用户名: 密码: 验证码:
非均匀微结构对Zr基块体非晶合金室温塑性及变形行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用X射线衍射分析仪(XRD)、光学显微镜(OM)、示差扫描量热仪(DSC)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、力学试验机、纳米压痕设备、显微硬度计、X射线小角散射(SAXS)及静态热分析仪(TMA)等实验手段系统研究了具有两种不同非均匀微结构(纳米尺度的相分离及二十面体中程有序结构)对Zr基块体非晶合金室温塑性及变形行为的影响,并从理论上分析了非晶合金的变形机理。
     采用电弧熔炼/水冷铜模吸铸的方法制备了ZrCuAlX(X=Ta,Fe)块体非晶合金。实验结果表明:微量正混合热元素Ta和Fe的添加能有效改善合金的室温变形能力,使Cu46Zr47A17非晶合金的室温塑性由0.59%分别提高至2.62%和4.81%。通过研究Fe含量对合金塑性变形行为的影响,发现塑性开始随Fe含量的增加而增加,到1at%时达到最大,为7.47%。随后塑性开始减小,直至2.5at%时不能形成完全的非晶结构。TEM结果表明Fe的添加使ZrCuAl合金中形成纳米尺度的相分离结构,形成富Cu和富Fe的非晶相,当相分离的尺寸在一定尺寸时,能很好地提高非晶合金的室温变形能力。
     通过调整合金中Zr含量,系统性地比较研究了Zr65Cu17.5Ni10Al7.5和Zr69.5Cu12Ni11Al7.5块体非晶合金的微观结构和力学性能。结果表明,这两种成分相近的合金表现出完全不同的晶化行为和力学性能。前者表现为单步晶化,形成稳定的CuZr2相,而Zr69.5Cu12Ni11Al7.5非晶合金则分两步晶化,优先析出准晶相进而形成CuZr2相,表明该合金中具有二十面体中程有序结构。热力学分析表明Zr695Cu12Ni11Al7.5块体非晶合金具有较小的晶化激活能和形核激活能,说明了合金中具有较强的团簇结构,这与SAXS的结果相一致。具有二十面体中程有序结构的Zr69.5Cu12Ni11Al7.5块体非晶合金具有很好的室温变形能力,其单轴压缩塑性高达25%而不发生断裂,缺口断裂韧性达到86MPm1/2,直径为1mm的合金样品弯曲120度以上也不发生断裂,表明增加Zr含量有利于形成二十面体中程有序结构,提高非晶合金的室温变形能力。
     通过研究应变速率对Zr695Cu12Ni11Al7.5块体非晶合金变形行为的影响时发现,该合金存在一个由“冷剪切”到“热剪切”的临界应变速率。在低应变速率下(≤10-1s-1),合金沿着一条主剪切带滑移,表现为典型的冷剪切行为。而当应变速率达到1s-1时,剪切带内合金因发生热剪切而表现为脆性断裂。通过绝热温升模型对其进一步分析发现,合金的变形行为不仅与应变速率有关,也与样品尺寸相关。此外,锯齿流变行为也强烈地依赖于应变速率,并随着应变速率的增大而减小,在应变速率达到10-s-1时消失。此过程类似与摩擦过程中的滑动行为,符合Stick-Slip模型。
     通过在Zr69.5Cu12Ni11Al7.5块体非晶合金上形成单一的剪切带,对剪切带的性质及非晶合金的变形机理进行直接研究。纳米压痕实验结果表明,在剪切带处存在明显的软化,其最小硬度(即为剪切带的硬度)为3.5GPa,且不随着塑性变形量的增加而改变。但剪切带的宽度随着塑性变形量的增加而增大,当塑性变形为6%时,其宽度为160μm,远大于文献中利用TEM观察的10-100nm。TMA和DSC实验结果表明,剪切带内有剧烈的体积膨胀,最大体积膨胀和自由体积分别为1.14%和1.40%。自由体积的最大值不随塑性变形量的增加而改变,表明剪切带内的自由体积在塑性变形为2%时即达到饱和。利用自由体积模型对该块体非晶合金的变形行为进行分析。研究发现,剪切带内的最大自由体积为1.20%,与实验结果完全吻合,说明非晶合金的剪切变形是自由体积产生的过程,符合自由体积模型。基于硬度值和自由体积含量,可以定量表征两者之间的关系,为H=0.56+0.04/ξ,并得到活化体积εov0=1.61×10-28m3。
In this dissertation, the effect of heterogeneous microstructure on room temperature plasticity and deformation behavior in Zr-based bulk metallic glasses have been inverstigated by the means of X-ray diffraction (XRD), optical microscopy (OM), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM), mechanical testing system, nanoindenter, thermomechanical analysis (TMA) and mcrohardness measurement, and then the deformation mechanism of metallic glasses is also discussed.
     Zr-based bulk metallic glassees (BMGs) were synthesized by addition an amount of Ta and Fe into ZrCuAl alloys by copper mould casting. It is found that the plasticity can be enhanced by the addition of positive elements, from 0.59% to 2.62% and 4.81% for Cu46Zr47Al7, Zr45Cu46Al7Ta2 and Zr47Cu44Al7Fe2 alloys, respectively. The effect of Fe content on the deformation behavior had been further studied. The plasticity increased with Fe content at frist, and reached the maximum of 7.47% for Zr47Cu45Al7Fe1, and the decreased until to the appearance of crystalline with the Fe content of 2.5%. TEM showed the occurrence of phase separation with Fe-riched and Cu riched phases in ZrCuAlFe metallic glasses is the reason of enhancement of plasticity. The size increased with the Fe content, and the plasticity is best with the Fe content of 1 at%.
     The mechanical properties of Zr65Cu17.5Ni10Al7.5 and Zr69.5Cui2Ni11Al7.5BMGs have been comparatively studied. The crystallization process of the two BMGs during continuous heating shows quite difference:Zr65Cu17.5Ni10Al7.5BMG undergoes one-step crystallization with the formation of intermetallic compounds of Zr2Cu and small amount Zr2Ni, while Zr69.5Cu12NinAl7.5 BMG follows two-step crystallization with a preferential formation of icosahedral phase, indicating that Zr6.5Cu17.5Ni10Al7.5 BMG may involve a strong icosahedral midium-range ordering structure. It was also found crystallization activation energy and nucleation activation energy were nuch lower in Zr69.5Cu12NinAl7.5 BMG, which further proved the existence of strong clusters in the alloy, which is also confirmed by SAXS results. Comparing with the former BMG,Zr69.5Cu12Ni11Al7.5 BMG exhibited large plastic strain and extremely good toughness. The compressive strain is more than 25%, while the bending degree can reach as large as 120 degree without failure. The noth toughness is as high as 86MPam1/2, while the Zr65Cu17.5Ni10Al7.5 BMG is only 60MPam1/2. It is suggested that the existence of icosahedral midium range ordering clusters could cause a heterogeneous distribution of free volume, which contributed the enhancement of plasticity and toughness of Zr69.5Cu12Ni11Al7.5 BMG.
     The deformation behavior of Zr69.5Cu12Ni11Al7.5 BMG was investigated at different strain rate, from 10-4 to 1s-1. It is found that there is critical strain rate form cold shear to hot shear. When the strain rate is higher than Is-1 for the 2 mm samples, the alloys fractured with litter plastictity due to the temperature rise above glass transition temperature, which can be well explained by temperature rise model. The serrated flow is also dependent on the strain rate, which decreased with the increasing of strain rate, and disappeared at 10-1s-1, which is consistent with the Stick-Slip model.
     Through the above studied, we have conducted a controlled experiment to form a single shear band in the specimen which enabled us to probe shear induced dilatation and softening directly on the shear band itself. Extreme dilatation and free volume increase as high as 1.14% and 1.40% respectively, have been observed resulted from a drastic structure change due to severe plastic flow in the band. The nano-indentation on the individual shear band revealed significant softening of 36% and unexpected wide width up to 160μm, three magnitudes higher than what has been reported. The minimum hardness was independent of plastic strain, which indicated that the free volume reached saturated with the plasti strain of only 2%. These prove beyond doubt the dilatation as the mechanism for softening rather than temperature rise in this study. The correlation between the free volume content and softening is discussed, and can be expressed as H=0.56+0.04/ζwith the activation volume of 1.61×10-28 m3.
引文
[1]Karmer J. Der amorphe zustand der metalle. Zeitschrift fur Physik A Hadrons and Nuclei,1937,106(11-12):675-691.
    [2]Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys. Nature,1960,187(4740):869-870.
    [3]Inoue A, Kato K, Zhang T. An amorphous La55A125Ni20 alloy prepared by water quenching, Materials Transactions, JIM,1989,30(9):722-725.
    [4]Inoue A, Masumoto T, Zhang T. Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Materials Transactions, JIM,1990,31(3):177-183.
    [5]Inoue A, Nishiyama N, Kimura H. Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Materials Transactions, JIM,1997,38(2):179-183.
    [6]Schroers J, Lohwongwatana B, Johnson W L, et al. Gold based bulk metallic glass. Applied Physics Letters,2005,96:061912.
    [7]Inoue A, Zhang T, Nishiyama N, et al. Preparation of 16mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 Alloy. Materials Transactions, JIM,1993,34(12): 1234-1237.
    [8]Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Applied Physics Letters,1993,63(17):2342-2344.
    [9]Jiang Q K, Wang X D, Nie X P, et al. Zr-(Cu,Ag)-Al bulk metallic glasses. Acta Materialia,2008,56(8):1785-1796.
    [10]Jia P, Guo H, Li Y, et al. A new Cu-Hf-Al ternary bulk metallic glass with high glass forming ability and ductility, Scripta Materialia,2006,54(12):2165-2168.
    [11]Ma H, Shi L L, Xu J, et al. Discovering inch-diameter metallic glasses in three-dimensional composition space. Applied Physics Letters,2005,87(18): 181915.
    [12]Yang B J, Yao J H, Zhang J, et al. Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength. Scripta Materialia,2009,61(4):423-426.
    [13]Inoue A, Shinohara Y, Gook J S, et al. Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting. Materials Transactions, JIM, 1995,36(12):1427-1433.
    [14]Shen J, Chen Q J, Sun J F, et al. Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Applied Physics Letters,2005,86(15):151907.
    [15]Inoue A, Shen B L, Koshiba H, et al. Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nature Materials,2003,2(10):661-663.
    [16]Men H, Pang S J, Zhang T. Effect of Er doping on glass-forming ability of Co50Cr15Mo14C15B6 alloy. Journal of Materials Research,2006,21(4):958-961.
    [17]Yi S, Park T G, Kim D H. Ni-based bulk amorphous alloys in the Ni-Ti-Zr-(Si,Sn) system. Journal of Materials Research,2000,15(11):2425-2430.
    [18]Zhang B, Zhao D Q, Pan M X, et al. Formation of cerium-based bulk metallic glasses. Acta Materialia,2006,54(11):3025-3032.
    [19]Guo F Q, Poon S J, Shiflet G J. Metallic glass ingots based on yttrium. Applied Physics Letters,2003,83(13):2575-2577.
    [20]Tan H, Zhang Y, Ma D, et al. Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La-Al-(Cu,Ni) pseudo ternary system. Acta Materialia,2003,51(15):4551-4561.
    [21]Inoue A, Takeuchi A, Zhang T. Ferromagnetic bulk amorphous alloys. Metallurgical and Materials Transactions A,1998,29(7):1779-1793.
    [22]Shen T D, Schwarz R B. Bulk ferromagnetic glasses in the Fe-Ni-P-B system. Acta Materialia,2001,49(5):837-847.
    [23]Pang S J, Zhang T, Asami K, et al. Formation, corrosion behavior, and mechanical properties of bulk glassy Zr-Al-Co-Nb alloys. Journal of Materials Research,2003, 18(7):1652-1658.
    [24]潘杰,张猛,谌棋,等FeCoCrMoCBY块体非晶合金在强酸介质中的耐腐蚀性能,稀有金属材料与工程,2008,增刊4(37):805-808.
    [25]http://coatings.liquidmetal.com/future.applications.asp
    [26]Inoue A. High strength bulk alloys with low critical cooling rates. Materials Transactions, JIM,1995,36(7):866-875.
    [27]Johnson W L. Bulk amorphous metal-An emerging engineering material. JOM-Journal of the Mineral Metals and Materials Society,2002,54(3):40-43.
    [28]Schroers J, Nguyen T, Desai A. Superplastic forming of bulk metallic glass-A technology for MEMS and microstructure fabrication. IEEE:MEMS 2006: 298-301.
    [29]Schroers J. Processing of Bulk Metallic Glass. Advanced Materials,2010,22(14): 1566-1597.
    [30]Kumar G, Tang H X, Schroers J. Nanomoulding with amorphous metals. Nature, 2009,457(7231):868-872.
    [31]Ashby M F. A first report on deformation mechanism maps. Acta Metallurgica,1972, 20:887.
    [32]Lu J, Ravichandran G, Johnson W L. Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Materialia,2003,51(12):3429-3443.
    [33]Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica,1977,25(4):407-415.
    [34]Lewandowski J J, Greer A L. Temperature rise at shear bands in metallic glasses. Nature Materilas,2006,5(1):15-15.
    [35]Ashby M F, Greer A L. Metallic glasses as structural materials. Scripta Materialia, 2006,54(3):321-326.
    [36]Greer A L. Metallic glasses...on the threshold. Materials Today,2009,12(1-2): 14-22.
    [37]Conner R D, Dandlike R B, Johnson W L. Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Materialia,1998,50(10):2737-2745.
    [38]Kato H, Hirano T, Matsuo A, et al. High strength and good ductility of Zr55Al10NisCu30 bulk glass containing ZrC particles. Scripta Materialia,2000,43(6): 503-507.
    [39]Hays C C, Kim C P, Johnson W L. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions, Physical Review Letters,2000,84(13): 2901-2904.
    [40]Hufnagel T C, Fan C, Ott R T, et al. Controlling shear band behavior in metallic glasses through microstructural design, Intermetallics,2002,10 (11-12) 1163-1166.
    [41]Hofmann D C, Suh J Y, Wiest A, et al. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature,2008,451(7182):1085-U3.
    [42]Liu L, Qiu C L, Zou H, et al. The effect of the microalloying of Hf on the corrosion behavior of ZrCuNiAl bulk metallic glass. Journal of Alloys and Compounds,2005, 399(1-2):144-148.
    [43]Schroers J, Veazey C, Johnson W L. Amorphous metallic foam. Applied Physics Letters,2003,82(3):370_372.
    [44]Brothers A H, Dunand D C. Ductile bulk metallic glass foams, Advanced Materials, 2005,17(4):484-486.
    [45]Brothers A H, Dunand D C. Plasticity and damage in cellular amorphous metals. Acta Materialia,200553(16):4427-4440.
    [46]Brothers A H, Dunand D C. Porous and foamed amorphous metals, MRS Bulletin, 2007,32(8):639-643.
    [47]Sung D S, Kwon O J, Fleury E, et al. Enhancement of the glass forming ability of Cu-Zr-Al alloys by Ag addition. Metals and Materials International,2004,10(6): 575-579.
    [48]Lee S W, Lee S C, Kim Y C, et al. Design of a bulk amorphous alloy containing Cu-Zr with simultaneous improvement in glass-forming ability and plasticity. Journal of Materials Research,2007,22(2):486-492.
    [49]Oh J C, Ohkubo T, Kim Y C, et al. Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scripta Materialia,2005,53(2):165-169.
    [50]Du X H, Huang J C, Hsieh K C, et al. Two-glassy-phase bulk metallic glass with remarkable plasticity. Applied Physics Letters,2007,91(13):131901.
    [51]Yao K F, Ruan F, Yang YQ, et al. Superductile bulk metallic glass. Applied Physics Letters,2006,88(12):122106.
    [52]Yao K F, Zhang C Q. Fe-based bulk metallic glass with high plasticity. Applied Physics Letters,2007,90(6):061901.
    [53]Park E S. Kim D H. Phase separation and enhancement of plasticity in Cu-Zr-Al-Y bulk metallic glasses, Acta Materialia,2006,54:2597-2604.
    [54]Park E S, Kyeong J S, Kim D H. Phase separation and improved plasticity by modulated heterogeneity in Cu-(Zr, Hf)-(Gd,Y)-Al metallic glasses, Scripta Materialia,2007,57 (1):49-52.
    [55]Schroers J, Johnson W L. Ductile Bulk Metallic Glass, Physical Review Letters, 2004,93(25):255506.
    [56]Lewandowski J J, Wang W H, Greer A L. Intrinsic plasticity or brittleness of metallic glasses. Philosophical Magazine Letters,2005,85(2):77-87.
    [57]Wang W H. Correlations between elastic moduli and properties in bulk metallic glasses. Journal of Applied Physics,2006,99(9):093506.
    [58]Liu Y H, Wang G, Wang R J, et al. Super plastic bulk metallic glasses at room temperature. Science,2007,315 (5817):1385-1388.
    [59]Wang J G, Zhao D Q, Pan M X, et al. Mechanical heterogeneity and mechanism of plasticity in metallic glasses. Applied Physics Letters,2010,96(2):026101.
    [60]Gu X J, McDermott A G, Poon S J, et al. Critical Poisson's ratio for plasticity in Fe-Mo-C-B-Ln bulk amorphous steel. Applied Physics Letters,2006,88(21): 211905.
    [61]Xing L Q, Li Y, Ramesh K T, et al. Enhanced plastic strain in Zr-based bulk amorphous alloys. Physical Review B,2001,64(18):180201.
    [62]Hufnagel T C, Brennan S. Shor-and medium-range order in (Zr70Cu20Ni10)(90-x)TaxAl10 bulk amorphous alloys. Physical Review B,2003,67(1): 014203.
    [63]Park E S, Chang H J, Kim D H. Effect of addition of Be on glass-forming ability, plasticity and structural change in Cu-Zr bulk metallic glasses. Acta Materialia, 2008,56(13):3120-3131.
    [64]Chen L Y, Fu Z D, Zhang G Q, et al. New class of plastic bulk metallic glass. Physical Review Letters,2008,100(7):075501.
    [65]Zhang Y, Wang W H, Greer A L. Making metallic glasses plastic by control of residual stress. Nature Materials,2006,5(11):857-860.
    [66]Chen L Y, Ge Q, Qu S, et al. Achieving large macroscopic compressive plastic deformation and work-hardening-like behavior in a monolithic bulk metallic glass by tailoring stress distribution. Applied Physics Letters,2008,92(21):211905.
    [67]Yu H B, Hu J, Xia X X, et al. Stress-induced structural inhomogeneity and plasticity of bulk metallic glasses. Scripta Materialia,2009,61(6):640-643.
    [68]Bae D H, Lee S W, Kwon J W, et al. Ductile Zr-base bulk metallic glass. Materials Science and Engineering:A,2007,449-451:111-113.
    [69]Hajlaoui K, Yavari A R, Doisneau B, et al. Shear delocalization and crack blunting of a metallic glass containing nanoparticles:In situ deformation in TEM analysis. Scripta Materialia,2006,54(11):1829-1834.
    [70]Setyawan A D, Saida J, Kato H, et al. Comparing the origin of ductility in the Zr-Al-Ni-Cu-M (M=Nb, Pd) metallic glasses. Intermetallics,2010,18(10): 1884-1888.
    [71]Wang X D, Yang L, Jiang J Z, et al. Enhancement of plasticity in Zr-based bulk metallic glasses. Journal of Materials Research,2007,22:2454-2459.
    [72]Wang W H. Roles of minor additions in formation and properties of bulk metallic glasses. Progress in Materials Science,2007,54(4):540-596.
    [73]Kundig A A, Ohnuma M, Ping D. H, et al. In situ formed two-phase metallic glass with surface fractal microstructure. Acta Materialia,2004,52(8):2441-2448.
    [74]Kim K B, Das J, Wang X D, et al. Effect of Sn on microstructure and mechanical properties of (Ti-Cu)-based bulk metallic glasses. Philosophical Magazine Letters, 2006,86:479-486.
    [75]Zhang Q S, Zhang W, Xie G Q, et al. Formation of a phase separating bulk metallic glass in Cu40Zr40Al10Ag10 alloy. Materials Science and Engineering:B,2008, 148(1-3)97-100.
    [76]Park B J, Chang H J, Kim D H, et al. In situ formation of two amorphous phases by liquid phase separation in Y-Ti-Al-Co alloy. Applied Physics Letters,2004,85(26) 6353-6355.
    [77]Park E S, Jeong E Y, Lee J K, et al. In situ formation of two glassy phases in the Nd-Zr-Al-Co alloy system. Scripta Materialia,2007,56(3) 197-200.
    [78]Zhang Z F, He G, Eckert J, et al. Fracture mechanisms in bulk metallic glassy materials. Physical Review Letters,2003,91(4):045505.
    [79]Pampillo C A. Flow and fracture in amorphous alloys. Journal of Materials Science, 1975,10:1194-1227.
    [80]Zhang A F, Eckert J, Schultz L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Materialia,2003,51(4) 1167-1179.
    [81]Das J, Tang M B, Kim K B, et al. "Work-Hardenable" Ductile Bulk Metallic Glass. Physical Review Letters,2005,94(20):205501.
    [82]Kim K B, Das J, Baier F, et al. Heterogeneity of a Cu47.5Zr47.5Al5 bulk metallic glass. Applied Physics Letters,2006,88:051911.
    [83]Kim K B, Das J, Venkataraman S, et al. Work hardening ability of ductile Ti45Cu40Ni7.5Zr5Sn2.5 and Cu47.5Zr47.5Al5 bulk metallic glasses. Applied Physics Letters,2006,89(7):071908.
    [84]卢博斯基F E,非晶态金属合金,柯成等译,冶金工业出版社,1989年,218-219.
    [85]Kim K B, Das J, Lee M H, et al. Propagation of shear bands in a Cu47.5Zr47.5Al5 bulk metallic glass. Journal of Materials Research,2008,23(1):6-12.
    [86]Inoue A, Zhang W, Tsurui T, et al. Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Philosophical Magazine Letters,2005,85(5) 221-229.
    [87]Shechtman D, Blech I, Gratias D, et al. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters,1984,53(20): 1951-1953.
    [88]Koster U, Meinhardt J, Roos S, et al. Influence of oxygen contents on nanocrystallization of Co33Zr67 and Zr65Cu17.5Ni10Al7.5 alloys. Materials Science Forum,1996,225:311-316.
    [89]Koster U, Meinhardt J, Roos S, et al. Formation of quasicrystals in bulk glass forming Zr-Cu-Ni-Al alloys. Applied Physics Letters,1996,69(2):179-181.
    [90]Koster U, Meinhardt J, Roos S, et al. Formation of quasicrystals in bulk glass forming Zr-Cu-Ni-Al alloys. Materials Science and Engineering:A,1997,226: 995-998.
    [91]Eckert J, Mattern N, Zinkevitch M, et al. Crystallization behavior and phase formation in Zr-Al-Cu-Ni metallic glass containing oxygen, Materials Transactions, JIM,1998,39(6):623-632.
    [92]Inoue A, Zhang T, Saida J, et al. Formation of icosahedral quasicrystalline phase in Zr-Al-Ni-Cu-M (M=Ag, Pd, Au or Pt) systems. Materials Transactions, JIM,1999, 40(10):1181-1184.
    [93]Inoue A, Saida J, Matsushita M, et al. Formation of an icosahedral quasicrystalline phase in Zr65Al7.5Ni10M17.5 (M= Pd, Au or Pt) alloys. Materials Transactions, JIM, 2000,41(2):362-365.
    [94]Inoue A, Zhang T, Chen M W, et al. Ductile quasicrystalline alloys. Applied Physics Letters,2000,76(8) 967-969.
    [95]Saida J, Matsushita M, Zhang T, et al. Precipitation of icosahedral phase from a supercooled liquid region in Zr65Cu7.5Al7.5Ni10Ag10 metallic glass. Applied Physics Letters,1999,75(22):3497-3499.
    [96]Saida, J, Matsushita M, Li C, et al. Formation of icosahedral quasicrystalline phase in Zr70Ni10M20(M=Pd, Au, Pt) ternary metallic glasses. Applied Physics Letters, 2000,76(24) 3558-3560.
    [97]Saida J, Matsushita M, Li C, et al. Effects of Ag and Pd on the nucleation and growth of the nano-icosahedral phase in Zr65Al7.5Ni10Cu7.5M10 (M=Ag or Pd) metallic glasses. Philosophical Magazine Letters,2000,80(11):737-743.
    [98]Fan C, Inoue A. Formation of nanoscale icosahedral quasicrystals and glass-forming ability in Zr-Nb-Ni-Cu-Al metallic glasses. Scripta Materialia,2001,45(1):115-120.
    [99]Xing L Q, Eckert J, Loser W, et al. High-strength materials produced by precipitation of icosahedral quasicrystals in bulk Zr-Ti-Cu-Ni-Al amorphous alloys. Applied Physics Letters,1999,74(5):664-666.
    [100]Kelton K F. Crystallization of liquids and glasses to quasicrystals. Journal of Non-Crystalline Solids,2004,334&335:253-258.
    [101]Egami T. Icosahedral order in liquids. Journal of Non-Crystalline Solids,2007, 353(32-40):3666-3670.
    [102]Xing L Q, Eckert J, Loser W, et al. Effect of cooling rate on the precipitation of quasicrystals from the Zr-Cu-Al-Ni-Ti amorphous alloy. Applied Physics Letters, 1998,73(15):2110-2112.
    [103]Zhang L, Cheng Y Q, Cao A J, et al, Bulk metallic glasses with large plasticity: Composition design from the structural perspective, Acta Materialia,57(4): 1154-1164.
    [104]Hui X, Liu S N, Pang S J, et al. High-zirconium-based bulk metallic glasses with large plasticity. Scripta Materialia,2010,63(2):239-242.
    [105]Liu L, Chan K C, Sun M, et al. The effect of the addition of Ta on the structure, crystallization and mechanical properties of Zr-Cu-Ni-Al-Ta bulk metallic glasses. Materials Science and Engineering A,2007,445-446:697-706.
    [106]Ren H T, Pan J, Chen Q, et al. Enhancement of plasticity and toughness in monolithic Zr-based bulk metallic glass by heterogeneous microstructure. Scripta Materialia,2011,64(7):609-612.
    [107]Wu W F, Li Y, Schuh C A. Strength, plasticity and brittleness of bulk metallic glasses under compression:statistical and geometric effects. Philosophical Magazine,2008, 88(1):71-89.
    [108]Jia P, Zhu Z D, Ma E, et al. Notch toughness of Cu-based bulk metallic glasses, Scripta Materialia,2009,61(2):137-140.
    [109]Wesseling P, Nieh T G, Wang W H, et al. Preliminary assessment of flow, notch toughness, and high temperature behavior of Cu60Zr20Hf10Ti10 bulk metallic glass. Scripta Materialia,2004,51(2):151-154.
    [110]Xu J, Ramamurty U, Ma E, The fracture toughness of bulk metallic glasses, JOM, 2010,62(4)10-18.
    [111]Murakami Y. Stress intensity factors handbook. Pergamon, Oxford, United Kingdom, 1987,2:666.
    [112]Martin I, Ohkubo T, Ohnuma M, et al. Nanocrystallization of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 metallic glass. Acta Materialia,2004,52(15): 4427-4435.
    [113]Kundig A A, Ohnuma M, Ohkubo T, et al. Early crystallization stages in a Zr-Cu-Ni-Al-Ti metallic glass. Acta Materialia,2005,53(7):2091-2099.
    [114]Liu X J, Hui X D, Chen G L, et al. In situ synchrotron SAXS study of nanocrystallization in Zr65Ni25Ti10 metallic glass. Intermetallics,2008,16(1):10-15.
    [115]Inoue A, Zhang T, Chen M W. et al. Formation and properties of Zr-based bulk quasicrystalline alloys with high strength and good ductility. Journal of Materials Research,2000,15(10):2195-2208.
    [116]Liu L, Chan K C, Pang G K H. High-resolution TEM study of the microstructure of Zr65Ni10Cu7.5Al7.5Ag10 bulk metallic glass. Journal of Crystal Growth,2004, 265(3-4):642-649
    [117]Kissinger H E. Reaction kinetics in differential thermal analysis. Analytical Chemistry,1957,29(11):1702-1706.
    [118]Liu L, Wu Z F, Zhang J. Crystallization kinetics of Zr55Cu30Al10Ni5 bulk amorphous alloy. Journal of Alloys and Compounds,2002,339(1-2):90-95.
    [119]吴志芳.锆基大块非晶合金的热稳定性研究:[硕士学位论文].武汉:华中科技大学图书馆,2002.
    [120]陈志浩,刘兰俊,张博,等Zr-Al-Ni-Cu(Nb, Ti)大块非晶玻璃转变的动力学性质.物理学报,2004,11:3839-3843.
    [121]Dalla Torre F H, Dubach A, Schallibaum J, et al. Shear striations and deformation kinetics in highly deformed Zr-based bulk metallic glasses. Acta Materialia,2008, 56(17):4635-4646.
    [122]Song S X, Bei H, Wadsworth J, et al. Flow serration in a Zr-based bulk metallic glass in compression at low strain rates. Intermetallics,2008,16(6):813-818.
    [123]Mondal K, Kumar G, Ohkubo T, et al. Large apparent compressive strain of metallic glasses. Philosophical Magazine Letters,2007,87(9):625-635.
    [124]Lu Z P, Bei H, Wu Y, et al. Oxygen effects on plastic deformation of a Zr-based bulk metallic glass. Applied Physics Letters,2008,92(1):011915.
    [125]Passchier C W, Trouw R A. Microtectonics. Berlin:Springer Verlag,1996,289.
    [126]Zhao J X, Wu F F, Zhang Z F. Analysis on shear deformation mechanism of metallic glass under confined bending test. Materials Science and Engineering A,2010, 527(23):6224-6229.
    [127]Conner R D. Mechanical properties of bulk metallic glass matrix composites. PHD thesis,1998:3.
    [128]Shen Y, Xu J. Improving plasticity and toughness of Cu-Zr-Y-Al bulk metallic glasses via compositional tuning towards the CuZr. Journal of Materials Research, 2010,25(2):375-382.
    [129]Gu X J, Poon S J, Shiflet G J, et al. Compressive plasticity and toughness of a Ti-based bulk metallic glass. Acta Materialia,2010,58(5):1708-1720.
    [130]Kim C P, Suh J Y, Wiest A, et al. Fracture toughness study of new Zr-based Be-bearing bulk metallic glasses. Scripta Materialia,2009,60(2) 80-83.
    [131]Kawashima A, Kurishita H, Kimura H, et al. Fracture Toughness Bulk Metallic Glass by 3-Point Bend Testing. Materials Transactions,2005,46(7): 1725-1732.
    [132]Lewandowski J J, Gu X J, Nouri A S, et al. Tough Fe-based bulk metallic glasses. Applied Physics Letters,2008,92(9):091918.
    [133]Gu X J, Poon S J, Shiflet G J. Mechanical properties of iron-based bulk metallic glasses. Journal of Materials Research,2007,22(2),344-351.
    [134]He Q, Cheng Y Q, Ma E, et al. Locating bulk metallic glasses with high fracture toughness:Chemical effects and composition optimization. Acta Materialia,2011, 59(1):202-215.
    [135]Han Z, Li Y. Cooperative shear and catastrophic fracture of bulk metallic glasses from a shear-band instability perspective. Journal of Materials Research,2009, 24(12):3620-3627.
    [136]Sergueeva A V, Mara N A, Kuntz J D, et al. Shear band formation and ductility in bulk metallic glass. Philosophical Magazine,2005,85(23):2671-2687.
    [137]Zhang Z F, Eckert J. Unified tensile fracture criterion. Physical Review Letters, 2005,94(4):094301.
    [138]Pauly S, Gorantla S, Wang G, et al. Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nature Materials,2010,9(6):473-477.
    [139]Hofmann D C, Suh J Y, Wiest A, et al. Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. Proceedings of the National Academy of Sciences (PNAS).2008,105(51): 20136-20140.
    [140]Wu Y, Xiao Y H, Chen G L, et al. Bulk metallic glass composites with transformation-mediated work-hardening and ductility. Advanced Materials,2010, 22(25):2770-2773.
    [141]Zhu Z, Zhang H, Hu Z, et al. Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity. Scripta Materialia,2010,62(5):278-281.
    [142]Qiao J W, Wang S, Zhang Y, et al. Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification. Applied Physics Letters,2009,94(15):151905.
    [143]Guo H, Yan P F, Wang Y B, et al. Tensile ductility and necking of metallic glass. Nature Materials,2007,6(10):735-739.
    [144]柳义,柳林,王俊,等.用原位x射线小角散射研究块体非晶合金Zr55Cu30Al10Ni5的结构弛豫.物理学报,2003,52(9):2219-2222..
    [145]Mattern N, Gemming T, Thomas J, et al. Phase separation in Ni-Nb-Y metallic glasses. Journal of Alloys and Compounds,2010,495(2):299-304.
    [146]Saksl K, Franz H, Jovari P, et al. Evidence of icosahedral short-range order in Zr70Cu30 and Zr70Cu29Pdl metallic glasses. Applied Physics Letters,2003,83(19): 3924-3926.
    [147]Yang L, Jiang J Z, Liu T, et al. Atomic structure in Zr70Cu29Pd1 metallic glass. Applied Physics Letters,2005,87(6):061918.
    [148]Liu X J, Chen G L, Hui X, et al. Ordered clusters and free volume in a Zr-Ni metallic glass. Applied Physics Letters,2008,93 (1):011911.
    [149]Jiang W H, Fan G J, Liu F X, et al. Rate dependence of shear banding and serrated flows in a bulk metallic glass. Journal of Materials Research,2006,21(9): 2164-2167.
    [150]Jiang W H, Liu F X, Qiao D C, et al. Plastic flow in dynamic compression of a Zr-based bulk metallic glass. Journal of Materials Research,2006,21(6):1570-1575.
    [151]Jiang W H, Fan G J, Liu F X, et al. Spatiotemporally inhomogeneous plastic flow of a bulk-metallic glass. International Journal of Plasticity,2008,24(1):1-16.
    [152]Mukai T, Nieh T G, Kawamura Y, A. et al. Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics,2002,10 (11-12): 1071-1077.
    [153]Liu L F, Dai L H, Bai Y L, et al. Strain rate-dependent compressive deformation behavior of Nd-based bulk metallic glass. Intermetallics,2005,13(8):827-832.
    [154]Zhang J, Park J M, Kim D H, et al. Effect of strain rate on compressive behavior of Ti45Zr16Ni9Cu10Be20 bulk metallic glass. Materials Science and Engineering:A,2007, 449-451:290-294.
    [155]Xue Y F, Cai H N, Wang L, et al. Effect of loading rate on failure in Zr-based bulk metallic glass. Materials Science and Engineering A,2008,473(1-2):105-110.
    [156]Xiao X S, Fang S S, Xia L, et al. Effect of strain rates on the fracture morphologies of Zr-based bulk metallic glasses. Journal of Non-Crystalline Solids,2003,330(1-3): 242-247.
    [157]Schuh C A, Nieh T G. A survey of instrumented indentation studies on metallic glasses. Journal of Materials Research,2004,19(1):46-57.
    [158]Schuh C A, Nieh T G. A nanoindentation study of serrated flow in bulk metallic glasses. Acta Materialia,2003,51(1):87-99.
    [159]Chan K C, Chen Q, Liu L. Deformation behavior of Zr55.9Cu18.6Ta8Al7.5Ni10 bulk metallic glass matrix composite in the supercooled liquid region. Intermetallics, 2007,15(4):500-505.
    [160]Chan K C, Chen Q, Liu L. Deformation behavior of Zr55.9Cu18.6Ta8Al7.5Ni10 bulk metallic glass matrix composite in the supercooled liquid region. Intermetallics, 2007,15(4):500-505.
    [161]Han Z, Wu W F, Li Y, et al. An instability index of shear band for plasticity in metallic glasses. Acta Materialia,2009,57(5):1367-1372.
    [162]Cheng Y Q, Han Z, Li Y, et al. Cold versus hot shear banding in bulk metallic glass. Physical Review B,2009,80(13):134115.
    [163]Chen H M, Huang J C, Song S X, et al. Flow serration and shear-band propagation in bulk metallic glasses. Applied Physics Letters,2009,94(14):141914.
    [164]Wright W J, Samale M W, Hufnagel T C, et al. Studies of shear band velocity using spatially and temporally resolved measurements of strain during quasistatic compression of a bulk metallic glass. Acta Materialia,2009,57(16):4639-4648.
    [165]Liu C T, Heatherly L, Easton D S, et al. Test environments and mechanical properties of Zr-Base bulk amorphous alloys. Metallurgical and Materials Transactions A,1998,29(7):1811-1820.
    [166]Lee M H, Sordelet D J. Evidence for adiabatic heating during fracture of W-reinforced metallic glass composites. Applied Physics Letters,2006,88(26): 261902.
    [167]Georgarakis K, Aljerf M, Li Y, et al. Shear band melting and serrated flow in metallic glasses. Applied Physics Letters,2008,93(3):031907.
    [168]Cheng S, Wang X L, Choo H, et al. Global melting of Zr57Ti5Ni8Cu20Al10 bulk metallic glass under microcompression. Applied Physics Letters,2007,91(20): 201917.
    [169]Jiang W H, Liu F X, Liaw P K, et al. Shear strain in a shear band of a bulk-metallic glass in compression. Applied Physics Letters,2007,90(18):181903.
    [170]Zhang Y, Stelmashenko N A, Barber Z H, et al. Local temperature rises during mechanical testing of metallic glasses. Journal of Materials Research,2007,22(2): 419-427.
    [171]Guo H, Wen J, Xiao N M, et al. The more shearing, the thicker shear band and heat-affected zone in bulk metallic glass. Journal of Materials Research,2008,23(8): 2133-2138.
    [172]Dubach A, Dalla Torre F H, Loffler J F. Constitutive model for inhomogeneous flow in bulk metallic glasses. Acta Materialia,2009,57(3) 881-892.
    [173]Dubach A, Dalla Torre F H, Loffler J F. Deformation kinetics in Zr-based bulk metallic glasses and its dependence on temperature and strain-rate sensitivity. Philosophical Magazine Letters,2007,87(9) 695-704.
    [174]Qiao J W, Yang F Q, Eang G Y, et al. Jerky-flow characteristics for a Zr-based bulk metallic glass. Scripta Materialia,2010,63(11):1081-1084.
    [175]温诗铸,黄平.摩擦学原理,清华大学出版社,2008,372-375.
    [176]Dalla Torre F H, Klaumunzer D, Maaβ R, et al. Stick-slip behavior of serrated flow during inhomogeneous deformation of bulk metallic glasses. Acta Materialia,2010, 58(10):3742-3750.
    [177]Sang Y, Dube M, Grant M. Thermal effects on atomic friction. Physical Review Letters,2001,87(17):174301.
    [178]Braun O M, Naumovets A G, Nanotribology:Microscopic mechanisms of friction. Surface Science Reports,2006,60(6-7):79-158.
    [179]Thompson P A, Robbins M O. Origin of stick-slip motion in boundary lubrication. Science,1990,250(4982):792-794.
    [180]Yoshizawa H, Israelachvili J. Fundamental mechanisms of interfacial friction.2. Stick-slip friction of spherical and chain molecules. Journal of Physical Chemistry, 1993,97(43):11300-11313.
    [181]Cao A J, Cheng Y Q, Ma E. Structural processes that initiate shear localization in metallic glass. Acta Materialia,2009,57(17):5146-5155.
    [182]Shi Y F, Katz M B, Li H, et al. Evaluation of the disorder temperature and free-volume formalisms via simulations of shear banding in amorphous solids. Physical Review Letters,2007,98(18):185505.
    [183]Tang C G, Li Y, Zeng K Y. Characterization of mechanical properties of a Zr-based metallic glass by indentation techniques. Materials Science and Engineering A,2004, 384(1-2):215-223.
    [184]Bei H, Xie S, George E P. Softening caused by profuse shear banding in a bulk metallic glass. Physical Review Letters,2006,96(10):105503.
    [185]Bhowmick R, Raghavan R, Chattopadhyay K, et al. Plastic flow softening in a bulk metallic glass. Acta Materialia,2006,54(16):4221-4228.
    [186]Yoo B G, Kim Y J, Oh J H, et al. On the hardness of shear bands in amorphous alloys. Scripta Materialia,2009,61(10):951-954.
    [187]Johnson K L. The correlation of indentation experiments. Journal of the Mechanics and Physics of Solids,1970,18(2):115-126.
    [188]Ramamurty U, Jana S, Kawamura Y, et al. Hardness and plastic deformation in a bulk metallic glass. Acta Materialia,2005,53(3):705-717.
    [189]Xie S, George E P. Hardness and shear band evolution in bulk metallic glasses after plastic deformation and annealing. Acta Materialia,2008,56(18):5202-5213.
    [190]Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation:Advances in understanding and refinements to methodology. Journal of Materials Research,2004,19(1):3-20.
    [191]Han Z, Yang H, Wu W F, et al. Invariant critical stress for shear banding in a bulk metallic glass. Applied Physics Letters,2008,93(23):231912.
    [192]Zhang Y, Greer A L. Thickness of shear bands in metallic glasses. Applied Physics Letters,2006,89(7):071907.
    [193]Masumoto T, Maddin R. The mechanical properties of palladium 20 a/o silicon alloy quenched from the liquid state. Acta Metallurgica,1971,19(7):725-741.
    [194]Donovan P E, Stobbs W M. The structure of shear bands in metallic glasses. Acta Metallurgica.1981,29(8):1419-1436.
    [195]Pekarskaya E, Kim C P, Johnson W L. In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite. Journal of Materials Research,2001,16(9):2513-2518.
    [196]Li J, Wang Z L, Hufnagel, Characterization of nanometer-scale defects in metallic glasses by quantitative high-resolution transmission electron microscopy. Physical Review B,2002,65(14):144201.
    [197]Jiang W H, Atzmon M. Mechanically-assisted nanocrystallization and defects in amorphous alloys:A high-resolution transmission electron microscopy study. Scripta Materialia,2006,54(3):333-336.
    [198]Schuh C A, Hufnagel T C, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Materialia,2007,55(12):4067-4109.
    [199]Wright T W. The physics and mathematics of adiabatic shear bands. Cambridge: Cambridge University Press; 2002.
    [200]Huang R, Suo Z, Prevost J H, et al. Inhomogeneous deformation in metallic glasses. Journal of the Mechanics and Physics of Solids,2002,50(5):1011-1027.
    [201]Jeamy H J, Chen H S, Wang T T. Plastic flow and fracture of metallic glass. Metallurgical Transactions,1972,3:699.
    [202]Bruck H A, Rosakis A J, Johnson W L. The dynamic compressive behavior of beryllium bearing bulk metallic glasses. Journal of Materials Reasearch,1996,11(2): 503-511.
    [203]Steif P S, Spaepen F, Hutchinson J W. Strain localization in amorphous metals. Acta Metallurgica,1982,30(2):447-455.
    [204]Flores K M, Suh D, Dauskardt R H, et al. Characterization of free volume in a bulk metallic glass using positron annihilation spectroscopy. Journal of Materials Research,2002,17(5):1153-1161.
    [205]Li J, Spaepen F, Hufnagel T C. Nanometer-scale defects in shear bands in a metallic glass. Philosophical Magazine A,2002,82(13):2623-2630.
    [206]Wright W J, Schwarz R B, Nix W D. Localized heading during serrated plastic flow in bulk metallic glasses. Materials Science and Engineering A,2001,319-321: 229-232.
    [207]Cahn R.W. et al. Studies of relaxation of metallic glasses by dilatometry and density measurements,1984, Mat. Res. Soc. Symp. Proc. edited by B. H. Kear and B. C. Giessen (New York:Elsevier), P.241.
    [208]Hu X, Ng S C, Feng Y P, et al. Cooling-rate dependence of the density of Pd40Ni10Cu30P20 bulk metallic glass, Physical Review B,2001,64(17):172201.
    [209]van den Beukel A. Sietsma J. The glass transition as a free volume related kinetic phenomenon. Acta Metallurgica et Materialia,1990,38(3):383-389.
    [210]Koebrugge G W, Sietsma J, van den Beukel A. Structural relaxation in amorphous Pd40Ni40P20. Acta Metallurgica et Materialia,1992,40(4):753-760.
    [211]Slipenyuk A. Eckert J. Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass. Scripta Materialia,2004,50(1):39-44.
    [212]Liu J W, Cao Q P, Chen L Y, et al. Shear band evolution and hardness change in cold-rolled bulk metallic glass. Acta Materialia,2010,58(14):4827-4840.
    [213]Haruyama O, Nakayama Y, Wada R, et al. Volume and enthalpy relaxation in Zr55Cu30Ni5Al10 bulk metallic glass. Acta Materialia,2010,58(5):1829-1836.
    [214]Liu L F, Dai L H, Bai Y L, et al. Initiation and propagation of shear bands in Zr-based bulk metallic glass under quasi-static and dynamic shear loadings. Journal of Non-Crystalline Solids,2005,351(40-42):3259-3270.
    [215]Wang J G, Zhao D Q, Pan M X, et al. Correlation between onset of yielding and free volume in metallic glasses. Scripta Materialia,2010,62(7):477-480.
    [216]Chou H S, Huang J C, Chang L W, et al. Structural relaxation and nanoindentation response in Zr-Cu-Ti amorphous thin films. Applied Physics Letters,2008,93(19): 191901.
    [217]Heggen M, Spaepen F, Feuerbacher M. Creation and annihilation of free volume during homogeneous flow of a metallic glass. Journal of Applied Physics,2005, 97(3):033506.
    [218]De Hey P, Sietsma J, Van den Beukel A. Structural disordering in amorphous Pd4oNi4oP2o induced by high temperature deformation. Acta Materialia,1998,46(16): 5873-5882.
    [219]Egami T, Levashov V A, Morris J R, et al. Statistical mechanics of metallic glasses and liquids. Metallurgical and Materials Transactions A,2010,41A(7):1628-1633.
    [220]Kohda M, Haruyama O, Ohkubo T, et al. Kinetics of volume and enthalpy relaxation in Pt6oNi,5P25 bulk metallic glass. Physical Review B,2010,81(9):092203.
    [221]Argon A S. Plastic deformation in metallic glasses. Acta Metallurgica,1979,27(1): 47-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700