用户名: 密码: 验证码:
原子干涉重力测量原理性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重力加速度g是描述地球重力场的关键参数之一,对其实时实地的精确测量具有重要科学意义。绝对重力测量依赖于高精度的绝对重力仪。原子干涉绝对重力仪因具有较高的灵敏度和测量精度而日益得到重视。
     为了开展高精度重力测量和相关引力实验研究,我们进行了冷原子干涉重力测量的原理性实验研究。冷原子重力仪采用自由落体运动的冷原子作为检验质量,用相位相干的Raman光对其进行操控实现原子干涉。干涉相位包含重力加速度g和Raman光位相等信息,通过用激光相位补偿重力加速度引起的相移,可以测量出重力加速度的绝对值。原子干涉重力测量的关键技术有:首先用磁光阱技术实现87Rb原子的冷却和囚禁,并通过改变囚禁光的频率加速原子形成冷原子喷泉;然后用π/2-π-π/2Raman激光脉冲操控原子实现原子干涉;最后通过探测原子处于末态的概率获得原子干涉条纹和重力加速度信息。
     本文详细介绍了冷原子重力仪的实验设计、冷原子喷泉的实验搭建过程、操控原子的锁相Raman光研制过程以及利用原子干涉仪测量重力加速度的初步实验结果。实验研究表明:1)原子喷泉高度在1m内可控,上抛后的原子团温度为7μK,原子数目在108量级;2)Raman光相噪在100Hz~100kHz频段达至-90dBc/Hz;3)原子干涉重力测量在203s积分时间对应的噪声水平为6×10-9g,并利用该装置记录了8天的潮汐数据。
     为了评估原子干涉重力测量的噪声水平,本文分析了Raman光相噪、Raman光功率波动、磁场波动和地面振动噪声等基本噪声源对该重力仪的影响。分析表明,地面振动噪声是目前限制该重力仪分辨率提高的主要因素。此外,我们实验上证明了磁敏感原子干涉仪可以用来测量真空中的磁场梯度,并指出该方法可以用于修正磁场不均匀导致的测g系统误差。
The local gravity acceleration g is a key parameter for describing the earth's gravity field, while the accuracy of g measurement is dependent on the absolute gravimeters. In recent years, atom interferometry gravimeters have been proved to be a useful tool for absolute gravity measurements. Because of its high potential sensitivity, we are trying to develop a cold atom gravimeter in our cave lab for precision gravity measurements and gravitational experiments.
     The cold atom gravimeter is based on the atom interferometry technology by coherently driving the free-falling cold atoms with phase locked Raman beams. By compensating the g induced phase with the well controlled Raman lasers'phase in an atom interferometer, we can find the center of the interferometry fringe, and then get the absolute value of g precisely. In order to experimentally realize an atom inrerferometry gravimeter, cold atoms were prepared in a magnetic-optical trap, launched upward to form an atom fountain, and then coherently manipulated by theπ/2-π-π/2 Raman pulses to obtain an atom interferometry fringe, while the local gravity was deduced from the interference signal.
     The experimental setup of atom fountain, the phase locked Raman lasers and the primary results of gravity measurement with our atom gravimeter are presented in this thesis, which shows that:1) about 108 atoms with temperature of 7μK have been launched to a height of lm by the cold atom fountain; 2) Raman lasers with low phase noise of-90dBc/Hz between 100Hz to 100kHz are realized; 3) the resolution of the atom gravimeter is 6×10-9g within 203s integration time, and 8 days earth-solid-tide data was also recorded by our gravimeter.
     In order to improve the resolution of this gravimeter, we have analyzed the influences of many possible noise sources. It shows that the sensitivity of our gravimeter is currently limited by the seismic noise. In addition, we have experimentally demonstrated that the magnetic field sensitive atom interferometer could be used to precisely map the magnetic field in vacuum, and this method is useful in correcting the systematic error due to magnetic field inhomogeneity in an atom gravimeter.
引文
[1]I. Marson and J. Faller, g-the acceleration of gravity:its measurement and its importance, Journal of Physics E:Scientific Instruments,1986,19:22.
    [2]J. Faller, Thirty years of progress in absolute gravimetry:a scientific capability implemented by technological advances, Metrologia,2002,39:425.
    [3]G. Boedecker, World gravity standards-present status and future challenges, Metrologia,2002,39:429.
    [4]M. Angelis, A. Bertoldi, L. Cacciapuoti, et al., Precision gravimetry with atomic sensors, Measurement Science and Technology,2009,20:022001.
    [5]P. Becker, P. Bievre, K. Fujii, et al., Considerations on future redefinitions of the kilogram, the mole and of other units, Metrologia,2007,44:1.
    [6]B. Taylor and P. Mohr, On the redefinition of the kilogram, Metrologia,1999,36: 63.
    [7]B. Kibble, I. Robinson and J. Belliss, A realization of the SI watt by the NPL moving-coil balance, Metrologia,1990,27:173.
    [8]A. Eichenberger, B. Jeckelmann and P. Richard, Tracing Planck's constant to the kilogram by electromechanical methods, Metrologia,2003,40:356.
    [9]J. Fixler, G. Foster, J. McGuirk, et al., Atom interferometer measurement of the Newtonian constant of gravity, Science,2007,315 (5808):74.
    [10]J. Schwarz, D. Robertson, T. Niebauer, et al., A free-fall determination of the Newtonian constant of gravity, Science,1998,282 (5397):2230.
    [11]P. Baldi, E. Campari, G. Casula, et al., Gravitational constant G measured with a superconducting gravimeter, Physical Review D,2005,71 (2):22002.
    [12]B. Levi, Atom Interferometer Measures G with Same Accuracy as Optical Devices, Physics Today,1999,52:20.
    [13]J. Luo, Y. Nie, Y. Zhang, et al., Null result for violation of the equivalence principle with free-fall rotating gyroscopes, Physical Review D,2002,65 (4): 42005.
    [14]A. Peters, Keng-Yeow-Chung, and S. Chu, Nature,1999,400:849.
    [15]H. Paik, Superconducting accelerometry:its principles and applications, Classical and Quantum Gravity,1994,11:A133.
    [16]W. Prothero and J. Goodkind, A superconducting gravimeter, Review of Scientific Instruments,2009,39 (9):1257-1262.
    [17]J. Goodkind, The superconducting gravimeter, Review of Scientific Instruments, 1999,70:4131.
    [18]T. Niebauer, G. Sasagawa, J. Faller, et al., A new generation of absolute gravimeters, Metrologia,1995,32:159.
    [19]S. Okubo, S. Yoshida, T. Sato, et al., Verifying the precision of a new generation absolute gravimeter FG5—Comparison with superconducting gravimeters and detection of oceanic loading tide, Geophysical Research Letters,1997,24 (4): 489-492.
    [20]J. Faller and A. Vitouchkine, Prospects for a truly portable absolute gravimeter, Journal of Geodynamics,2003,35 (4-5):567-572.
    [21]A. Peters, K. Chung and S. Chu, High-precision gravity measurements using atom interferometry, Metrologia,2001,38:25.
    [22]M. Kasevich and S. Chu, Atomic interferometry using stimulated Raman transitions, Physical review letters,1991,67 (2):181-184.
    [23]M. Kasevich and S. Chu, Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer, Applied Physics B:Lasers and Optics,1992, 54 (5):321-332.
    [24]M. Snadden, J. McGuirk, P. Bouyer, et al., Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer, Physical review letters,1998,81 (5):971-974.
    [25]J. McGuirk, G. Foster, J. Fixler, et al., Sensitive absolute-gravity gradiometry using atom interferometry, Physical Review A,2002,65 (3):33608.
    [26]K. Moler, D. S. Weiss, M. Kasevich, et al., Theoretical analysis of velocity-selective Raman transitions, Physical Review A,1992,45 (1):342.
    [27]N. Davidson, H. J. Lee, M. Kasevich, et al., Raman cooling of atoms in two and three dimensions, Physical review letters,1994,72 (20):3158.
    [28]K. Chung, S. Chiow, S. Herrmann, et al., Atom interferometry tests of local Lorentz invariance in gravity and electrodynamics, Physical Review D,2009,80 (1):16002.
    [29]J. Le Gou t, T. Mehlst ubler, J. Kim, et al., Limits to the sensitivity of a low noise compact atomic gravimeter, Applied Physics B:Lasers and Optics,2008,92 (2): 133-144.
    [30]P. Cheinet, F. Pereira Dos Santos, T. Petelski, et al., Compact laser system for atom interferometry, Applied Physics B:Lasers and Optics,2006,84 (4):643-646.
    [31]T. Petelski, Atom Interferometers for Precision Gravity Measurements, PhD thesis, Firenze University,2005.
    [32]F. Sorrentino, Y. Lien, G. Rosi, et al., Sensitive gravity-gradiometry with atom interferometry:progress towards an improved determination of the gravitational constant, New Journal of Physics,2010,12:095009.
    [33]N. Poli, F. Wang, M. Tarallo, et al., Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter, Arxiv preprint arXiv:1010.2033,2010.
    [34]N. Yu, J. Kohel, J. Kellogg, et al., Development of an atom-interferometer gravity gradiometer for gravity measurement from space, Applied Physics B:Lasers and Optics,2006,84 (4):647-652.
    [35]L. Zhou, Z.-Y. Xiong, W. Yang, et al., Measurement of local gravity via a cold atom interferometer, China Physics Letter,2011,28 (1):013701.
    [36]O. Carnal and J. Mlynek, Young's double-slit experiment with atoms:A simple atom interferometer, Physical review letters,1991,66 (21):2689-2692.
    [37]D. Keith, C. Ekstrom, Q. Turchette, et al., An interferometer for atoms, Physical review letters,1991,66 (21):2693-2696.
    [38]F. Riehle, T. Kisters, A. Witte, et al., Optical Ramsey spectroscopy in a rotating frame:Sagnac effect in a matter-wave interferometer, Physical review letters,1991, 67(2):177-180.
    [39]Q. Bodart, S. Merlet, N. Malossi, et al., A cold atom pyramidal gravimeter with a single laser beam, Applied Physics Letters,2010,96 (13):134101.
    [40]H. Muller, A. Peters and S. Chu, A precision measurement of the gravitational redshift by the interference of matter waves, Nature,2010,463 (7283):926-929.
    [41]G. Stern, B. Battelier, R. Geiger, et al., Light-pulse atom interferometry in microgravity, The European Physical Journal D,2009,53 (3):353-357.
    [42]B. Canuel, F. Leduc, D. Holleville, et al., Six-axis inertial sensor using cold-atom interferometry, Physical review letters,2006,97 (1):10402.
    [43]H. Muller, S. Chiow, S. Herrmann, et al., Atom-interferometry tests of the isotropy of post-Newtonian gravity, Physical review letters,2008,100 (3):31101.
    [44]G. Lamporesi, A. Bertoldi, L. Cacciapuoti, et al., Determination of the Newtonian gravitational constant using atom interferometry, Physical review letters,2008,100 (5):50801.
    [45]S. Dimopoulos, P. Graham, J. Hogan, et al., Testing general relativity with atom interferometry, Physical review letters,2007,98 (11):111102.
    [46]M. Hohensee, B. Estey, F. Monsalve, et al., Gravitational Redshift, Equivalence Principle, and Matter Waves, Arxiv preprint arXiv:1009.2485,2010,
    [47]M. Perl and H. Mueller, Exploring the possibility of detecting dark energy in a terrestrial experiment using atom interferometry, Arxiv preprint arXiv:1001.4061, 2010,
    [48]C. Borde, Theoretical tools for atom optics and interferometry, Comptes Rendus de l'Academie des Sciences-Series IV-Physics,2001,2 (3):509-530.
    [49]P. R. Berman, Atom interferometry. (Academic Press, New York,1997).
    [50]D. Weiss, B. Young and S. Chu, Precision measurement of/m Cs based on photon recoil using laser-cooled atoms and atomic interferometry, Applied Physics B: Lasers and Optics,1994,59 (3):217-256.
    [51]赵凯华and罗蔚茵,新概念物理教程.热学,大学物理,1998,17(004):35-36.
    [52]D. Wineland and W. Itano, Laser cooling of atoms, Physical Review A,1979,20 (4):1521-1540.
    [53]S. Chu, Laser manipulation of atoms and particles, Science,1991,253 (5022): 861-866.
    [54]S. Chu, Nobel Lecture:The manipulation of neutral particles, Reviews of Modern Physics,1998,70 (3):685-706.
    [55]C. Cohen-Tannoudji, Nobel Lecture:Manipulating atoms with photons, Reviews of Modern Physics,1998,70 (3):707-719.
    [56]W. Phillips, Nobel Lecture:Laser cooling and trapping of neutral atoms, Reviews of Modern Physics,1998,70 (3):721-741.
    [57]S. Stenholm, The semiclassical theory of laser cooling, Reviews of Modern Physics,1986,58 (3):699-739.
    [58]王育竹and徐震,激光冷却及其在科学技术中的应用,物理学进展,2005,25(004):347-358.
    [59]W. Phillips and H. Metcalf, Laser deceleration of an atomic beam, Physical review letters,1982,48 (9):596-599.
    [60]Y. Castin, H. Wallis and J. Dalibard, Limit of Doppler cooling, Journal of the Optical Society of America B,1989,6 (11):2046-2057.
    [61]H. van der Straten, Laser cooling and trapping of atoms, J. Opt. Soc. Am. B,2003, 20:887-908.
    [62]王义遒,原子的激光冷却与限俘(北京大学出版社,北京,2007).
    [63]王义遒,原子的激光冷却与捕陷(Ⅱ),物理,1990,19(008):449-454.
    [64]P. Lett, R. Watts, C. Westbrook, et al., Observation of atoms laser cooled below the Doppler limit, Physical review letters,1988,61 (2):169-172.
    [65]C. Salomon, J. Dalibard, W. Phillips, et al., Laser cooling of cesium atoms below 3 μK, Europhysics Letters,1990,12:683.
    [66]J. Dalibard and C. Cohen-Tannoudji, Laser cooling below the Doppler limit by polarization gradients:simple theoretical models, J. Opt. Soc. Am. B,1989,6(11): 2023 2045.
    [67]P. J. Ungar, D. S. Weiss, E. Riis, et al., Optical molasses and multilevel atoms: theory, J. Opt. Soc. Am. B,1989,6(11):2058-2071.
    [68]D. S. Weiss, E. Riis, Y. Shevy, et al., Optical molasses and multilevel atoms: experiment, J. Opt. Soc. Am. B,1989,6(11):2072-2083.
    [69]P. D. Lett, W. D. Phillips, S. L. Rolston, et al., Optical molasses, J. Opt. Soc. Am. B,1989,6 (11):2084-2107.
    [70]S. Chu, L. Hollberg, J. Bjorkholm, et al., Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure, Physical review letters,1985, 55(1):48-51.
    [71]H. Metcalf, Magneto-optical trapping and its application to helium metastables, J. Opt. Soc. Am. B,1989,6 (11):2206-2210.
    [72]W. Phillips, J. Prodan and H. Metcalf, Laser cooling and electromagnetic trapping of neutral atoms, Journal of the Optical Society of America B,1985,2 (11): 1751-1767.
    [73]E. Adams, Laser cooling and trapping of neutral atoms, Progress in Quantum Electronics,1997,21 (1):1-79.
    [74]W. Paul, Electromagnetic traps for charged and neutral particles, Reviews of Modern Physics,1990,62 (3):531-540.
    [75]H. Metcalf and P. van der Straten, Cooling and trapping of neutral atoms, Physics Reports,1994,244 (4-5):203-286.
    [76]J. L. Hall, M. Zhu and P. Buch, Prospects for using laser-prepared atomic fountains for optical frequency standards applications, J. Opt. Soc. Am. B,1989,6 (11): 2194-2205.
    [77]S. Bize, P. Laurent, M. Abgrall, et al., Advances in atomic fountains, Comptes Rendus Physique,2004,5 (8):829-843.
    [78]S. Bize, Y. Sortais, M. Abgrall, et al.,2002 (unpublished).
    [79]R. Wynands and S. Weyers, Atomic fountain clocks, Metrologia,2005,42:S64.
    [80]A. Peters, High Precision Gravity Measurements Using Atom Interferometry, PhD thesis, Stanford University,1998.
    [81]M. O. Scully, Quantum Optics. (Cambridge University Press, Cambridge,1997).
    [82]C. Monroe, W. Swann, H. Robinson, et al., Very cold trapped atoms in a vapor cell, Physical review letters,1990,65 (13):1571-1574.
    [83]B. Anderson and M. Kasevich, Loading a vapor-cell magneto-optic trap using light-induced atom desorption, Physical Review A,2001,63 (2):23404.
    [84]M. Prentiss, A. Cable, J. Bjorkholm, et al., Atomic-density-dependent losses in an optical trap, Optics letters,1988,13 (6):452-454.
    [85]D. Steck, Rubidium 87 D line data,2001,
    [86]P. Meystre, Elements of quantum optics. (Springer-Verlag, Berlin,1990).
    [87]U. Rapol, A. Wasan and V. Natarajan, Loading of a Rb magneto-optic trap from a getter source, Physical Review A,2001,64 (2):23402.
    [88]R. Muhammad, J. Ramirez-Serrano, K. Magalh es, et al., Efficiency in the loading of a sodium magneto-optical trap from alkali metal dispensers, Optics Communications,2008,281 (19):4926-4930.
    [89]T. Roach and D. Henclewood, Novel rubidium atomic beam with an alkali dispenser source, Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2004,22:2384.
    [90]P. Griffin, K. Weatherill and C. Adams, Fast switching of alkali atom dispensers using laser-induced heating, Review of Scientific Instruments,2005,76:093102.
    [91]E. Donley, T. Heavner, F. Levi, et al., Double-pass acousto-optic modulator system, Review of Scientific Instruments,2005,76:063112.
    [92]M. Zhou, Z. Hu, X. Duan, et al., Experimental progress in gravity measurement with an atom interferometer, Front. Phys. China,2009,4:170.
    [93]M. Chi, O. Jensen, J. Holm, et al., Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier, Phys. Lett,1988, 53:1900-1902.
    [94]J. Walpole, Semiconductor amplifiers and lasers with tapered gain regions, Optical and Quantum Electronics,1996,28 (6):623-645.
    [95]A. Arnold, J. Wilson and M. Boshier, A simple extended-cavity diode laser, Review of Scientific Instruments,1998,69:1236.
    [96]C. Hawthorn, K. Weber and R. Scholten, Littrow configuration tunable external cavity diode laser with fixed direction output beam, Review of Scientific Instruments,2001,72:4477.
    [97]V. Vassiliev, S. Zibrov and V. Velichansky, Compact extended-cavity diode laser for atomic spectroscopy and metrology, Review of Scientific Instruments,2006,77: 013102.
    [98]C. Wieman and L. Hollberg, Using diode lasers for atomic physics, Review of Scientific Instruments,2009,62 (1):1-20.
    [99]C. J. Fooot, Atomic Physics. (Oxford university, New York,2005).
    [100]I. Littler, J. Eschner and H. Bachor, Sub-kHz precision voltage-controlled-oscillator system for laser frequency control:An application in atom optics, Review of Scientific Instruments,2009,67 (9):3065-3069.
    [101]A. Lenef, T. D. Hammond, E. T. Smith, et al., Rotation Sensing with an Atom Interferometer, Physical review letters,1997,78 (5):760.
    [102]M. Weitz, B. C. Young and S. Chu, Atomic Interferometer Based on Adiabatic Population Transfer, Physical review letters,1994,73 (19):2563.
    [103]M. Schmidt, M. Prevedelli, A. Giorgini, et al., A portable laser system for high precision atom interferometry experiments, Arxiv preprint arXiv:1007.0679,2010,
    [104]G. Tackmann, M. Gilowski, C. Schubert, et al., Phase-locking of two self-seeded tapered amplifier lasers, Arxiv preprint arXiv:1003.2286,2010,
    [105]L. Cacciapuoti, M. de Angelis, M. Fattori, et al., Analog+ digital phase and frequency detector for phase locking of diode lasers, Review of Scientific Instruments,2005,76:053111.
    [106]J. L. Hall, L. Hollberg, T. Baer, et al., Optical heterodyne saturation spectroscopy, Applied Physics Letters,1981,39 (9):680-682.
    [107]T. Brzozowski, M. Maczynska, M. Zawada, et al., Time-of-flight measurement of the temperature of cold atoms for short trap-probe beam distances, Journal of Optics B:Quantum and Semiclassical Optics,2002,4:62.
    [108]H. Hagman, P. Sjolund, S. J. H. Petra, et al., Assessment of a time-of-flight detection technique for measuring small velocities of cold atoms, Journal of Applied Physics,2009,105 (8):083109.
    [109]C. Fertig and K. Gibble, Measurement and Cancellation of the Cold Collision Frequency Shift in an 87Rb Fountain Clock, Physical review letters,2000,85 (8): 1622.
    [110]M. Zhou, Z. Hu, X. Duan, et al., Precisely mapping the magnetic field gradient in vacuum with an atom interferometer, Physical Review A,2010,82 (6):061602(R).
    [111]A. Bauch and H. Telle, Frequency standards and frequency measurement, Reports on Progress in physics,2002,65:789.
    [112]K. Dieckmann, R. Spreeuw, M. Weidemuller, et al., Two-dimensional magneto-optical trap as a source of slow atoms, Physical Review A,1998,58 (5): 3891-3895.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700