成因[J].地质力学学报,1997,3(4):62-68
    [11]朱云杰.湿陷性黄上地基评价及处理问题[J].建筑科学,1991(2):41-44
    [12]马胜华.浅谈自重湿陷性黄土地基处理方法[J].人民黄河,1998年增刊
    [13]王明山,王广池.多桩型复合地基承载性状的研究[J].岩土工程学报,2005,(27)10:1142-1146
    [14]龚晓南.复合地基理论及工程应用[M].北京:中国建筑工业出版社,2002
    [15]龚晓南.复合地基[M].杭州:浙江大学出版社,1992
    [16]Menard.Land Broise Y.Theoretical and practical aspects of dynamic consolidation, geotechnique,1975,25(1)
    [17]龚晓南.地基处理新技术[M].西安:陕西科学技术出版社,1997.
    [18]龚晓南.地基处理新技术发展与展望[M].北京:中国水利水电出版社,2004
    [19]阎明礼,张东刚.CFG桩复合地基技术及工程实践[M].北京:中国水利电力出版社.
    [20]钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996.
    [21]陈祖煜.土质边坡稳定分析—原理、方法、程序[M].北京:水利水电出版社,2003
    [22]中华人民共和国行业标准.《建筑边坡工程技术规范》 (GB50330—2002)[S].北京:中国建筑工业出版社,2002.
    [23]中华人民共和国行业标准.《建筑基坑支护技术规程》 (JGJ120—99)[S].北京:中国建筑工业出版社,1999.
    [24]王吉望.复合地基综述报告.岩土工程师,1990
    [25]马周全.湿陷性黄土地基处理方法比选分析[J].地基处理,1998
    [26]龚晓南,李向红.静压桩挤土效应中的若干力学问题[J].工程力学.2000,17(4):7-12
    [27]陈文.饱和粘土中静压桩沉桩机理及挤土效应研究综述[J].水利水电科技发展.1999,19(3):38-41
    [28]Bishop, R..F, Hill, R. and Mott, N.F.Thetheroy of indentation and hardness tests[J].Porc. Soc,1945,47:147-159
    [29]Gibson, R.E..Diseussion to"the bearing capacity of screw piles and screwcrete cylinders."by Wilson, G[J], Journal of the Institution of Civil Engineers, 1950,34:382-383
    [30]Gibson, R.E. and Andesron, W.F..In-situ measurement of soil properties with the perssuermeter[J].Civil Engineering and Public Works Review,1961,56: 615-618
    [31]Chadwick, P.. The quasi-static expansion of a spherical cavity in metals and ideal soils[J].Quarterly Journal of Mechanics and Applied Mathematics. 1959,12 (1):52-71
    [32]Butterfield, R. and Banerjee, P. K.. Application of electro-osmosisto soils, part 2[R], Civil Engineering Research Report.No.31, Department of Civil Engineering, Southampton Univ., U. K.,1968:56-60
    [33]Butterfieid, R. and Banerjee, P K.. The effects of pore water pressure on the ultimate bearing capacity of driven piles[A]. Proc.2nd South East Asian Regional conf. On Soil Mech. And Foung. Engrg., Singapore,1970:383-394
    [34]Palmer, A. C, Undrained plane-strain expansion of a cylindrical cavity in clay: a simple interpretation of the pressure meter test[J], Geotechnique,1972, 22(3):451-457
    [35]Palmer,A.C.UndrainedP lane-StrainE expansion of a cylindrical cavity in clay as imple interpretation of the pressuremeter test[J]. Geotechnique,1972.
    [36]Vesic,A.S..Expansion of cavity in infinite soil mass[J], Jour. Soil Mech. Found Div., ASCE.,1972,98:256-289
    [37]Carter, J.P..Booker, J.R.& Yeung, S.K. Cavity expansion in cohesive frictional soils[J], Geotechnique,1986,36(3):349-358
    [38]Randolph, M.F., Carter,J.P.&Wroth, C.P.. Driven piles in clay—the effects of installation and subsequent consolidation[J], Geotechnique,1979,29(4): 361-393
    [39]Baligh, M M. Strain path method[J]. Journal of Geotechnical Engineering, ASCE,1985,111(9):1108-1136
    [40]Poulos H G. Effect of pile driving on adjacent piles in clay[J]. Canadian Geotechnical Journal,1994.
    [41]王丽娟.沉桩过程中挤土效应的二维有限元分析[D].天津:天津大学硕士学位论文,2003.
    [42]王臻.灰土挤密桩桩间土挤密效果的理论分析与试验研究[D].西安:硕士学位论文,2004
    [43]龚晓南.土工计算机分析M].中国建筑工业出版社,2000
    [44]刘波,韩彦辉FLAC原理、实例与应用指南[M].人民交通出版社,2005.
    [45]刘永红.地基处理科学出版社.北京.2005.
    [46]张学言.岩土塑性力学.北京:人民交通出版社.北京.1992
    [47]施建勇.沉桩挤土效应分析[J].河海大学学报.2003,31(4):415-418
    [48]李广信.高等土力学[M].清华大学出版社.北京.2004.
    [49]徐芝纶.弹性力学[M].高等教育出版社.第3版.北京.2004.
    [50]李月健,陈云敏等.土体内空穴球形扩张问题的一般解及应用[J].土木工程学报,2002,35(1):93-98
    [51]韩晓雷.灰土挤密桩成孔过程中桩周土体的应力分析[J].西安建筑科技大学学报.1999,31(3):256-259
    [52]汪国烈.浅谈自重湿陷性黄土场地上高层建筑物和主要建(构)筑物的地基处理[A].全国湿陷性黄土地区建设工程标准技术委员会上的发言[C].兰州:甘肃省建筑科学研究所,1998.
    [53]龚晓南.土塑性力学(第2版)[M].杭州:杭州大学出版社,1999.
    [54]建筑地基处理技术规范(JGJ79-2002)[S].北京:中国建筑工业出版社出版,2002.
    [55]中华人民共和国行业标准土工试验方法标准(GB/T50123-1999)[S].中国计划出版社.北京.1999.
    [56]中华人民共和国行业标准.湿陷性黄土地区建筑规范(50025-2004)[S].北京:中国建筑工业出版社,2004.
    [57]刘平.膨胀灌注桩承载机理研究[J].工业建筑,1999,29(11):42-46
    [58]Lemaiture J.A. course on damage mechanics[M]. Berlin:Spring-Verlag,1992
    [59]赵锡宏.损伤力学[M].上海:同济大学出版社,2001
    [60]王臻.灰土挤密桩桩间土挤密效果的理论分析与试验研究[D].西安建筑科技大学硕士论文.2004.
    [61]王启铜,龚晓南,曾国熙.考虑拉、压模量不同时静压桩的沉桩过程[J].浙江大学学报,1992,26(6):678-687
    [62]郅彬.灰土强度影响因素研究及灰土挤密桩桩周土体应力有限元分析[D].西安:西安建筑科技大学硕士学位论文.2002.
    [63]王明明,李柏生,吴多明等.小口径挤密桩在危房地基基础加固中的应用[[J].建筑技术开发.2004,31(10)
    [64]谭利华,张超.钻孔夯扩挤密桩复合地基处理技术[J].建筑技术,2003,34(3):190-192
    [65]何荣炳.灰土挤密桩复合地基有限元分析[[J].山西建筑,2006,32(5):94-95
    [66]宋岳川,宋岳海.振动挤密桩群体效应及其地基处理[J].太原理工大学学报,1999,30(5):540-545
    [67]周健.排土桩对周围土体挤密作用的动态模拟[D].南京:河海大学硕士学位论文,1996
    [68]徐建平,周健,许朝阳等.沉桩挤土效应的数值模拟[J].工业建筑,2000,30(7):1-7
    [69]周健,徐建平,许朝阳.群桩挤土效应的数值模拟[J].同济大学学报,2000,28(6):721-725
    [70]鲁祖统.软粘土地基中静力压桩挤土效应的数值模拟[D].杭州:浙江大学博士学位论文,1998
    [71]李向红.软土地基静力压桩排土效应问题的研究[D].杭州:浙江大学博士学位论文,2000
    [72]梁晓东.复合地基等效实体法研究[D].杭州:浙江大学硕士学位论文,2005
    [73]刘杰,张可能.复合地基中垫层作用机理[J].中南工业大学学报,2001,32(6):568-572
    [74]刘丽萍,黄义,李向阳.复合地基沉降影响因素的半解析元分析[[J].西安建筑科技大学学报(自然科学版),2005,37(3):361-365
    [75]毛前,龚晓南.桩体复合地基柔性垫层的效用研究[J].岩土力学,1998,19(2):67-73
    [76]齐伟军,杨海涛.复合地基有效桩长的计算方法[t].黑龙江科技学院学报,2003,13(4):50-52
    [77]吴慧明,龚晓南.刚性基础与柔性基础下复合地基模型试验对比研究[J].土木工程学报,2001,34(5):81-84
    [78]徐洋,谢康和,徐志峰.影响复合地基应力扩散的因素[J].工业建筑,2003,33(1):36-38
    [79]杨慧.双层地基和复合地基压力扩散角比较分析[D].杭州:浙江大学硕士学位论文,2000.
    [80]袁聚云,赵锡宏.竖向均布荷载作用在地基内部时的土中应力公式[J].上海力学,1995,16(2):213-221
    [81]张爱军,谢定义,复合地基三维数值分析[M].北京:科学出版社
    [82]张定.复合地基中桩体变形模量的分析与计算[[J].岩土工程学报,1999,21(2):205-208
    [83]张定.散体材料桩复合地基的沉降分析与计算[J].铁道学报,1998,20(6):98-104
    [84]张定.碎石桩复合地基的作用机理分析及沉降计算[J].岩土力学,1999,20(2):81-86
    [85]张小敏,郑俊杰.刚性桩复合地基应力及沉降计算[J].岩土工程技术,2002,(5):265-268
    [86]张忠坤,杨宝怀.浅谈十振碎石桩复合地基的应用[A].复合地基理论与实践学术讨论会论文集.杭州:浙江大学出版社,1996
    [87]郑俊杰,彭小荣.桩土共同作用设计理论研究[[J].岩土力学,2003,24(2):242-245
    [88]郑俊杰.复合地基承载特性分析及设计方法研究田[D].杭州:浙江大学博士学位论文,2001
    [89]周建.复合地基加固区沉降计算的一种新方法[J].浙江大学学报,2000,34(1):83-87
    [90]朱百里,沈珠江.计算土力学[M].上海:上海科技出版社,1990
    [91]黄院雄,徐青侠,胡中雄.饱和土中引起桩周土体的位移[J].工业建筑,2000,30(7):15-19
    [92]胡中雄,侯学渊.饱和软土中打桩的挤土效应[A].第五届土力学及基础工程学术会议论文集.北京:中国建筑工业出版社,1988
    [93]龚晓南,土启铜,罗晓.拉压模量不同材料的圆孔扩张问题[J].应用力学学报,1994,11(4):127-132
    [94]蒋明镜,沈珠江.考虑材料应变软化的柱孔扩张问题[J].岩土工程学报,1995,17(4):10-19
    [95]朱泓,殷宗泽.打桩效应的有限元分析[J].河海大学学报,1996,24(1):56-61
    [96]Itasca. FLAC-Users'Manual, Minneapolis[R]:Itasca Consulting Group,1997.
    [97]Klar A, Einav I. Pile installation using FLAC[A]. Third International FLAC Symposium[C], Canada,2003,273-278
    [98]Klar A, Einav I. Pile installation using FLAG Third international FLAC symposium, Canada,2003:273-278
    [99]Wu, D C, Randolph M F. Vertically loaded piles in non-homogeneous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1997,21:507-532
    [100]Banerjee P K, Butterfield R. Advanced geotechnical analyses[J]. London: Elsevier applied science,1991,16:476-492
    [101]Carter J P, Randolph M F, Wroth C P.Stress and pore pressure changes in clay during and after the expansion of cylindrical cavity [J]. Int J for Num and Analy Meth in Geomech,1979,3(21):471-476
    [102]王淑云,方保榕,王如云.数值分析方法[M].南京:河海大学出版社,1996
    [103]陈文.饱和粘土中静压桩沉桩机理及挤土效应研究[D].河海大学硕士学位论文,1999
    [104]徐建平,周健,许朝阳等.沉桩挤土效应的模型试验研究[J].岩土力学,2000,21(3):235-238
    [105]李飞,郝子进,张亚仿.地基基础工程环境效应[M].南京:河海大学出版社,2004
    [106]彭劫.静压桩沉桩过程的数值分析[J].华东船舶工业学院学报,2005,19(5):25-30
    [107]潘林有.利用圆孔扩张理论分析静压桩挤土效应[J].地下空间,1999,19(3):174-177
    [108]王旭东,王伟,宰金眠.沉桩引起的超孔隙水压力及其消散的三维解析解[J]南京工业大学学报,2002,24(6):16-19
    [109]韩选江.静压桩的压桩力和承载力的试验研究[J].建筑结构学报,1996,17(6):71-77
    [110]李月健,陈云敏.粘性土地基中群桩施工产生土体内的位移场[J].建筑结构学报,2001,22(3):88-91
    [111]施建勇,彭劫.沉桩挤土作用的有限元分析[J].东南大学学报,2002,32(1):109-114
    [112]梁发云,陈龙珠.应变软化Tresca材料中扩孔问题解答及其应用[J].岩土力学,2004,25(2):261-265
    [113]Chad, Uick P. The quasi-static expansion of a spherical cavity in metals and ideal soils[J]. Journal of Mechanics and Applied Mathematic,1959,7(1)
    [114]Rajapakse R K N D. Response of an axially loaded elastic pile in a Gibson soi[J]l. Geotechnique,1990,40(2)
    [115]Senjuntichai T, Rajapakse RKND. Dynamic green's functions of homogeneous poroelastic half-plane. Journal of engineering mechanics,1994, (11)
    [116]Rajapakse RKND, Wang Y. Elastodynamic green's functions of orthotropic half plane[J]. Journal of Engineering Mechanics,1991,17(3)
    [117]李珍英.灰土加固地基性能几个问题的探讨[J].工程勘察,1999,(5):20-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700