用户名: 密码: 验证码:
古代夯土建筑动力响应及抗震保护
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是世界上四大文明古国中唯一历史延绵不断的国家。在这漫长的历史长河中,中华民族的祖先在适应自然、改造自然的过程中留给我们大量的遗物、遗址、遗迹。古代夯土建筑就是众多历史遗存中比较璀璨的一类,其作为人类文明信息的一个实体数据库,包含丰富的历史文化信息,需要广大学者去保存和解读。古代夯土建筑主要分布在人口稀少、地震烈度高的干旱半干旱区,它们遭受着巨大的、潜在的地震毁灭威胁。
     本文进行了夯土建筑遗址动力效应方面的研究工作,主要有以下几方面。
     (1)楠竹加筋复合锚杆是土遗址特性及现代锚固技术相结合的产物,其由楠竹、粘结剂与钢绞线复合为一体,楠竹的内腔安放有钢绞线,楠竹与钢绞线之间充填内粘结剂。该锚杆较传统锚杆有较大的截面积,可以获得较大的锚固力,其防腐能力较高。另外竹木质材料能体现古代人民在建筑方面的首选木质材料的思想,其符合文物保护的特殊要求。本文自行设计复合锚杆室内静力学试验试件,分别进行了复合锚杆的压缩、拉拔和弯曲试验。
     压缩试验结果显示,楠竹加筋复合锚杆1:1和1:2试件抗压强度分别为72.08MPa和43.48MPa,弹性模量分别是5.29GPa和5.25GPa,径高比1:1试件抗压强度高于1:2试件,有箍筋试件强度高于无箍筋试件。箍筋的存在一定程度上限制了复合锚杆的横向变形,对内部材料的约束作用致使整体强度有所提高。锚杆形态特征不同,其压缩破坏特征有所差异,但均有完整的弹性、强化和软化三个阶段。锚杆的压缩破坏呈现腰折和灯笼装散裂两种模式。
     楠竹加筋复合锚杆钢绞线与内粘结剂的粘结滑移分为弹性强化阶段、软化下降阶段、残余应力阶段三个阶段。对钢绞线与内粘结剂界面粘结滑移特性描述的模型中,精确模型可以较准确地描述粘结滑移的全过程力学行为,简化模型则忽视了短暂的软化阶段。内粘结剂与钢绞线界面上的剪切应力分布存在明显的峰值,离加载段较近的地方应力值较大,随着荷载逐渐增大,应力峰逐渐向远离加载端的方向移动。内粘结剂与钢绞线界面上的最大平均剪切应力随锚杆长度的增加呈指数衰减规律。
     锚杆在正常工作时存在弯曲受力状态,根据锚杆的弯曲试验得其弯曲强度为40.05MPa,弯曲模量为1.38GPa。锚杆试件的着力点对应位置应变最小,远离着力点位置应变不断增大。同一试件在弯曲过程中,楠竹与内粘结剂界面上的应变比钢绞线与内粘结剂界面上的大。在试验中发现锚杆弯曲率大于2%时将发生内粘结剂开裂,因此在锚杆吊装时,易多点捆绑保持锚杆直线吊装,以免锚杆内部界面出现脱粘现象。
     (2)在室内制作能代表夯土建筑遗址的模型墙体进行模拟地震振动台试验,模型分为未锚固夯土墙体和木锚杆锚固夯土墙体。在振动台试验中,利用锤击法对墙体进行自振频率测定。随着加载过程,模型墙体的自振频率不断下降。由墙体加速度傅里叶谱可以看出,台面上输入的地震波卓越频率,经墙体介质传播后,发生了显著的变化,结构对地震波的高频段有放大现象,墙顶对地震波的傅里叶谱放大幅度较大。在模型结构临近破坏时,破坏的墙体加速度傅里叶谱值急剧升高,对两个模型墙体其破坏时最大谱值点均是出现在台面输入加速度的卓越频率段。
     模型墙体的加速度随着台面输入荷载的增大而增大,且沿着墙体高度方向被逐渐放大。在使用Taft波和EI centro波加载过程中,木锚杆锚固墙体的加速度始终大于未锚固墙体。输入荷载较小时,加速度放大系数随着台面加速度的增大而增大,随着输入地震波加速度的增大,损伤不断积累加深,结构刚度逐渐下降,自振频率减小,阻尼增大,模型动力放大系数也逐渐减小。木锚杆锚固墙体墙顶的加速度放大系数在上升段和下降段均大于未锚固墙体墙顶的加速度放大系数。在分别用两种波交替加载的过程中,锚固墙体墙顶对Taft波作用下加速度的放大最大达182.9%,而对EI centro波达到130.5%。
     随着台面输入加速度的增大,模型墙体的位移逐渐增大,且沿着高度方向被明显放大。在加载至467.81gal时,两面墙体在底部同时出现第一条裂缝,当荷载至563.52gal时,未锚固墙体的位移突增,而发生破坏。锚固墙体是当加载至688.40gal时,墙体顶部位移陡增,裂缝扩展而发生破坏。墙体顶部位移角总体趋势为未锚固墙体的位移角大于锚固墙体。两面墙体开裂位置基本相同,均出现在最低一层夯筑层间界面处。
     未锚固墙体在相对台面位移达到3.11mm后发生破坏,锚固墙体在7.75mm后发生破坏,其变形能力提高幅度达到149%。由两面墙体的破坏荷载来看,木锚杆锚固墙体的最大承载力至少比未锚固墙体提高22%,木锚杆锚固墙体延性和承载力要优于未锚固墙体。
     (3)利用有限元程序对现场模型建模并进行数值计算,通过改变锚固参数研究其动力特性。锚固与未锚固墙体各阶振动形态基本相同,锚杆的植入未大幅改变墙体的固有属性,模型主要振动形态为第一阶。简化模型的自振频率均大于考虑薄弱层模型的自振频率,植入木锚杆的墙体各阶自振频率大于未植木锚杆墙体,在墙体中木锚杆对墙体的面置换率越高,其自振频率也越高。
     同一荷载下,模型墙体的加速度沿着高度不断增大,在墙顶产生了明显的鞭梢效应。简化模型的正向加速度以线性方式均匀增加,负向峰值加速度的增长过程为三段式。在考虑薄弱层模型中,其正负向峰值加速度的增长为两段式。模型的峰值位移沿着高度逐渐增大,增大的速率沿着高度也是逐渐在增大,峰值位移的增大沿高度方向呈非线性变化,没有明显的分段,正向峰值位移的增长速率要大于负向位移的增长速率。
     通过应力云图分析,模型第一阶的最大应力区均出现在模型底部,且薄弱层部位应力也较大。对同一模型,剪应力在同一振型下小于拉应力,由此也可断定结构的破坏是弯曲而导致的薄弱面拉裂破坏。在锚固模型中,木锚杆上的应力最大。由位移云图来看,位移随着模型墙体高度升高而增大,相同高度产生的位移基本相同,模型下部小位移带较宽,而越向上位移梯度变化越快,梯度也越大。
     (4)对比振动台试验规律和数值模拟规律,模型在插入木锚杆后,模型的顶端峰值位移较未锚固模型会有一定程度的降低,而峰值加速度会有一定程度的升高。在数值计算中发现木锚杆对模型墙体面置换率越高,其位移降低的越多,加速度升高的幅度越大。
China is the only country in the Four Great Ancient Civilizations which continues its history and never breaks off. In the history, our ancestors bequeathed many hangovers, sites and relic while adapting and reforming natural environment. Historic rammed earth constructions, as one of more resplendent hangovers, records the information of human civilization and contains abundant history and culture message, so conservations and researches are required by scholars. Historic rammed earth constructions mostly locate in arid and semi-arid region that is sparse population and high seismic intensity, and are suffering from earthquake.
     The article carried out the following research on dynamic response and earthquake-resistant conservation of historic rammed earth constructions.
     (1) The bamboo-steel cable composite anchor (BSCC anchor) as the combination of earthen sites characteristic and modern anchorage technique is composed of bamboo, binder and steel strands, and the steel strand is put inside the bamboo with binder, a mixture of epoxy resin, fly ash and asbestos in certain proportion, filled in between. Compared with other traditional steel anchors, BSCC anchor has the advantages of higher anchorage strength due to larger cross-section, and stronger anticorrosion ability as extremely low moisture content of inner binder. Furthermore, the BSCC anchor has longer service expectancy as bamboo can better co-exist with soil, and the idea of wood as the primary construction material is well embodied in this anchorage material. The compression test, pull-out test and bending test were carried out in laboratory.
     Compressive strength of specimens with diameter-to-height ratios of 1:1 (72.08MPa) is higher than that of 1:2 (43.48MPa), and elastic modulus of two kind samples is 5.29GPa and 5.25GPa, respectively. The compressive strength of the specimens with hoop reinforcement is greater than that un-reinforcement, in that hoop reinforcement can restrict the horizontal deformation of specimens and then improving the strength and stiffness. There are three stages, elastic, strengthening and softening stage, for all specimen failure characters, in spite of the different in shapes.
     The bond-slip process between steel strand and inner binder was shown by three stages, which were, exponential-enhancing stage, softening-declining stage and residual stress stage. The bond-slip process could be described by an accurate model with exact description and a simplified model with ignoring the short softening-declining stage. The stress is not equally distributed at the interface between inner binder and steel strand of BSCC anchor, and there is obvious stress peak. It is found that shear stress is not uniform distributing between the interface of inner binder and steel strand, and it approaches a peak near the loading end, and the peak stress increases and shifts far further from the loading end when puling load is increased. The average shearing stress of the interface between steel strand and inner binder basically submitted exponential decay as the anchor length increased.
     Bending test indicated that the bending strength and modulus is 40.05MPa and 1.38GPa, respectively. The strain value of the strain gauges on both steel strand and bamboo improves as the load was increased, but the strain values of strain gauges on bamboo are bigger than those on the steel strand for the same specimen and load, owing to the strain gauges on bamboo are placed farther from the neutral axis of the specimens during loading process. The strain value is higher at the load point and lower at the ends, so slippage starts from two ends of the specimen. The BSCC anchor should be kept linear state by trussing multi-point on the basis of anchor length when hoisted for installation and the flexibility should be not greater than 2%.
     (2) Two models of rammed-earth wall, one anchored with wooden anchor and the other not, that could express basal characters of historic rammed earth construction, were built in the laboratory to test on seismic response by shaking table. The natural frequency, tested by impact testing, gradually reduces along with increasing of load. The Fourier spectrum of acceleration indicates that the frequency of acceleration input in shaking table is changed through spreading by model wall, the high frequency is magnified and the peak value of Fourier spectrum is highest at top of wall. The value of Fourier spectrum rapidly increases while the wall is destroyed, but the peak value of Fourier spectrum appears at the range of natural frequency of acceleration input in shaking table.
     The acceleration of wall increases along with the increasing of load, and is magnifying in the direction of height. The acceleration of wall anchored with wooden anchor is higher than that of the other wall un-anchored during loading with Taft wave and El centro wave. The amplifying coefficient of acceleration increases along with the increasing of load at the low level of load. During the increasing of load, the damnification of wall is gradually accumulated to bring on the fall of stiffness, natural frequency and amplifying coefficient. The amplifying coefficient of wall anchored with wooden anchor is higher than that of the other wall un-anchored, that the maximum is 282.9% to Taft wave and 230.5% to El centro wave.
     The displacement of wall increases with load, and is magnified along the height. As the load up to 467.81 gal, the first crack appeared at the bottom of two walls. While the load reached to 563.52gal, the displacement of wall un-anchored rapidly increased and the crack expanded, as a results, the wall was destroyed, but the case for the wall anchored with anchor happened until the load to 688.40gal. The displacement angle of wall un- anchored was more than that of the other wall anchored. The cracks of two walls appeared at first interface of two rammed layers at the bottom of walls.
     The wall un-anchored was destroyed while the relative displacement reached to 3.11 mm, and for the anchored wall, the relative displacement reached to 7.75mm, which was higher 149% than the wall un-anchored, in other words, the ductility of wall anchored with anchor is better than the other wall. Form the ultimate load, the bearing capacity improved by 22% at least with the help of anchoring.
     (3) The dynamic characteristic of model for field walls was simulated by finite element program. The vibration modes of walls are similar, and the main vibration mode is first order, this shows that the wooden anchor can not change the natural attribute of walls. The frequency of simplified models is higher than that of the models with dotty layers, and the frequency of models with anchor is higher than that of the models un-anchored. The frequency is high while the replacement ratio is great.
     In the same load condition, the acceleration of model walls increases with the height and produces the whipping effect on the top. The plus acceleration of simplified models increases linearly and the model of "syllogism" in the process of the minus acceleration. In view of dotty layers, the acceleration of the plus and minus models would present two stages, the peak displacement enhances gradually along with the height. The velocity of displacement increasing gradually improves along the height. Overall, the increasing velocity of plus peak displacement is more than of the minus.
     From the stress contour plot, the maximal stress region of the first order appeared at the bottom of models and the stress in dotty layers is also higher. It is justifiable to conclude that the failure of structure is rip failure of the dotty layers induced by bending according to that the shear stress is less than tensile stress in the same vibration mode. The stress of wooden anchor was the highest in the whole anchored models. It also can be seen from the displacement contour plot that the displacement improves along with the height and is close at the same height, the region of low displacement is wider at the bottom and then the displacement grads increases gradually and changes rapidly along the height.
     (4) From the rules between numerical simulation and shaking table test, the peak displacement at the top of models have a certain extent reduced by the way of being anchored but the acceleration increased simultaneously. It also concluded from numerical simulation that the more the replacement ratio was, the greater the raise would be.
引文
[1]Neville Agnew, Martha Demas.Principles for the Conservation of Heritage Sites in China [M].Los Angeles:Getty Conservation Institute,2004.
    [2]李浈.中国传统建筑形制与工艺[M].上海:同济大学出版社,2006.
    [3]David Easton.The rammed earth house:revised edition [M]. Vermont:Chelsea Green Publishing,2007.
    [4]Laurence Keefe. Earth Building [M]. London:Taylor & Francis,2005.
    [5]Peter Walker. The Australian earth building [M]. Sydney:Standards Australia,2002.
    [6]Houben H., Guillaud H.. Earth Construction, A comprehensive Guide [M]. London: Intermediate Technology Publications,1994.
    [7]胡明清.丝绸之路典型土遗址地震破坏机理与抗震安全性研究[D].兰州:中国地震局兰州地震研究所,2008.
    [8]Mansour Ziyaeifar, Hossein Meshki, and Mohammed Ali Morovat. Arg-e-Bam (Bam Citadel) and Its History [J]. Earthquake Spectra,2005,21 (S1):13-28.
    [9]张波.生土建筑墙体改性材料探讨[J].攀枝花学院学报,2010,27(3):27-31.
    [10]Keable J.. Rammed Earth Structures. A code of Practice [M]. London:Intermediate Technology Publications,1996.
    [11]Minke G.. Earth Construction Handbook. The building Material Earth in Modern Architecture [M]. Southampton:WIT Press,2000
    [12]Shihata S. A.,Baghdadi Z. A.. Simplified Method to Assess Freeze-thaw Durability of Soil Cement [J]. Journal of Materials in Civil Engineering,2001,13(4):243-243.
    [13]尚建丽.传统夯土民居生态建筑材料体系的优化研究[D].西安:西安建筑科技犬学,2005.
    [14]石坚,李敏,王毅红,王春英.夯土建筑土料工程特性的试验研究[J].四川建筑科学研究,2006,32(4):86-87,110.
    [15]陈伟,焦涛,孙金坤,罗强,张茜.昔格达生土农房抗震技术研究[J].工程抗震与加固改造,2010,32(3):77-80.
    [16]朱珉,吉建平,崔艳莉.徐州地区夯土房的土料力学性能试验分析[J].徐州建筑职业技术学院学报,2009,9(1):36-39.
    [17]王栋,马全明.浙江安吉低能耗夯土房建筑材料试验研究[J].徐州建筑职业技术学院学报,2008,8(1):47-50.
    [18]袁润,宋向荣,李建康,丁超.焦山古炮台夯土成分分析及建造工艺研究[J].文物保护与考古科学,2010,22(2):18-22.
    [19]唐晓武,张泉芳,陈佩杭.良渚莫角山夯土遗迹的土工调查[J].全国首届建(构)筑物地基基础特殊技术研讨会,杭州,2004,289-293.
    [20]杨予川.戚城古代夯土城墙的病害调查与保护对策研究[J].中原文物,2008,(1):91-96.
    [21]兰州大学文物保护研究中心.骆驼城土遗址抢险加固工程勘察报告[R],2008.
    [22]赵海英,李最雄,韩文峰,等.战国秦长城夯土的工程特性[J].工程地质学报,2004,12(S1):94-97.
    [23]赵胜杰.高昌故城土遗址病害分析及化学保护研究[D].西安:西安建筑科技大学,2008.
    [24]赵海英,李最雄,韩文峰,等.西北干旱区土遗址的主要病害及成因[J].岩石力学与工程学报,2003,22(S2):2875-2880.
    [25]李诫.营造法式[M].北京:人民出版社,2006.
    [26]Lilley D. M., Robinson J.. Ultimate strength of rammed earth walls with openings [J].Proceeding of the Institution of Civil Engineers Structures and Buildings,1995,110(4): 278-287.
    [27]King B. P. E.. Buildings of Earth and Straw. Structural Design for Rammed Earth and Straw Bale Architecture [M]. Sausalito:Ecological Design Press,1996.
    [28]Norton J.. Building with Earth. A handbook (Second Edition) [M]. London:Intermediate Technology Publications,1997.
    [29]张波,王赟.汉中农村民居典型夯土墙营造技术解析及改进[J].安徽农业科学,2010,38(8):4327-4329,4383.
    [30]琳恩·伊丽莎白,卡萨德勒·亚当斯,著,吴春苑,译.新乡土建筑-当代天然建造方法[M]北京:机械工业出版社,2005.
    [31]Earth Building Association of Australia. Earth Building Book(Draft for Comment)[M]. Wangaratta:Earth Building Association.of Australia,2001.
    [32]McHenry P. G.. Adobe and Rammed Earth Buildings. Design and Construction [J]. New York:A Wiley-Interscience Publication,1984.
    [33]NZS 4298:1998. New Zealand Standard. Materials and Workmanship for Earth Buildings[S]. Wellington:Standard New Zealand, Wellington,1998.
    [34]SAZS 724:2001. Zimbabwe Standard. Rammed Earth Structures[S]. Harare:Standards Association of Zimbabwe,2001.
    [35]赵西平,赵方周,刘加平,等.秦岭山地民居墙体构造技术[J].西安科技大学学报,2005,25(1):114-117.
    [36]王兰民,林学文.农村民房的地震破坏特征与震害预测[J].震灾防御技术,2006,1(4):337-345.
    [37]Crowley M. Quality Control for Earth Structures [J]. Australian Institute of Building Papers,1997, (8):109-118.
    [38]Sikka,Sandeep.Theme:Decay and Conservation:Research and Practice Topic:Conservation of Historic Earth Structures in the Western Himalayas[A]//In 9th International Conference on the Study and Conservation of Earthen Architecture Terra 2003.yazd-IRAN,2003.
    [39]刘林学,张宗仁,薛茜,等.古文化遗址风化机理及其保护的初步研究[J].文博,1988,(6):71-75.
    [40]D'Aragon, Jean. Earth as an element of persistence in South African Xhosa culture[A]//In 9th International Conference on the Study and Conservation of Earthen Architecture Terra 2003.yazd-IRAN,2003.
    [41]孙满利,王旭东,李最雄.土遗址保护初论[M].北京:科学出版社,2010.
    [42]石玉成,胡明清,李舒.不同地震荷载作用下土遗址的动力响应分析[A]//岩石力学与工程的创新和实践:第十一次全国岩石力学与工程学术大会,2010.
    [43]梁涛.新疆苏巴什佛寺遗址保护加固研究[D].兰州:兰州大学,2010.
    [44]石玉成,林学文,王兰民,王伟锋,付长华.黄土地区生土建筑震害特征及防灾对策研究[J].自然灾害学报,2003,12(3):87-92.
    [45]刘红玫,林学文.甘肃省农村各种结构类型房屋的地震破坏机理[J].西北地震学报,2007,29(1):75-78.
    [46]Minke G. Earthquake resistant low-cost houses utilizing indigenous building materials and intermediate technology[A]//Proceedings of International Symposium on Earthquake Relief in Less Industrialized Areas. Zurich, Switzerland,1984.
    [47]Sibtain S.N.. To build a village-earthquake resistant rural architecture [M]. Sydney:The Australian Council of Churches,1982.
    [48]高智能,杨晓东,陶忠,陈志寿,焦春节.竹筋夯土墙在水平单调荷载作用下的试验研究[J].昆明理工大学学报(理工版),2009,34(2):68-70.
    [49]王毅红,苏东君,刘伯权,池家祥,刘挺.生土结构房屋的承重夯土墙体抗震性能试验研究[J].西安建筑科技大学学报(自然科学版),2007,39(4):451-456.
    [50]赵西平,门进杰,史庆轩,刘加平.夯土墙在单调和反复水平荷载下的试验研究[J].世界地震工程,2006,22(2):29-33.
    [51]Jayasinghe C., Kamaladasa N.. Compressive strength characteristics of cement stabilized rammed earth walls [J]. Construction and Building Materials,2007,21(11):1971-1976.
    [52]Vasilios Maniatidis, Peter Walker. Structural Capacity of Rammed Earth in Compression[J]. Journal of Materials in Civil Engineering,2008,20(3):230-238.
    [53]童丽萍,张琰鑫.农村夯土类建筑地震反应分析[J].世界地震工程,2009,25(2):36-40.
    [54]Rongrong Hu,Yujiang Dong, and Xinghu Zhang. Analysis for the Shake Table Test of Rammed Earth Wall Panels[J]. Advanced Materials Research,2011,168-170:21-25.
    [55]中国建筑科学研究院.建筑抗震设计规范(GB 50011-2001)[S].北京:中国建筑工业出版社,2001.
    [56]葛学礼,朱立新,王亚勇,范迪璞,王新平,崔健.村镇建筑震害与抗震技术措施[J].工程抗震,2001,(1):43-49.
    [57]Jaquin P. A., Augarde C. E., Gerrard C. M.. Analysis of Historic Rammed Earth construction[A]//Structural Analysis of Historical Constructions. New Delhi 2006
    [58]刘琨,石玉成,卢育霞,等.玉门关段汉长城墙体结构抗震性能研究[J].世界地震工程,2010,26(1):47-52.
    [59]崔凯,谌文武,满君,等.西北干旱区古代高大夯土建筑物遗迹稳定性问题研究[A]//2008古遗址保护国际学术讨论会暨国际岩石力学学会区域研讨会论文集.北京:科学出版社,2010.
    [60]宋向荣,袁润.夯土古炮台修复的结构性能研究[J].江苏科技大学学报(自然科学版),2010,24(1):27-31.
    [61]程良奎等著.岩土锚固[M].中国建筑工业出版社,2003.
    [62]Nak-Kyung Kim, Jong-Sik Park and Sung-Kyu Kim. Numerical simulation of ground anchors[J].Computers and Geotechnics,2007,34(6):489-507.
    [63]陈仲颐,叶书麟.基础工程学[M].北京:中国建筑工业出版社,1990.
    [64]Stan Rupiper, Michael R. Ludwig. Ground anchor device[P].American:5934836, 1999-08-10.
    [65]孔宪宾,任青文,汪洪武.土层锚杆技术的发展及研究动态[J].水利水电科技进展,1999,19(6):12-16.
    [66]Yunliang Tan, Chunjiang Sun, Shitan Gu, et al. Anchor safety potential reinforcing theory and its applications in roadway affected by mining[J]. Procedia Earth and Planetary Science,2009,1(1):438-443.
    [67]邓红健.锚杆加固设计理论的研究[J].土工基础,2006,20(2):58-61.
    [68]许明,张永兴,阴可.砂浆锚杆的锚固及失效机理研究[J].重庆建筑大学学报,2001,23(6):10-15.
    [69]KILIC A,YASAR E,CELIKA G. Effect of grout properties on the pullout load capacity of fully grouted rock bolt [J]. Tunnelling and Underground Space Technology,2000,17:355-362.
    [70]潘殿琦,吴银柱,吴丽萍.土层锚杆抗拔力的影响因素及其计算公式的修正[J].地质找矿论丛,1999,14(2):87-92.
    [71]程良奎,韩军.单孔复合锚固法的理论和实践[J].工业建筑,2001,31(5):35-38.
    [72]Zou D.H. Steve, Cheng Jiulong, Yue Renjie, Sun Xiaoyun. Grout quality and its impact on guided ultrasonic waves in grouted rock bolts[J].Journal of Applied Geophysics,2010,72(2):102-106.
    [73]Han Li-Jun, He Yong-Nian. Experimental study on mechanical characteristics of cracked rock mass reinforced by bolting and grouting[J].Journal of China University of Mining and Technology,2005,15(3):177-182.
    [74]El SAWWAF M, NAZIR A. The effect of soil reinforcement on pullout resistance of an existing vertical anchor plate in sand [J].Computers and Geotechnics,2006, (33):167-176.
    [75]方从严,卓家寿.锚杆加固机理的试验研究现状[J].河海大学学报(自然科学版),2005,33(6):696-700.
    [76]Blach Adolf E..Fiber reinforced bolted flanged connections discussion of ASME code rules [A]//Proceedings of the International Conference on Pressure Vessel Technology, ICPVT.Montreal.1999.
    [77]杨涛,周德培,张忠平.预应力锚索地梁中合理锚固角的确定[J].岩土力学,2006,27(2):290-293.
    [78]陈峰.软土地区土层锚杆试验分析及实践[J].勘察科学技术,2001(4):36-40.
    [79]Kleyner, I.M., Krizek, R.J., Pepper, S.F., Influence of grout pressure on capacity of bore-injected piles and anchors [A]//Proceedings of the International Conference on Grouting in Rock and Concrete. Salzburg,1993.
    [80]李最雄,王旭东,张鲁.南竹加筋复合锚杆[P].中华人民共和国:ZL200520107950.0,2006.7.5.
    [81]孙满利.吐鲁番交河故城保护加固研究[D].兰州:兰州大学,2006.
    [82]李轶鹏.高昌土遗址描杆加固及抗风化研究[M].西安:西安建筑科技大学,2007.
    [83]Williams M.S., Blakeborough A. Laboratory testing of structures under dynamic loads:an introductory review[J]. Philosophical Transactions of the Royal Society of London, Series A,2001,359(1786):1651-1669.
    [84]胡聿贤.地震工程学[M].北京:地震出版社,1988.
    [85]于文.新疆喀什生土房屋模型振动台试验研究[D].北京:中国建筑科学研究院,2007.
    [86]代建波.新型石膏土坯墙结构房屋杭震性能试验及设计方法研究[D].西安:西安建筑科大学,2008.
    [87]Nabeshima, Yasuyuki. Shaking table tests of reinforced earth walls[A]//_Proceedings of the International Offshore and Polar Engineering Conference, Seoul,2005.
    [88]Hu Rongrong, Dong Yujiang. Shake table test on rammed earth wall panels [J].Advanced Materials Research,2010,133-134:795-799.
    [89]Feng Miao, Zhe Zhang. Suspension Bridge Anchorage by Pre-Stressed Anchor[J]. Electronic Journal of Geotechnical Engineering,2009,14(J):1-6.
    [90]Hsai-Yang Fang. Foundation Engineering Handbook(Second Edition)[M]. Kluwer Academic Publishers, Van Nostrand Reinhold,2002.
    [91]Petros P.Xanthakos.Ground Anchors and Anchored Structures[M].United States:John Wiley and Sons, Inc.,1991.
    [92]程良奎.岩土锚固的现状与发展[J].土木工程学报,2001,34(3):7-13.
    [93]全国人民代表大会常务委员会.中华人民共和国文物保护法,中国法制出版社,2007.
    [94]UNESCO. Convention Concerning the Protection of the World Cultural and Natural Heritage,1972.
    [95]长江水利委员会.三峡工程科学试验和研究[M].武汉:湖北科学技术出版社,1997.
    [96]Qinglin Guo. Xudong Wang. Huyuan Zhang, et al. Damage and Conservation of the High Cliff on the Northern Area of Dunhuang Mogao Grottoes[J]. Landslides,2009,6(2):89-100.
    [97]李最雄,王旭东,孙满利.交河故城保护加固技术研究[M].北京:科学出版社,2008.
    [98]胡建林,张培文,张智浩.三峡永久船闸对穿锚索施工关键技术及加固效果[J].岩石力学与工程学报,2005,24(21):3847-3851.
    [99]陈孝英.三峡船闸锚固工程防护技术[J].水利水电技术,2004,35(7):15-18.
    [100]李最雄.丝绸之路古遗址保护[M].北京:科学出版社,2003.
    [101]黄克忠.岩土文物建筑的保护[M].北京:中国建筑工业出版社,1998..
    [102]肖玲,李世民.曾宪明.林大路.地下巷道支护锚杆腐蚀状况调查及力学性能测试[J].岩石力学与工程学报,2008,27(增2):3791-3797.
    [103]Vanocker, David A.; Johnson, Erin M.; Marcotte, Tracy D. The Identification of corrosion-related damage from cramp anchors in a limestone-clad building facade using NDE techniques[A]//ASTM Special Technical Publication-Repair, Retrofit and Inspection of Building Exterior Wall Systems, American Society for Testing and Materials, Atlanta, GA, United states,2009.
    [104]曾宪明,李长松,赵健,等.模型锚杆腐蚀耦合效应试验研究[J].预应力技术,2006,(4):13-20,40.
    [105]Kuo, Chihping; Liao, Hung-Jiun. A case study on corrosion protection effect of using field-mixed resin as tie-back anchors' grout material for retaining wall and its inspection method[A]//Institution of Civil Engineers-International Conference on Ground Anchorages and Anchored Structures in Service 2007. London, United kingdom.2007.
    [106]Fathi Shaqour.Ground anchors in an aggressive hydro-environment[J]. Bull Eng Geol Env,,2006,65:43-56.
    [107]赵健,冀文政,张文巾,等.现场早期砂浆锚杆腐蚀现状的取样研究[J].地下空间与工程学报,2005,1(7):1 157-1162.
    [108]Jungwirth, Dieter; Adler, Susanne.Durability of ground anchors and other geotechnical stabilisation applications in concrete reinforcement steel quality, subject to new European regulations[A]// Institution of Civil Engineers-International Conference on Ground Anchorages and Anchored Structures in Service 2007. London, United kingdom.2007.
    [109]易伟建,赵新.持续荷载作用下钢筋锈蚀对混凝土梁工作性能的影响[J].土木工程学报,2006,39(1):7-12.
    [110]Martin, G.P.; Arnold, A.C. Failure of dry dock floor in Scaramanga, Greece, resulting from stress corrosion damage to anchor pile tendons[A]//Proceedings of the Institution of Civil Engineers:Water, Maritime and Energy.1992.
    [111]贝格曼,著,王安洪,译.新疆考古记[M].乌鲁木齐:新疆人民出版社,1997.
    [112]新疆文物考古研究所.新疆罗布泊小河墓地2003年发掘简报[J].文物,2007,(10):4-44.
    [113]U HouYuan, XIA XunCheng, LIU JiaQi, et al. A preliminary study of chronology for a newly-discovered ancient city and five archaeological sites in Lop Nor, China[J].China Science Bulletin,2010,55(1):63-71.
    [114]伍佑伦,王元汉,许梦国.拉剪条件下节理岩体中锚杆的力学作用分析[J].岩石力学与工程学报,2003,22(5):769-772.
    [115]杨双锁,张百胜.锚杆对岩土体作用的力学本质[J].岩土力学,2003,24(S):297-282.
    [116]Li Ying, Pan Dongzi, Zhang Lian.Experimental investigation on anchorage mechanisms of self-locked anchor under combined tension and shear[J]. Advanced Materials Research,2011,163-167:3600-3603.
    [117]Zhang YanBo,Kang ZhiQiang, Wang YingChun. Analysis of initial stress anchor wire anchoring mechanism and its parameter optimization [J]. Advanced Materials Research,2011,204-210:418-422.
    [118]苏学贵,李彦斌.对几种新型锚杆的适应性分析[J].煤矿设计,1996,(3):13-16.
    [119]刘汉东,于新政,李国维GFRP锚杆拉伸力学性能试验研究[J].岩石力学与工程学报,2005,24(20):3719-3723.
    [120]韩洪亮.玻璃钢锚杆杆体主要性能的试验分析[J].煤炭科学技术,2005,33(4):67-69.
    [121]张树光.纤维硬塑锚杆及其支护参数的研究[D].阜新:辽宁工程技术大学,2000.
    [122]李彦斌,苏学贵,张召千.新型锚固式竹锚杆试验研究[J].建井技术,2000,21(1):30-32.
    [123]Ehsani M R, Saadatmanesh H, Tao S. Design recommendations for bond of GFRP rebars to concrete[J]. Journal of Structural Engineering,1996,(3):247-254.
    [124]Nanni A, Bakis C E, O'neil E F, et al. Performance of FRP tendon-anchor systems for prestressed concrete structures.[J]. PCI Journal,1996,41 (1):34-43.
    [125]江利,崔永丽.高强度锚杆用钢低速拉伸性能[J].天津大学学报,2004,37(2):135-139.
    [126]Al-Mayah A, Soudki K and Plumtree A. Mechanical behavior of CFRP rod anchors under tensile loading[J]. Journal of Composites for Construction,2001,5(2):128-135.
    [127]郝庆多,王言磊,欧进萍GFRP/钢绞线复合筋黏结锚固试验研究及设计建议[J].土木工程学报,2008,41(4):40-48.
    [128]Ehsani M R, Saadatmanesh H, Tao S. Bond behavior of deformed GFRP rebars[J].Journal of Composites Materials,1997,31 (14):1413-1430.
    [129]李国维,高磊,黄志怀,等.全长黏结玻璃纤维增强聚合物锚杆破坏机制拉拔模型试验[J].岩石力学与工程学报,2007,26(8):1653-1663.
    [130]Schmidt Jacob W., Bennitz Anders, Taljsten Bjorn, et al. Development of mechanical anchor for CFRP tendons using integrated sleeve[J]. Journal of Composites for Construction,2010,14(4):397-405.
    [131]薛伟辰,刘华杰,王小辉.新型FRP粘结性能研究[J].建筑结构学报,2004,56(5):104-109.
    [132]方志,梁栋,蒋田勇.不同粘结介质中CFRP筋锚固性能的试验研究[J].土木工程学报,2006,39(6):48-52.
    [133]Aubeny C.P., Chi, C.. Mechanics of drag embedment anchors in a soft seabed [J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(1):57-68.
    []34]周新刚.混凝土植筋锚固性能分析[J].岩石力学与工程学报,2003,22(7):1169-1173.
    [135]韩军,陈强,刘元坤,等.锚杆灌浆体与岩(土)体间的粘结强度[J].岩石力学与工程学报,2005,24(19):3482-3486.
    [136]Hof Christiane, Triantafyllidis Theodor. On the reduction of the bearing capacity of cement grouted anchors under the attack of aggressive carbonic acid [J]. Bautechnik, 2005,82(5):310-317.
    [137]高丹盈,张钢琴.纤维增强塑料锚杆锚固性能的数值分析[J].岩石力学与工程学报,2005,24(20):3725-3729.
    [138]Xiao ShuJun, Chen ChangFu.Mechanical mechanism analysis of tension type anchor based on shear displacement method [J].Journal of Central South University of Technology (English Edition),2008,15(1):106-111.
    [139]郑晓燕,吴胜兴.动荷载下锈蚀钢筋混凝土粘结滑移特性的试验研究[J].土木工程学报,2006,39(6):42-47.
    [140]张伟平,张誉.锈胀开裂后钢筋混凝土粘结滑移本构关系研究[J].土木工程学报,2001,34(5):41-44.
    [141]Malvar L J, Cox J V, Bergeron Cochran K. Bond between carbon fiber reinforced polymer bars and concrete. I experimental study [J]. Journal of Composites for Construction,2003,7(2):154-163.
    [142]荣冠,朱焕春,周创兵.螺纹钢与圆钢锚杆工作机理对比试验研究[J].岩石力学与工程学报,2004,23(3):469-475.
    [143]Wu Zhimin, Yang Shutong, Wu Yufei, et al. Analytical method for failure of anchor-grout-concrete anchorage due to concrete cone failure and interfacial debonding [J].Journal of Structural Engineering,2009,135(4):356-365.
    [144]高丹盈,B. Brahim纤维聚合物筋混凝土的粘结机理及锚固长度的计算方法[J].水利学报,2000,(11):70-78.
    [145]Okelo R, Yuan R L. Bond strength of fiber reinforced polymer rebars in normal strength concrete[J].Journal of Composites for Construction,2005,6(2):203-213.
    [146]R Eligehausen, EP Popov, VV Bertero. Local bond stress-slip relationships of deformed bars under generalized excitations[R]. Rep.No.83, Earthquake Engineering Research Center.Univ.of California, Berkeley, Calif,1983.
    [147]Cosenza E, Manfredi G, Realfonzo R. Behavior and modeling of bond of FRP rebars to concrete[J]. Journal of composites for construction,1997, 1(2):40-51.
    [148]张培胜.岩土锚杆的锚固力学特性研究[D].重庆:重庆大学.2003.
    [149]高丹盈,朱海棠,谢晶晶.纤维增强塑料筋混凝土粘结滑移本构模型[J].工业建筑.2003(33)7:41-44.
    [150]Malvar J.Tensile and pond properties of GFRP reinforcing bars [J].ACI Materials Journal,1995,92(3):54-59.
    [151]辛海亮.钢管混凝土粘结滑移本构关系理论研究[J].建材技术与应用,2007,(10):3-5.
    [152]栾茂田,武亚军.土与结构间接触面的非线性弹性-理想塑性模型及其应用[J].岩土力学,2004,25(4):508-513.
    [153]Clough G W, Duncan J M. Finite element analysis of retaining wall behavior [J].Journal of Soil Mechanics and Foundation Engineering Division,ASCE,1971,97(12):1657-1673.
    [154]张海霞,朱浮声.考虑粘结滑移本构关系的FRP筋锚固长度[J].四川建筑科学研究,2007,33(4):43-46.
    [155]尤春安.锚固系统应力传递机理理论及应用研究[D].青岛:山东科技大学.2004.
    [156]谢晶晶.纤维增强塑料筋锚杆锚固机理及设计方法的研究[D].郑州:郑州大学.2002.
    [157]Monti G, Renzelli M, Luciani P.FRP adhesion in uncracked and cracked concrete zones[A]//Proc.6th International Symposium on FRP Reinforcement for Concrete Structures. Singapore,2003.
    [158]刘玉茜.钢管混凝土粘结滑移性能的理论分析及ANSYS程序验证[D].西安:西安建筑科技大学,2006.
    [159]严德群.三维锚杆的数值模拟及其相互作用分析[D].南京:河海大学.2001.
    [160]李方元,赵人达.C80高强混凝土与变形钢筋的粘结滑移试验[J].同济大学学报,2003,31(6):715-718.
    [161]中国建筑科学研究院.GB/T50081-2002普通混凝土力学性能试验方法标准[S].北京:中国建筑工业出版社,2003.
    [162]中华人民共和国建设部.GB50152-92混凝土结构试验方法标准[S].北京:中国建筑工业出版社,1992.
    [163]袁广林,郭操,吕志涛.高温下钢筋混凝土粘结性能的试验与分析[J].工业建筑,2006,36(2):57-60.
    [164]张海霞,朱浮声,王凤池.FRP筋与混凝土粘结滑移数值模拟[J].沈阳建筑大学学报(自然科学版),2007,23(2):231-234.
    [165]尤春安.全长粘结式锚杆的受力分析[J].岩石力学与工程学报,2000,19(3):339-341.
    [166]卢黎,张永兴,吴曙光.压力型锚杆锚固段的应力分布规律研究[J].岩土力学,2008,29(6):1517-1520.
    [167]北京玻璃钢研究设计院.GB/T1449-2005纤维增强塑料弯曲性能试验方法[S].北京:中国标准出版社,2005.
    [168]杜善义,王彪.复合材料细观力学[M].北京:科学出版社,1998.
    [169]李并成.河西走廊西部汉长城遗迹及其相关问题考[J].敦煌研究,1995,(2):135-145.
    [170]石晓奇,丁晓仑.丝绸之路与外国探险家[M].乌鲁木齐:新疆美术摄影出版社,2008.
    [171]李吟屏.尼雅遗址古建筑初探[J].喀什师范学院学报(社会科学版),2000,21(2):41-46.
    [172]王宗磊.尼雅古建工艺及其相关问题考察[J].西域研究,1999,(3):67-72.
    [173]李最雄.丝绸之路石窟壁画彩塑保护[M].北京:科学出版社,2005.
    [174]奥里尔·斯坦因,著,巫新华,译.沿着古代中亚的道路[M].桂林:广西师范大学出版社,2008.
    [175]黄汉民.福建土楼—中国传统民居的瑰宝[M].北京:生活·读书·新知三联书店,2009.
    [176]中华人民共和国建设部.建筑抗震设计规范(GB50011-2010)[S],中国建筑工业出版社,2010.
    [177]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005.
    [178]Anil K. Chopra. Dynamics of Structures:Theory and application to Earthquake Engineering (Second Edition)北京:清华大学出版社,2005.
    [179]吴平.质量及刚度分布与高层结构自振频率[J].浙江建筑,1996,(3):15-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700