用户名: 密码: 验证码:
钛合金动态断裂韧性测试方法及断裂行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了测试钛合金材料动态断裂韧性的试验方法,分别探索了适用于示波冲击法和焦散线法两种测试方法的试样形式。采用示波冲击法对TA15ELI合金、TC4合金、TB10合金的Ⅰ型载荷动态断裂韧性进行了测试,采用焦散线法对TA15ELI合金Ⅱ型载荷动态断裂韧性及平均裂纹扩展速率进行了测试,分析了落锤/摆锤加载系统下钛合金动态起裂过程和影响钛合金动态断裂性能的组织因素。
     对于示波冲击法测试钛合金动态断裂韧性的研究表明:不同组织类型的钛合金有不同的缺口敏感性,因而为了简化制样工艺的U型切口试样不适用于动态断裂韧性测试。在落锤或摆锤系统示波冲击测试涉及的加载速率范围内,钛合金一般在屈服之后发生动态断裂。带有a/w=0.2左右较短预制疲劳裂纹的Charpy冲击试样能够适用于示波冲击试验测试Ⅰ型载荷动态断裂韧性Jd。
     对于焦散线法测试钛合金动态断裂韧性的研究表明:在落锤系统所能达到的加载速率范围内难以测试钛合金平面应力条件Ⅰ型载荷动态断裂韧性。两端切口试样能够适用于焦散线法测试钛合金平面应力条件Ⅱ型载荷动态断裂韧性及动态裂纹扩展平均速率。焦散线法测得TA15ELI合金片层组织的试样平面应力条件Ⅱ型裂纹动态断裂韧性为279MPa-m1/2, II型裂纹的平均扩展速度为32.6m/s。
     TA15ELI、TC4、TB10三种合金通过热处理可以获得的最高动态断裂韧性Jd处于近似水平,其中TA15ELI合金略高。TA15ELI、TC4合金的魏氏组织,TC4合金(a+B转)组织、a’马氏体组织以及TB10合金的(弥散a相+β基体)组织通过组织细节参数的调整可以获得较高的动态断裂韧性,Jd数值在350-400kJ/m2范围。TA15ELI合金的魏氏组织相对于片层组织有更低的缺口敏感性和更高的动态断裂韧性。TC4合金(等轴a+a’马氏体)组织以及TB10合金的(a”马氏体+β基体)组织动态断裂韧性较差。
     钛合金类型及组织形态影响其动态断裂模式。片层组织的TA15ELI合金、(a+B转)组织的TC4合金、(a+a’马氏体)组织的TC4合金、(弥散a+β基体)TB10合金以混合模式发生动态断裂,但以韧性模式为主,断口由大量韧窝组成。魏氏组织的TA15ELI合金及a’马氏体组织的TC4合金、(a”马氏体+β基体)组织的TB10合金的断口呈现解理特征,但魏氏组织断口的解离面周围包含大量的细小韧窝。对于Ⅱ型动态断裂,片层组织TA15ELI合金断口由沿剪切方向拉长的韧窝以及光滑的弯曲小平面组成。在裂纹起裂过程中存在剪切集中化区域。
     钛合金断口表面存在大量的显微孔洞和二次裂纹,在动态断裂过程中,显微孔洞的生成能够起到耗散冲击能量的作用。a相内部靠近相界面处为显微孔洞形核位置。起裂过程以显微孔洞聚合的方式形成断裂面。
     钛合金动态断裂韧性受等轴相a含量及a相片层形貌等组织细节的交互影响。对于(a+β转)组织的TC4合金,其动态断裂韧性受等轴a相含量及次生a相片层形貌等组织细节的交互影响,等轴a相含量宜控制在47-50%范围。次生a相应控制其形貌为短棒状。
In this paper, the measurement of dynamic fracture toughness for titanium alloys was studied. The dimensions of the specimens as well as pre-nocth or pre-crack, which were suitable for either instrumented impact test or caustics method, were determined by a series of experiments. The dynamic fracture toughness under mode-I loading of TA15ELI, TC4 and TB10 alloys were evaluated by instrumented impact test, while the caustics method was adoped to test mode-Ⅱdynamic fracture toughness and averge velocity of crack propagating for TA15ELI alloy in plane-stress condition. It is also discussed that the effects of microstructure factors on dynamic fracture toughness.
     The results of study on instrumented impact test are shown as following:The dynamic fracture property for titanium alloys exhibits sensitivity to the notch-tip radius. Thus, the use of U-notched specimen for simplification is inappropriate for evaluating dynamic fracture toughness. The fracture of specimens usually happens after yield for titanium alloys. The Charpy specimen with short pre-crack (a/w=0.2) shows its feasibility for evaluating mode-I dynamic fracture toughness Jd by the method of instrumented impact test.
     The results of study on caustics method are shown as following:it is difficult to determine dynamic fracture toughness for titanium alloys in mode-I plane-stress condition in the loading rate extent that can be introduced by drop hammer system, while both dynamic fracture toughness and averge velocity of crack propagation in mode-Ⅱplane-stress condition can be tested by specimen with pre-notch in two sides. For TA15ELI alloy with lath-like microstructure, the dynamic fracture toughness K11d is 279MPa-m1/2, and the averge velocity of crack propagating is 32.6m/s.
     The respectively highest dynamic fracture toughness Jd values of TA15ELI, TC4 and TB10 alloys are in a similar level, in which the value of TA15ELI is higher. TA15ELI and TC4 alloy with Widmanstatten microstructure, TC4 alloy with (a+BβTrans) microstructure, TC4 alloy with a'martensite microstructure, and TB10 alloy with (distributed a+βmatrix) microstructure, the specimens with above types of microstructures can develop a better dynamic fracture property by microstructure parameter controlling, which show the Jd values about 350~400kJ/m2. TA15ELI alloy with Widmanstatten microstructure has a better dynamic fracture and lower notch sensitivity than that with lath-like microstructure. TC4 alloy with (a+a'martensite) microstructure and TB10 alloy with (a" martensite+βmatrix) exhibit poor dynamic fracture toughness.
     The dynamic fracture mode is influenced by alloy brand and microsturecture. TA15ELI alloy with lath-like microstructure, TC4 alloy with (a+βTans) microstructure, TC4 alloy with (a+a'martensite) microstructure, and TB10 alloy with (distributed a+βmatrix) microstructure, the specimens with above types of microstructures have a ductile and brittle mixed fracture (mainly ductile) under dynamic loading. The fracture surfaces are composed of dimples and tear ridges. TA15ELI alloy with Widmanstatten microstructure, TC4 alloy with a'martensite microstructure and TB10 alloy with (a" martensite+13 matrix) microstructure, the fracture of specimens with above microstructures shows a cleavage features, but for Widmanstatten microstructure the edges of cleavage facets are covered with very fine dimples. For mode-Ⅱfracture, The fracture behavior of TA15ELI alloy under mode-Ⅱdynamic loading in this experiment has a feature of mixed mode, mainly plastic and partly brittle. The fracture surface is composed of elongated dimple along loading direction and smoothly curved facet. Shear localization exists in the crack initiation process.
     It can be found a large amount of micro-voids as well as secondary micro-cracks on the fracture sureface. These voids play a role of energy dissipation in the dynamic fracture process when the voids nucleate. Micro-voids nucleate at phase boundaries in a phase. Fracture surface initiation results from voids coalescence.
     For TC4 alloy with (a+βTans) microstructure, the dynamic fracture toughness is influenced by microstructure details, such as volume of equiaxed a Phase and ratio of length/width for secondary a Phase; the value of volume of equiaxed a in 47~50% with short rod-like secondary a Phase leads to relative good dynamic fracture toughness in this experiment.
引文
[1].C莱茵斯,M皮特尔斯.钛与钛合金[M].北京:化学工业出版社,2005.
    [2]. 刘再华,解德,王元汉等.工程断裂动力学[M].武汉:华中理工大学出版社,1996.
    [3].史巨元.钢的动态力学性能及应用[M].北京:冶金工业出版社,1993.
    [4]. Meyers M A. Dynamic Behavior of Materials[M]. New York:John Wiley & Sons Inc.,1994.
    [5].徐永波,白以龙.动态载荷下剪切变形局部化、微结构演化与剪切断裂研究进展[J].力学进展,2007,37(4):496-516.
    [6].杨扬,程信林.绝热剪切的研究现状及发展趋势[J].中国有色金属学报,2002,12(3):401~408.
    [7].胡昌明贺红亮胡时胜.不同应变率下45钢的层裂研究[J].实验力学,2003,18(2):246~250.
    [8]. Lee D G, Kim S G, Lee S H, et al. Effects of Microstructural Morphology on Quasi-Static and Dynamic Deformation Behavior of Ti-6Al-4V Alloy[J]. METALLURGICAL AND MATERIALS TRANSACTIONS.A,2001,32A(2): 315~324.
    [9]. Lee D G, Lee S H, Lee C S, et al. Effects of Microstructural Factors on Quasi-Static and Dynamic Deformation Behaviors of Ti-6A1-4V Alloys with Widmanstatten Structures[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A,2003, 34A(11):2541~2548.
    [10]. Lee D G, Lee S, Lee C S. Quasi-static and dynamic deformation behavior of Ti-6Al-4V alloy containing fine α 2-Ti3Al precipitates[J]. Materials Science and Engineering. A,2004, A366:25~37.
    [11]. Lee D G, Kim Y G, Nama D, et al. Dynamic deformation behavior and ballistic performance of Ti-6Al-4Valloy containing fine α 2(Ti3Al)precipitates[J]. Materials Science and Engineering A,2005,391:221~234.
    [12]. Lee D G, Lee Y H, Lee C S, et al. Effects of Volume Fraction of Tempered Martensite on Dynamic Deformation Properties of a Ti-6Al-4V Alloy Having a Bimodal Microstructure[J]. Metallurgical And Materials Transactions A,2005, 36A(3):741~748.
    [13]. Lee D G, Lee Y H, Lee S H, et al. Dynamic Deformation Behavior and Ballistic Impact Properties of Ti-6A1-4V Alloy Having Equiaxed and Bimodal Microstructures[J]. METALLURGICAL AND MATERIALS TRANSACTIONS. A, 2004,35A(10):3103-3112.
    [14]. Liu X, Tan C, Zhang J, et al. Influence of microstructure and strain rate on adiabatic shearing behavior in Ti-6A1-4V alloys[J]. Materials Science and Engineering A, 2009,501:30~36.
    [15].刘新芹,谭成文,张静,et al应力状态对Ti-6A1-4V绝热剪切敏感性的影响[J].稀有金属材料与工程,2008,37(9):1522-1525.
    [16]. Liu X, Tan C, Zhang J, et al. Correlation of adiabatic shearing behavior with fracture in Ti-6A1-4V alloys with different microstructures[J].36,2009,9:1143~1149.
    [17]. Liao S, Duffy J. Adiabatic shear bands in a Ti-6A1-4V tiatanium alloy[J]. Journal of the Mechanics and Physics of Solids,1998,46(11):2201~2231.
    [18]. Hines J A, Veccohio K S. Recrystallization kinetics within adiabaitc shear bands[J]. Acta Materialia,1997,45(2):635~649.
    [19]. Nemat-Nasser S, Guo W, Nesterenko V F, et al. Dynamic response of conventional and hot isostatically pressed Ti-6A1-4V alloys:experiments and modeling[J]. Mechanics of Materials,2001,33:425~439.
    [20]. Niinomi M, Kobayashi T. Toughness and microstructural factors of Ti-6A1-4V alloy[J]. Materials Science and Engineering,1988,100:45~55.
    [21].范天佑.断裂动力学引论[M].北京:北京理工大学出版社,1990.
    [22].范天佑.断裂动力学:原理与应用[M].北京:北京理工大学出版社,2006.
    [23].邹广平.金属材料动态断裂韧性的表征与测试[博士].哈尔滨工程大学,2005.
    [24].姜风春,刘瑞堂,张晓欣.船用945钢的动态力学性能研究[J].兵工学报,2000,21(3):257~260.
    [25].郑坚,王泽平,段祝平.动态断裂的加载和测试技术[J].力学进展,1994,24(4):459-473.
    [26]. Anderson D D. Experimental Investigation of Quasistatic and Dynamic Fracture Properties of Titanium Alloys[PHD]. Pasadena, California:California Institute of Technology,2002.
    [27].李强,赖祖涵,马常祥.测定高强钢高速冲击动态断裂韧度KId的新装置及方法[J].金属学报,1998,34(8):852-857.
    [28]. Field J E, Walley S M, Bourne N K, et al. Review of methods of testing at high strain rates[A]. Review of experimental techniques for high rate deformation studies, Proc Acoustics and Vibration Asia'98[C]. Singapore:1998.9~38.
    [29]. Shockey D A, Dao K C, Jones R L. Effect of grain size on quasistatic and dynamic fracture of titanium[R]. Menlo Park, California:SRI International,1975.
    [30].WJ2430-1997.金属材料平面应变动态断裂韧度KId试验方法[S].
    [31].姜风春,刘瑞堂,刘殿魁.动态弹塑性断裂韧性测试方法的比较研究[J].实验力学,1999,14(2):267~272.
    [32].刘瑞堂,姜风春.船用907A钢动态断裂韧性测试研究[J].哈尔滨工程大学学报,1998,19(4):19~23.
    [33].林君山,涂铭旌,鄢文彬Charpy裂纹体的冲击响应与动态断裂韧度[J].机械工程学报,1994,30(1):1~6.
    [34]. Tosal L, Rodriguez C, Belzunce F J, et al. Comparison of the static and dynamic fracture behaviour of an AE-460 structural steel[J].Engineering Fracture Mechanics, 2000,66(6):537-549.
    [35]. Qiu H, ManabuEnoki, Kawaguchi Y. A model for the dynamic fracture toughness of ductile structural steel[J]. Engineering Fracture Mechanics,2002,70(5):589~598.
    [36]. de Luna S, Fernandez-Saez J, Perez-Castellanos J L, et al. An analysis of the static and dynamic fracture behaviour of a pipeline steel[J]. International Journal of Pressure Vessels and Piping,2000,77:691~696.
    [37]. Zhu L H, Zhao Q X, Gu H C, et al. Application of instrumented impact test for studying dynamic fracture property of 9Cr-1Mo-V-Nb-N steel[J].Engineering Fracture Mechanics,1999,64(3):327~336.
    [38].王均,邹红,伍晓勇.350℃下长期时效对1724PH不锈钢动态断裂韧性的影响[J].原子能科学技术,2006,40(2):243-248.
    [39].王力军,曾建民,顾红等.高韧性铝合金LD2的冲击试验的动态分析[J].兵器材料科学与工程,2005,28(4):13~16.
    [40].韩海军,于荣莉.TC4合金静动态断裂韧性KIc、 KId相关性研究[J].科学技术与工程,2006,6(15):2339~2341.
    [41]. Fernandez-Canteli A, Arguelles A, Vina J, et al. Dynamic fracture toughness measurements in composites by instrumented Charpy testing:influence o aging[J]. Composites Science and Techonology,2002,62:1315~1325.
    [42].宫能平,夏源明.一种弹塑性材料动态起裂韧度的J表征和测试方法[J].固体力学学报,2003,24(2):185-191.
    [43]. Klepaczko J R. Disscussion of a New Experimental Method in Measuring Fracture Initiation at High Loading Rates by Stress Waves[J]. ASME Journal of Engineering Materials and Technology,1982,1982(104):29~35.
    [44]. Jiang F, Rohatgi A, Kenneth S, et al. Analysis of the Dynamic Responses for a Pre-cracked Three-point Bend Specimen[J]. International Journal of Fracture,2004, 127:147~165.
    [45].胡艳华,陈芙蓉12Cr1MoV钢动态断裂韧性的试验研究[J].内蒙古工业大学学报,2007,26(2):111~115.
    [46].杨丽,张宝友,崔约贤等.加载速率对30A钢断裂韧性的影响[J].兵器材料科学与工程,2003,26(5):51-56.
    [47].许泽建,李玉龙,李娜,et al加载速率对高强钢40Cr和30CrMnSiNi2A I型动态断裂韧性的影响[J].金属学报,2006,42(9):965-970.
    [48].张晓欣,刘瑞堂.加载速率对船用钢断裂韧性的影响[J].爆炸与冲击,2003,23(1):58~61.
    [49].李慧中8090A1-Li合金动态断裂韧度的研究[J].兵器材料科学与工程,2000,23(1):58~61.
    [50].白新房,高怡斐.钢的动态断裂韧性及止裂韧性的研究现状[J].物理测试,2005,23(4):1~5.
    [51].吕俊波Hopkinson杆动态断裂韧度测试技术研究[硕士].哈尔滨工程大学,2005.
    [52].姜风春,刘瑞堂,张晓欣等.动态弹塑性断裂韧度JId测试方法研究[J].机械强度,2002,24(3):417-419.
    [53]. Anderson D D, Rosakis A J. Comparison of three real time techniques for the measurement of dynamic fracture initiation toughness in metals[J]. Engineering Fracture Mechanics,2005,72:535~555.
    [54]. Dally J W, Barker D B. Dynamic Measurements of Initiation Toughness at High Loading Rates[J]. Experimental Mechanics,1988,28(3):298~303.
    [55]. Kobayashi T, Yamamoto I, Niinomi M. Evaluation of Dynamic Fracture Toughnes Parameters by Instrumented Charpy Impact Test[J]. Engineering Fracture Mechanics, 1986,24(5):773~782.
    [56]. Chen B Y, Shi Y W. A COMPARISON OF VARIOUS DYNAMIC ELASTOPLASTIC FRACTURE TOUGHNESS EVALUATING PROCEDURE BY INSTRUMENTED IMPACT TEST[J]. Engineering Fracture Mechanics,1990,36(1): 17~26.
    [57].周志方,刘瑞堂,杨卓青等.单试样测试材料JId值方法的比较[J].机械工程材料,2006,30(4):23~25.
    [58].高怡斐.新型高强度船体结构用钢工程服役条件下的力学行为表征研究[博士].钢铁研究总院,2006.
    [59]. Kalthoff J F. On the Measurement of Dynamic Fracture Toughness-A Review of Recent Work[J]. International Journal of Fracture,1985,27(3-4):277~298.
    [60]. Kalthoff J F. Fracture Behavior Under High Rates of Loading[J]. Engineering Fracture Mechanics,1986,23(1):289~298.
    [61]. Anderson D D, Rosakis A J. Dynamic Fracture Properties of Titanium Alloys[J]. Experimental Mechanics,2006,46:399~406.
    [62]. Williams J G. The analysis of dynamic fracture using lumped mass-spring models[J]. International Journal of Fracture,1987,33(1):47~49.
    [63].李玉龙,刘元镛.用裂纹张开位移计算三点弯曲试样的动态应力强度因子[J].爆炸与冲击,1993,13(3):249-258.
    [64].孙洪涛,刘元镛.用Hopkinson压杆技术研究试样几何对动态起裂韧性的影响[J].实验力学,1996,11(2):141-146.
    [65]. Kalthoff J F. On the Measurement of Dynamic Fracture Toughness-A Review of Recent Work[J]. International Journal of Fracture,1985,27(3-4):277~298.
    [66].郭伟国,李玉龙,刘元镛.动态起裂韧性测试过程的三维分析[J].计算力学学报,1997,14(3):310~316.
    [67]. Giovanola J H, Klopp R W, Shockey D A. Modeling of microstructural effects on fracture processes at high loading rates[R]. Menio Park, California:SRI International, 1992.
    [68]. Glovanola J H, Curran D R, Kobayashi T, et al. Dynamic fracture observations in high-strength steels[R].333 Ravenswood Avenue, Menlo Park, CA:SRI International,1992.
    [69].J弗里埃德尔.位错[M].北京:科学出版社,1980.
    [70].李桂红,燕东明,赵锦云等.加载速率对Al-Li合金断裂韧性的影响[J].兵器材料科学与工程,2001,24(1):49-52.
    [71]. Yokoyama T, Kishida K. A Novel Impact Three-point Bend Test Method for Determing Dynamic Fracture intiation Toughness[J]. Experimental Mechanics,1989, 29(2):188~194.
    [72]. Rubio L, Fernandez-Saez J, Navarro C. Determination of Dynamic Fracture-initiation Toughness using Three-point Bending Tests in a Modfied Hopkinson Pressure Bar[J]. Experimental Mechanics,2003,43(4):379~386.
    [73]. Stolyarov V V, Valiev R Z. Enhanced low-temperature impact toughness of nanostructured Ti[J]. APPLIED PHYSICS LETTERS,2006,88:041905.
    [74]. Stolyarov V V. Impact Toughness of Nanostructured Titanium[J]. Metal Science and Heat Treatment,2007,49(1-2):57-60.
    [75]. Lutjering G, Williams J C. Titanium[M]. German:Springer,2003.
    [76].张宝昌.有色金属及其热处理[M].西安:西北工业大学出版社,1993.
    [77].沙爱学,李兴无,王庆如等.热变形温度对TC18钛合金显微组织和力学性能的影响[J].中国有色金属学报,2005,15(8):1167~1172.
    [78].张旺峰,曹春晓,李兴无.β热处理TA15钛合金对力学性能的影响规律[J].稀有金属材料与工程,2004,33(7):768-770.
    [79].曹京霞,方波,黄旭等.微观组织对TA15钛合金力学性能的影响[J].稀有金属,2004,28(4):362-364.
    [80]. Welsch G, Lutjering G, Gazioglu K, et al. Deformation characteristics of age hardened Ti-6A1-4V[J]. Metallurgical transactions A,1977,8A(1):169~177.
    [81].李远睿,黄本多,何庆兵.氢对Ti-Al-V钛合金的冲击韧性及组织的影响[J].重庆大学学报,2003,26(2):127-130.
    [82].刘彦章,黄新泉,邱绍宇等Ti-Al-Zr合金的氢致脆性研究[J].核动力工程,2005,26(5):456~460.
    [83]. Li S, Xiong B, Hui S. Effects of cooling rate on the fracture properties of TA15 ELI alloy plates[J]. Rare Metals,2007,26(1):33~38.
    [84].范荣辉,朱明,惠松骁,et al. TA15ELI钛合金厚板损伤容限性能研究[J].金属热处理,2007,32(2):27~29.
    [85].张翥,惠松骁,刘伟.热处理对TB10合金组织性能的影响[J].稀有金属材料与工程(增刊3),2005,34(10):376-380.
    [86].惠松骁,刘伟,张翥.加工工艺对TB10钛合金棒材组织与性能的影响[J].稀有金属材料与工程(增刊3),2005,34(10):381~382.
    [87].刘伟,张翥,惠松骁.TB10钛合金损伤容限性能研究[J].稀有金属材料与工程(增刊3),2005,34(10):383-385.
    [88].尤振平,叶文君,惠松骁,et al. Ti5Mo5V2Cr3A1合金中绝热剪切带的微观结构分析[J].稀有金属材料与工程(增刊3),2008,37(9):511-514.
    [89].尤振平,叶文君,惠松骁,et al. TB10钛合金的动态力学性能及绝热剪切分析[J].稀有金属,2008,(6):.
    [90]. Li S, Xiong B, Hui S, et al. Comparison of the fatigue and fracture of Ti-6A1-2Zr-1Mo-1V with lamellar and bimodal microstructures[J]. Materials Science and Engineering,2007, A 460-461(15):140~145.
    [91]. Li S, Xiong B, Hui S, et al. Effects of microstructure on fatigue crack growth behavior of Ti-6A1-2Zr-IMo-1V ELI alloy[J]. Materials Characterization, 2008,59(4):397-401.
    [92]. ASTM E604-83. Standard Test Method for Dynamic Tear Testing of Metallic Materials[S].
    [93].苏先基,励争.固体力学动态测试技术[M].北京:高等教育出版社,1997.
    [94].李存剑.低合金高强度钢动态断裂行为与机理的研究[博士].冶金部钢铁研究总院,1999.
    [95].励争,樊金武,王君,et al用焦散线法研究PP/PA6/POE-g-Ma的动态断裂性能[J].实验力学,2006,21(3):357~362.
    [96]. Xuefeng Yao, Junda Chen, Guangchang Jin, K Arakawa K T. Caustic analysis of stress singularities in orthotropic compositematerials with mode-I crack[J]. Composites Science and Technology,2004,64:917~924.
    [97]. Gong K, Li Z. Caustics method in dynamic fracture problem of orthotropic materials[J]. Optics and Lasers in Engineering,2008,46(8):614~619.
    [98]. Sansoz F, Ghonem H. Effects of loading frequency on fatigue crack growth mechanisms in α/β Ti microstructure with large colony size[J]. Materials Science and Engineering A,2003,356:81~92.
    [99]. Suri S, Viwanathan G B, Neeraj T, et al. Room temperature deformation and mechanisms of slip transmission in oriented sigle-colony crystals of an α/β titanium alloy[J].1999,47(3):1019~1034.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700