用户名: 密码: 验证码:
小鼠及人顺式作用元件CArG序列特征及进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类和其它模式生物的基因组完成测序,越来越多的研究表明非编码DNA是真核生物基因组的主要组成部分。在生物体生长发育过程中,转录因子与短序列DNA顺式作用元件的正确识别与结合是调控基因特异性时空表达的关键步骤。血清反应因子是众多得到深入研究的转录因子之一,在有机体内广泛表达,主要调控与生物体发育过程相关的基因。因其调控功能多样性和重要性成为生物学中研究的热点之一。血清反应因子识别结合的顺式作用元件CArG近年来随之备受关注,其重要性日益凸显。尽管有关CArG元件的报道越来越多,但是有关其序列特征及进化起源的研究却鲜见报道。
     到目前为止,在哺乳动物中共有390条CArG元件经过实验验证是有功能的。首先,分析了功能CArG元件的在转录起始位点附近的分布及其与功能的关系,同时研究了相邻CArG元件之间的距离与功能的关系。第二,通过对功能CArG元件序列与背景序列的对比分析,对功能序列的序列特征进行深度挖掘。第三,通过自己编写的计算机程序分别统计了小鼠和人中功能CArG元件的单倍型的种类和数量,并确定了其优势单倍型。最后,通过同源比对分析确定了小鼠和人的同源功能CArG元件,并在此基础上推测了功能CArG元件的进化起源。
     研究结果显示,71%的功能CArG元件分布在转录起始位点上游,且距离转录起始位点越近,CArG元件的数量越多。且上游的功能CArG元件的位点分布服从负冥指数分布。此外,通过统计对比发现含有功能CArG元件的基因上游常含有比背景序列数量更多的CArG-like序列。而当二者含有的CArG-like序列的平均数相差无几的时候,CArG-like序列间的平均距离在这两组基因中的差异并不显著。通过对比分析小鼠和人中功能CArG元件与背景序列的替换率发现,功能CArG元件替换率要低于背景的替换率,这一研究结果说明功能元件的进化因受到功能的限制而很少发生替换。但是功能CArG元件的中心位点5和位点6却显示出比背景序列高的替换率,这一结果预示着这两个位点可能承受着正向选择压力。同时,通过与背景序列的对比分析发现,中心序列中的A\T排列呈现明显的TATA偏好。这一特征可能对功能CArG元件与血清反应因子识别时形成正确的构象有重要作用。研究发现小鼠和人中功能CArG元件存在大量的单倍型。而小鼠基因组中的优势单倍型与人类中的优势单倍型不尽相同。尽管如此,二者仍存在相似序列特征,即都是没有替换的完美CArG元件且其中心序列呈现出明显的TATA排列。启动子序列的同源对比分析在小鼠和人中发现了22对同源CArG元件,结果显示功能重要的CArG元件在亲缘关系较远的物种间也高度保守。
     本研究首次用生物信息结合比较基因组的方法分析了哺乳动物中功能CArG元件的序列特征,并探究了其进化特性。研究结果揭示功能CArG元件的序列特征,并完善和补充了前人的研究结果。此项研究揭示了功能CArG元件特有的序列特征,不仅仅为设计预测软件,降低预测假阳性,提高预测成功率,准确预测候选CArG元件提供了重要的信息;也将推动利用比较基因组的方法对其它生物体中功能CArG元件的研究工作。同时,这些序列特征为进一步研究功能CArG元件对其下游基因表达调控的影响提供了可靠的信息。更为重要的是,本研究为揭示其它顺式作用元件的遗传和序列特征提供了研究平台。对其它顺式作用元件的序列特征的深入发掘,为将来准确预测顺式作用元件、分析基因表达以及研究基因表达调控网络模型奠定坚实基础。
After the whole-genome sequencing in humans and model organisms is that non-coding DNA makes up the majority of the most eukaryotic genomes. Transcription factors recognize degenerate families of short sequences to regulate the expression of genes during their development and throughout life. The serum response factor is one of the well studied regulatory factors. It is expressed throughout the body and throughout development. It mainly regulates the genes that effect the development of the living things. And the serum response factor is one of the valuable transcription factor because of its important role in gene expression. While many studies of cis-elements CArG bound by serum response factor are in progress, little is known about the sequence character and evolution original of the functional CArG elements.
     To present, there are total of 390 CArG elements experimentally validated in the mammalian. Firstly, we used a validated CArG dataset to calculate the distance distribution of functional CArG elements around the TSS. Distances between adjacent CArGs were also analyzed. We compared these distributions to those derived using a control set of randomly selected CArGs (that were not experimentally validated for function). Secondly, the analysis of the CArG sequence compared to the background sequence was performed to discover the sequence character of functional CArG elements. Thirdly, to find the dominant haplotypes in the mammalian, the computer program was run to scanning all the functional CArG elements in the mouse and human genome to find all the haplotypes. Finally, In order to find the evolution origin of the CArG elements, the functional CArG elements were compared between the mouse and human through the orthologous analysis.
     Our results show that 71% functional CArG elements exist upstream to the annotated TSS, with copy number increasing as one move closer to the TSS. And the distribution of the functional CArG elements upstream to the annotated TSS followed the negative power function. Moreover, the average number of the CArG-like elements in the CArG-containing genes is significantly more than that in the control genes. However, when the copy number of the two sets is almost even, the distance between adjacent elemens showed no bias between the functional ones and control ones. Through the analysis of the CArG sequence compared to the background sequence, we discovered that the substitution rate within the functional CArG elements was slower than that of the background DNA in both genomes. The results showed that the functional CArG evolved more slowly than that of the the background DNA because of function. However, core sites of the functional CArG elements evolved faster than that of background DNA. This may hint that these two sites under positive selection. And the core region of the functional CArG showed an obvious TATA bias sequence. And this sequence character of functional CArG may contribute to the formation of SRF binding with the CArG elements. The haplotype analysis of these data showed that the sequence of CArG elements is significantly diverse within species in both genomes. Moreover, the dominant haplotype of the CArG elements is not totally the same in the two genomes. To verify this finding, orthologous studies in the promoter region of CArG-containing genes was performed resulting in that most functional important to be perfectly conserved between the two genomes. And through this analysis 22 orthologous pairs of human and mouse were found. This result provides that functional important CArG elements are conserved between relatively distant speciece.
     We have performed the first genome-scale analysis of CArGome in mammalian through genetic and evolutionary way. The studies provided here revealed the sequence character of CArG elements and extended earlier bioinformatic analyses of functional CArG elements. In this study, we do reveal important pattern of sequence characteristics within functional CArG elements, and it will be a great help to take these into account in predicting the candidate CArG elements and attempting to distinguish the functional CArG elements through alignments. The results presented here provide a platform to study the cis-element through a genetic and evolutionary ways in the mammalian. Better understanding of the sequence characteristic of different classes of cis-elements will fundamentally affect all future developments in cis-element prediction, analysis of gene expression and regulatory determinant pattern detection.
引文
[1] Sun Q, Chen G, Streb JW, et al. Defining the mammalian CArGome. [J]Genome Res, 2006, 16:197–207.
    [2] Folter, S.D., Angenent, G.C. Trans meets cis in MADS science. [J].TRENDS in Plant Science, 2006, 11:224-231.
    [3] Kleinjan, D.A., Heyningen, van V. Long-range control of gene expression: Emerging mechanisms and disruption in disease. [J]. Am J Hum Genet, 2005, 76: 8–32.
    [4] Greenberg ME, Ziff EB. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. [J].Nature ,1984, 311:433–8.
    [5] Miano J M. Deck of CArGs. [J].Circ. Res. 2008; 103; 13-15
    [6] Venter J. C, Adams M D., and Xiaohong Zhu. The Sequence of the Human Genome. [J]. Science, 2001,291:1304– 1351
    [7] Benson DA, Karsch-Mizrachi I,Wheeler DL,et al. GenBank.. [J]. Nucleic Acids Research. 2008 Jan;36(Database issue):D25-30
    [8] Letunic I, Copley R R., Bork P, et al. SMART 5: domains in the context of genomes and networks. [J]. Nucleic Acids Research. 2006, 34:257-260
    [9]Wheeler D L, Chappey C, Lash A E, et al. Database resources of the National Center for Biotechnology Information: 2002 update. [J].Nucleic Acids Research.2002, 30:13-16
    [10] Boeckmann B, Bairoch A, Schneider M et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. [J].Nucleic Acids Research, 2003, 31: 365-370
    [11] Schneider M, Lane L, Bairoch A. et al. The UniProtKB/Swiss-Prot knowledgebase and its Plant Proteome Annotation Program. [J].J Proteomics., 2009 ,72:567-73
    [12] SCOP http://scop.mrc-lmb.cam.ac.uk/scop/
    [13] Yutaka S., Riu Y., Sumio S. et al, DBTSS, DataBase of Transcriptional Start Sites:progress report 2004, [J].Nucleic Acids Research,2004, 32:78—81.
    [14] Krawetz SA, Misener S. Bioinformatics methods and protocols. - Humana Press Totowa, NJ。2000
    [15]Duarte, J.M. Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. [J]. Mol. Biol. Evol, 2006, 23: 469–478
    [16]Causier, B. Evolution in action: following function in duplicated floral homeotic genes. [J]. Curr. Biol, 2005, 15:1508–1512
    [17]Pinyopich, A. Assessing the redundancy of MADS-box genes during carpel and ovule development. [J].Nature 2003.424: 85–88
    [18]Favaro, R. MADS-box protein complexes control carpel and ovule development in Arabidopsis. [J]. Plant Cell, 2003.15:2603–2611
    [19] Guarente L, McDonogh O B. Conservationand evolution of transcriptional mechanisms in eukaryotes [J]. TrendsGenet, 1992, 8:27-32.
    [20] Lee T I, Rinaldi N J, Robert F ,et al. Transcriptional regulatory networks in Saccharomyces cerevisiae [J]. Science, 2002, 298(5594): 799-804.
    [21] Wray S H, Mijovic-Prelec D, Kosslyn S M. Visual processing in migraineurs. [J]. Brain, 1995, 118:23-35.
    [22] Gerasimova T I, Corces V G. Polycomb and trithorax group proteins mediate the function of a chromatin insulator. [J]. Cell, 1998, 92: 511-521.
    [23] Lyko F, Paro R. Chromosomal elements conferring epigenetic inheritance. [J] .Bioessays, 1999, 21(10): 824-832.
    [24] Gohring F, Fackelmayer F O. The Scaffold/Matrix Attachment Region Binding Protein hnRNP-U (SAF-A) Is Directly Bound to Chromosomal DNA in Vivo: A Chemical Cross-Linking Study. [J].Biochemistry, 1997, 36(27): 8276-8283
    [25] Simon I, Barnett J, Hannett N, et al. Serial regulation of transcriptional regulators in the yeast cell cycle. [J]. Cell, 2001, 106(6): 697-708.
    [26] Baron MH. Transcriptional control of globin gene switching during vertebrate development. [J]. Biochimica Biophysica Acta, 1997, 1351: 51 -72.
    [27] Igarashi K, Hoshino H, Muto A, et al. Multival ent DNA binding complex generated by small Maf and Bach l as a possible biochemical basis for beta-globin locus control region complex. [J]. Biol. Chem, 1998,273 (19):11783-11790.
    [28] Maouche L, Lucien N, Cartron J P, et al. A CCACC motif mediates negative transcriptional regulate on of the human erythropoietin receptor. [J].Eur. J. Biochem, 1995, 233: 793-799.
    [29] Cao S X, Gutman P D, Dave H P G, et al. Identification of a transcriptional silencer in the 5'- flanking region of the human e-globin gene. [J]. Proc. Natl. Acad. Sci. USA, 1989, 86:5306-5309.
    [30] Snel B, van Noort V, Huynen M A. Gene co-regulation is highly conserved in the evolution of eukaryotes and prokaryotes. [J].Nucleic Acids Res, 2004, 32: 4725-4731.
    [31] Blumenthal T. Operons in eukaryotes.Brief.Funct Genomic. [J]. Proteomic, 2004, 3: 199-211.
    [32] Hurst L D, Pal C, Lercher M J. The evolutionary dynamics of eukaryotic gene order. [J].Nature Reviews Genetics, 2004, 5:299-310.
    [33] Lercher M J, Urrutia A O, Hurst L D. Clustering of housekeeping genes provides a unified model of gene order in the human genome. [J] .Nat Genet, 2002, 31:180-183.
    [34] De Laat W, Grosveld F. Spatial organization of gene expression: the active chromatin hub. [J].Chromosome Res, 2003, 11:447–459
    [35]雷耀山,史定华,王翼飞.基因调控网络的生物信息学研究[J].自然杂志, 2004, 26(1): 7-12.
    [36]Pollock, R. and Treisman, R. A sensitive method for the determination of protein–DNA binding specificities. [J].Nucleic Acids Res, 1990,18: 6197–6204
    [37]Orlando, V. Mapping chromosomal proteins in vivo by formaldehyde-cross linked-chromatin immunoprecipitation. [J].Trends Biochem, 2000, Sci. 25:99–104
    [38]Lloyd, A.M. . Epidermal cell fate determination in Arabidopsis: patterns defined by a steroid-inducible regulator. [J].Science, 1994, 266:436–439
    [39]Garner, M.M. and Revzin, A. A. gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. [J]. Nucleic Acids Res, 1981, 9: 3047–3060
    [40]Fried, M., and Crothers, D.M. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. [J]Nucleic Acids Res, 1981, 9: 6505–6525
    [41]Bulyk, M.L. Computational prediction of transcription-factor binding site locations. [J].Genome Biol,2003,5: 201-207
    [42] Bulyk M L. Computational prediction of transcription-factor binding site locations. [J]. Genome Biol, 2004, 3:21-31.
    [43] Osada R, Zaslavsky E, Singh M. Comparative analysis of methods for representing and searching for transcription factor binding sites. [J].Bioinformatics, 2004, 20(18):3516-3525.
    [44] Tompa M, Li N, Bailey T, et al,.Assessing computational tools for the discovery of transcription factor binding sites [J]Nature Biotechnology, 2005, 23(1):137-144.
    [45] Tavazoie S, Hughes J D, Campbell M J, et al..Systematic determination of genetic network architecture [J] Nature Genet, 1999, 22(3):281-285.
    [46] Bussemaker H J, Li H, Siggia E D. Regulatory element detection using correlation with expression. [J]Nature Genet, 2001, 27(2): 167-71.
    [47] Ansari-Lari M A, Oeltjen J C, Schwartz S, et al. Comparative sequence analysis of a gene-rich cluster at human. chromosome 12p13 and its syntenic region in mouse chromosome 6. [J]Genome Res, 1998, 8(1):29-40
    [48] Bussemaker H J, Li H, Siggia E D. Building a dictionary for genomes: identification of presumptive regulatory sites by statistical analysis. [J] Proc Natl Acad Sci USA, 2000, 97(18): 10096-10100
    [49] Pennisi E. Searching for the genome’s second code. [J] Science, 2004, 306: 632-633.
    [50] Berg O G, von Hippel P H. Selection of DNA binding sites by regulatory proteins. Statistical- mechanical theory and application to operators and promoters. [J] J.Mol. Biol, 1987, 193(4): 723-750
    [51] Tao J, Ying X, Michael Q Z.Current Topics in Computational Molecular Biology. [M] 1st edition. BeiJing:Tsinghua University Press, 2002:249-268
    [52] Schones D E, Sumazin P, Zhang M Q. Similarity of position frequency matrices for transcription factor binding sites. [J]Bioinformatics, 2005, 21 (3): 307 - 303.
    [53] Pavesi G, Mauri G, Pesole G. In silico representation and discovery of transcription factor binding sites. [J]Brief Bioinform, 2004, 5 (3): 217-236.
    [54] Schneider T, Stephens R. Sequence logos: a new way to display consensus sequences. [J]Nucleic Acids Res, 1990, 18(20): 6097-6100.
    [55] Gotgens B, Barton L M, Gilbert J G, et al. Analysis of vertebrate SCL loci identifies conserved enhancers. [J]Nature Biotechnol, 2000, 18(2):181-186
    [56] Li Q, Harju S, Peterson K R. Locus control regions: coming of age at a decade plus. [J]Trends Genet,1999, 15(10):403一408.
    [57] Loots G G, Locksley R M, Blankepoor C M, et al. Identification of a coordinate regulator of interleukins 4,13,and 5 by cross-species sequence comparisons. [J]Science, 2000, 288 (5463):136-140
    [58] Gelfand M S. Recognition of regulatory sites by genomic comparison. [J]Res. Microbiol, 1999, 150: 755-771
    [59] Gelfand M S, Koonin E V, Mironov A A. Prediction of transcription regulatory sites in Archaea by a comparative genomic approach. [J]Nucleic Acid Research, 2000, 28(3):695-705
    [60] Wasserman W W, Palumbo M, Thompson W, et al. Human-mouse genome comparisons to locate regulatory sites [J].Nature Genetics, 2000, 26: 25-227
    [61] Zhou Zhu,Yitzhak P, George M. Church. Computational Identification of Transcription Factor Binding Sites via a Transcription-factor-centric Clustering (TFCC) Algorithm. [J]J.Mol.Biol,2002,318:7 1-81
    [62] Kathleen D, Martine U, Anne C, et al. Cloning and characterization of the 50-flanking region of the rat neuron-specific Class III b-tubulin gene. [J]Gene, 2002, 294:269-27
    [63] Qiu P. Recent advances in computational promoter analysis in understanding the transcriptional regulatory network. Biochem. Biophys. [J] Res. Commun, 2003, 309: 495–501.
    [64] Blanchette M, Tompa M. Discovery of regulatory elements by a computational method for phylogenetic footprinting. [J]Genome Research, 2002, 12: 739-748.
    [65] Blanchette M, Tompa M. FootPrinter: a program designed for phylogenetic fnotprinting. [J] Nucleic Acids Res, 2003, 31(13): 3840-3842.
    [66] Lenhard B, Sandelin A, Mendoza L, et al. Identification of conserved regulatory elements by comparative genome analysis. [J]J. Biol, 2003, 2: 13.
    [67] Boffelli D, McAuliffe J, Ovcharenko D,et al. Phylogenetic shadowing of primate sequences to find functional regions of the human genome. [J]Science,2003, 299:1391-1394.
    [68] Mikhail S G, Pavel S N, Elena S N, et al. Comparative analysis of regulatory patterns in bacterial genomes. [J]Brief Bioinform, 2002, 1(4):357-371.
    [69] Liu Y, Liu X, Wei L, et al. Eukaryotic regulatory element conservation analysis and identification using comparative genomics. [J] Genome Research, 2004, 14(3): 451-458.
    [70] Cliften PF, Hillier LW, Fulton L, et al. Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. [J] Genome Res, 2001, 11(7): 1175-1186.
    [71] Loots G G, Ovcharenko I, Pachter L, et al. rVista for comparative sequence-based discovery of functional transcription factor binding sites[J].Genome Research, 2002, 12(5): 832-839.
    [72] Kenichi H, Yoshihiro U. Plant cis2acting regulatory DNA elements (PLACE) database: 1999. [J].Nucleic Acids Research ,1999 ,27(1) : 297 -300.
    [73] Kolchanov N A, Lgnitiven E V. Transcription regulatory regions database(TRRD) : its status in 2002 [J]. Nucleic Acids Research ,2002 ,30(1) :312 -317.
    [74] Matys V, Friche E. TRANSFAC: transcriptional regulation from patterns to profiles. [J]Nucleic Acids Research, 2003, 31(1): 374 - 378.
    [75]Hardison, R., Oeltjen, J., and Miller, W. Long human–mouse sequence alignments reveal novel regulatory elements: A reason to sequence the mouse genome. [J]Genome Res, 1997, 7: 959–966.
    [76]Wasserman, W.W., Palumbo, M., Thompson, et al. Human–mouse genome comparisons to locate regulatory sites. [J]Nat. Genet, 2000, 26:225–228.
    [77]Cliften, P.F. Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. [J]Genome Res, 2001, 11:1175–1186.
    [78]Pritsker, M., Liu, Y.C., Beer, M.A., Whole-genome discovery of transcription factor binding sites by network-level conservation. [J]Genome Res, 2004, 14:99–108.
    [79]Xie, X. Systematic discovery of regulatory motifs in human promoters and 3′UTRs by comparison of several mammals. [J]. Nature, 2005, 434:338–345.
    [80] Schwarz-Sommer Z, Huijser P, Nacken W, et al. Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus. [J]. Science, 1990, 250(4983): 931-936.
    [81] Nurrish S J, Treisman R. DNA binding specificity determinants in MADS-box transcription factors. [J].Mol Cell Biol, 1995, 15(8): 4076-4085.
    [82] Ku A T, Huang Y S, Wang Y S, et al. IbMADS1 (Ipomoea batatas MADS-box 1 gene) is involved in tuberous root initiation in sweet potato (Ipomoea batatas). [J]. Ann Bot (Lond), 2008, 102(1): 57-67.
    [83] Arora R, Agarwal P, Ray S, et al. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. [J].BMC Genomics, 2007, 8: 242.
    [84] Geuten K, Becker A, Kaufmann K, et al. Petaloidy and petal identity MADS-box genes in the balsaminoid genera Impatiens and Marcgravia. [J].Plant J, 2006, 47(4): 501-518.
    [85] Sentoku N, Kato H, Kitano H, et al. OsMADS22, an STMADS11-like MADS-box gene of rice, is expressed in non-vegetative tissues and its ectopic expression induces spikelet meristem indeterminacy .[J].Mol Genet Genomics, 2005, 273(1): 1-9.
    [86] Di Stilio V S, Kramer E M, Baum D A. Floral MADS box genes and homeotic gender dimorphism in Thalictrum dioicum (Ranunculaceae) - a new model for the study of dioecy. [J]. Plant J, 2005, 41(5): 755-766.
    [87] Aoki S, Uehara K, Imafuku M, et al..Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes. [J] J Plant Res, 2004, 117(3): 229-244.
    [88] Jack T. Plant development going MADS.[J]. Plant Mol Biol, 2001, 46(5): 515-520.
    [89] Riechmann J L, Meyerowitz E M. MADS domain proteins in plant development. [J]. Biol Chem, 1997, 378(10): 1079-1101.
    [90] Tonaco I A, Borst J W, De Vries S C, et al. In vivo imaging of MADS-box transcription factor interactions. [J]. J Exp Bot, 2006, 57(1): 33-42.
    [91] Oh S, Zhang H, Ludwig P, et al. A mechanism related to the yeast transcriptional regulator Paf1c is required for expression of the Arabidopsis FLC/MAF MADS box gene family. [J].Plant Cell, 2004, 16(11): 2940-2953.
    [92] Vrebalov J, Ruezinsky D, Padmanabhan V, et al. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. [J]. Science, 2002, 296(5566): 343-346.
    [93] Purugganan M D, Rounsley S D, Schmidt R J, et al. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. [J]. Genetics. 1995, 140(1): 345-356.
    [94]Shore P, Sharrocks AD The MADS-box family of transcription factors. [J].Eur J Biochem, 1995, 229: 1–13.
    [95] Escalante R, Vicente J J, Moreno N, et al. The MADS-box gene srfA is expressed in a complex pattern under the control of alternative promoters and is essential for different aspects of Dictyostelium development. [J].Dev Biol, 2001, 235(2): 314-329.
    [96] Olson E N, Perry M, Schulz R A. Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors. [J]. Dev Biol, 1995, 172(1): 2-14.
    [97] Shan H, Zhang N, Liu C, et al. Patterns of gene duplication and functional diversification during the evolution of the AP1/SQUA subfamily of plant MADS-box genes. [J]. Mol Phylogenet Evol, 2007, 44(1): 26-41.
    [98] Buchner P, Boutin J P. A MADS box transcription factor of the AP1/AGL9 subfamily is also expressed in the seed coat of pea (Pisum sativum) during development. [J].Plant Mol Biol, 1998, 38(6): 1253-1255
    [99] Theissen G, Saedler H. MADS-box genes in plant ontogeny and phylogeny: Haeckel's 'biogenetic law'revisited. [J].Curr Opin Genet Dev, 1995, 5(5): 628-639.
    [100]Riechmann, J.L. and Meyerowitz, E.M. MADS domain proteins in plant development. [J].Biol. Chem, 1997. 378: 1079–1101
    [101] Ikeshima H, Imai S, Shimoda K, et al. Expression of a MADS box gene, MEF2D, in neurons of the mouse central nervous system: implication of its binary function in myogenic and neurogenic cell lineages. [J]. Neurosci Lett, 1995, 200(2): 117-120.
    [102] Treisman R. DNA-binding proteins. Inside the MADS box.[J]. Nature, 1995, 376(6540): 468-469.
    [103] Rounsley S D, Ditta G S, Yanofsky M F. Diverse roles for MADS box genes in Arabidopsis development. .[J]Plant Cell, 1995, 7(8): 1259-1269.
    [104] Huang H, Tudor M, Weiss C A, et al. The Arabidopsis MADS-box gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding protein. [J]. Plant Mol Biol, 1995, 28(3): 549-567.
    [105] Theissen G, Kim J T, Saedler H. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. [J]. J Mol Evol, 1996, 43(5): 484-516.
    [106] Perry S E, Nichols K W, Fernandez D E. The MADS domain protein AGL15 localizes to the nucleus during early stages of seed development. [J]. Plant Cell, 1996, 8(11): 1977-1989.
    [107] Riechmann J L, Wang M, Meyerowitz E M. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. [J]. Nucleic Acids Res, 1996, 24(16): 3134-3141.
    [108] Kang S G, Hannapel D J. A novel MADS-box gene of potato (Solanum tuberosum L.) expressed during the early stages of tuberization. [J]. Plant Mol Biol, 1996, 31(2): 379-386.
    [109] Menzel G, Apel K, Melzer S. Identification of two MADS box genes that are expressed in the apical meristem of the long-day plant Sinapis alba in transition to flowering. [J]. Plant J, 1996, 9(3): 399-408.
    [110] Kruger J, Aichinger C, Kahmann R, et al. A MADS-box homologue in Ustilago maydis regulates the expression of pheromone-inducible genes but is nonessential.. [J].Genetics, 1997, 147(4): 1643-1652.
    [111] West A G, Shore P, Sharrocks A D. DNA binding by MADS-box transcription factors: a molecular mechanism for differential DNA bending. [J].Mol Cell Biol, 1997, 17(5): 2876-2887.
    [112] Kang H G, An G. Isolation and characterization of a rice MADS box gene belonging to the AGL2 gene family. [J].Mol Cells, 1997, 7(1): 45-51.
    [113] Lu Z X, Wu M, Loh C S, et al. Nucleotide sequence of a flower-specific MADS box cDNA clone from orchid. [J].Plant Mol Biol, 1993, 23(4): 901-904.
    [114] Van Der Krol A R, Brunelle A, Tsuchimoto S, et al. Functional analysis of petunia floral homeotic MADS box gene pMADS1. [J].Genes Dev, 1993, 7(7A): 1214-1228.
    [115] Leifer D, Krainc D, Yu Y T, et al. MEF2C, a MADS/MEF2-family transcription factor expressed in a laminar distribution in cerebral cortex [J].Proc Natl Acad Sci U S A, 1993, 90(4): 1546-1550.
    [116] Pnueli L, Abu-Abeid M, Zamir D, et al. The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. [J]. Plant J, 1991, 1(2): 255-266.
    [117] Huijser P, Klein J, Lonnig W E, et al. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. [J].EMBO J, 1992, 11(4):1239-1249.
    [118] Alvarez-Buylla, E.R.. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. [J] Proc. Natl. Acad. Sci. U. S. A, 2000, 97:5328–5333
    [119] Duprey P, Lesens C. Control of skeletal muscle-specific transcription: involvement of paired homeodomain and MADS domain transcription factors. [J].Int J Dev Biol, 1994, 38(4): 591-604.
    [120] Mandel T, Lutziger I, Kuhlemeier C. A ubiquitously expressed MADS-box gene from Nicotiana tabacum. [J].Plant Mol Biol, 1994, 25(2): 319-321.
    [121] Pnueli L, Hareven D, Broday L, et al. The TM5 MADS Box Gene Mediates Organ Differentiation in the Three Inner Whorls of Tomato Flowers. [J]. Plant Cell, 1994, 6(2): 175-186.
    [122] Mena M, Mandel M A, Lerner D R, et al. A characterization of the MADS-box gene family in maize. [J].Plant J, 1995, 8(6): 845-854.
    [123]Go′mez-Mena, C. et al. Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. [J] Development, 2005, 132,:429–438
    [124]Ito, T. The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. [J] Nature, 2004, 430: 356–360
    [125]Savidge, B.. Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. [J]Plant Cell, 1995, 7:721–733
    [126] Zachgo, S. . Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant. [J] Development,1995, 121:2861–2875
    [127]Hill, T.A.. Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. [J]Development, 1998, 125: 1711–1721
    [128] Tilly, J.J. . The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. [J]Development, 1998, 125: 1647–1657
    [129] Greco R, Stagi L, Colombo L, et al. . MADS box genes expressed in developing inflorescences of rice and sorghum [J].Mol Gen Genet, 1997, 253(5): 615-623.
    [130] Lockhart S R, Nguyen M, Srikantha T, et al. A MADS box protein consensus binding site is necessary and sufficient for activation of the opaque-phase-specific gene OP4 of Candida albicans. [J]. J Bacteriol, 1998, 180(24): 6607-6616.
    [131] Rigola D, Pe M E, Fabrizio C, et al. . CaMADS1, a MADS box gene expressed in the carpel of hazelnut [J].Plant Mol Biol, 1998, 38(6): 1147-1160.
    [132] Kim Y S, Lee H S, Lee M H, et al. [J]A MADS box gene homologous to AG is expressed in seedlings as well as in flowers of ginseng.. Plant Cell Physiol, 1998, 39(8): 836-845.
    [133]Kramer E M, Dorit R L, Irish V F. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. [J].Genetics, 1998, 149(2): 765-783.
    [134] Schwarz-Sommer, Z. et al. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. [J]EMBO J, 1992, 11 : 251–263
    [135] Pnueli L, Abu-Abeid M, Zamir D, et al. The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. [J].Plant J, 1991, 1(2): 255-266.
    [136] Huijser P, Klein J, Lonnig W E, et al. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. [J].EMBO J, 1992, 11(4): 1239-1249.
    [137]Treisman R. Identification and purification of a polypeptide that binds to the c-fos promoter serum response element. [J]. EMBO J, 1987, 6:2711–7
    [138]Prywes R, Roeder RG. Purification of the c-fos enhancer-binding protein. [J]. Mol Cell Biol, 1987, 7:3482–9.
    [139]Spencer JA,Misra RP. Expression of the serum response factor gene is regulated by serum response factor binding sites. [J]. J Biol Chem, 1996, 271:16535–43.
    [140]Norman C, Runswick M, Pollock R, Treisman R. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. [J].Cell, 1988, 55:989–1003.
    [141]Belaguli NS, Schildmeyer LA, Schwartz RJ. Organization and myogenic restricted expression of the murine serum response factor gene: a role for autoregulation. [J]. J Biol Chem, 1997, 272:18222–31.
    [142]Croissant JD, Kim JH, Eichele G, et al. Avian serum response factor expression restricted primarily to muscle cell lineages is required for $-actin gene transcription. [J].Dev Biol, 1996, 177:250–64.
    [143]Reecy JM, Belaguli NS, Schwartz RJ. Serum response factor-NK homeodomain factor interactions, role in cardiac development. In: Harvey RP, Rosenthal N, editors. Heart development. [M].New York: Academic Press; 1999. p. 273–90.
    [144]Misra RP, Rivera VM,Wang JM, et al. The serum response factor is extensively modified by phosphorylation following its synthesis in serum-stimulated fibroblasts. [J].Mol Cell Biol, 1991,11: 45–54.
    [145]Qureshi, S.A., Cao, X.M., Sukhatme, V.P., et al v-Src activates mitogen-responsive transcription factor Egr-1 via serum response elements. [J]. J. Biol. Chem, 1991, 266: 10802–10806.
    [146]Lazo, P.S., Dorfman, K., Noguchi, et al Structure and mapping of the fosB gene. FosB downregulates the activity of the fosB promoter. [J]. Nucleic Acids Res, 1992, 20: 343–350.
    [147]Perez-Albuerne, E.D., Schatteman, G., Sanders, L.K.,et al. Transcriptional regulatory elements downstream of the JunB gene. [J].Proc. Natl. Acad. Sci, 1993, 90: 11960–11964.
    [148]Arsenian S, Weinhold B, Oelgeschlager M, et al. Serum response factor is essential for mesoderm formation during mouse embryogenesis. [J].EMBO J, 1998,17:89–99.
    [149]Fraser AG, Kamath RS, Zipperlen P, et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. [J].Nature, 2000, 408:325–30.
    [150]Guillemin K, Groppe J, Dücker K, et al. The pruned gene encodes the Drosophila serum response factor and regulates cytoplasmic outgrowth during terminal branching of the tracheal system. [J].Development, 1996, 122:1353–62.
    [151]Montagne J, Groppe J, Guillemin K, et al. The Drosophila serum response factor gene is required for the formation of intervein tissue of the wing and is allelic to blistered. [J].Development, 1996, 122:89–97.
    [152]Vogel AM, Gerster T. A.zebrafish homolog of the serum response factor gene is highly expressed in differentiating embryonic myocytes. [J] Mech Dev, 1999, 81:217–21
    [153]Iyer, V.R., Eisen, M.B., Ross, D.T., et al.. The transcriptional program in the response of humanfibroblasts to serum. [J] Science, 1999, 3: 83–87.
    [154]Chang S., Wei, L., Otani, T., et al. Inhibitory cardiac transcription factor, SRF-N, is generated by caspase 3 cleavage in human heart failure and attenuated by ventricular unloading. [J]. Circulation, 2003, 108: 407–413
    [155]Nelson, T.J., Balza Jr., R., Xiao, Q., et al. SRF-dependent gene expression in isolated cardiomyocytes: Regulation of genes involved in cardiac hypertrophy. [J].J. Mol. Cell. Cardiol, 2005, 39: 479–489.
    [156]Parlakian, A., Charvet, C., Escoubet, B., et al..Temporally controlled onset of dilated cardiomyopathy through disruption of the SRF gene in adult heart. [J]Circulation, 2005, 112: 2930–2939.
    [157]Knoll, B., Kretz, O., Fiedler, C., et al. Serum response factor controls neuronal circuit assembly in the hippocampus. [J]. Nat. Neurosci, 2006, 9: 195–204.
    [158]Etkin, A., Alarcon, J.M., Weisberg, S.P, et al. A role in learning for SRF: Deletion in the adult forebrain disrupts LTD and the formation of an immediate memory of a novel context. [J]. Neuron, 2006, 50: 127–143
    [159]Buchwalter, G., Gross, C., and Wasylyk, B. Ets ternary complex transcription factors. [J]. Gene, 2004, 324: 1–14.
    [160]Cen, B., Selvaraj, A., and Prywes, R. Myocardin/MKL family of SRF coactivators: Key regulators of immediate early and muscle specific gene expression. [J]. J. Cell. Biochem, 2004, 93: 74–82.
    [161]Shaw, P.E., Schroter, H., and Nordheim, A. The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter. [J].Cell, 1989, 56: 563–572.
    [162]Verger, A. and Duterque-Coquillaud, M. When Ets transcription factors meet their partners. [J]. Bioessays, 2002,24: 362–370.
    [163]Iyer, D., Chang, D., Marx, J., et al. Serum response factor MADS box serine-162 phosphorylation switches proliferation and myogenic gene programs. [J]. Proc. Natl. Acad. Sci, 2006,103: 4516–4521.
    [164]Cooper, J. S., Trinklein, N. D., Nguyen, L.,et al.. Serum response factor binding sites differ in three human cell types [J].Genome Res, 2007, 17:136-144.
    [165]Treisman R. Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5’element and c-fos 3’sequences. [J]Cell, 1985; 42:889–902.
    [166]Minty A, Kedes L. Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif. [J]Mol Cell Biol, 1986, 6:2125–36.
    [167]Zhang SX, Gras EG, Wycuff DR,et al. Identification of direct serum response factor gene targets during DMSO induced P19 cardiac cell differentiation. [J] J Biol Chem, 2005,280:19115–19126.
    [168]Deschamps J, Meijink F,Verma IM. Identification of a transcriptional enhancer element upstream from the proto-oncogene fos. [J] Science, 1985, 230:1174–7.
    [169]Gilman MZ,Wilson RN,Weinberg RA. Multiple protein-binding sites in the 5’-flanking region regulate c-fos expression. [J]Mol Cell Biol, 1986, 6:4305–16.
    [170]Shiraishi, H.. Nucleotide sequences recognized by the AGAMOUS MADS domain of Arabidopsis thaliana in vitro. [J] Plant J., 1993, 4:385–398
    [171]Huang, H..Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGAMOUS. [J] Nucleic Acids Res, 1993, 21: 4769–4776
    [172]Riechmann, J.L.. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. [J]Proc. Natl. Acad. Sci. U. S. A. 1996, 93: 4793–4798
    [173]Hepworth, S.R.. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. [J] EMBO J, 2002, 21: 4327–4337
    [174]Tro¨bner,W.. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinumfloral organogenesis. [J] EMBO J, 1992, 11: 4693–4704
    [175]West, A.l. DNA binding and dimerisation determinants of Antirrhinum majus MADS-box transcription factors. [J]Nucleic Acids Res, 1998, 26: 5277–5287
    [176] Miano J M., Long X, and Fujiwara K. Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. [J]Am J Physiol Cell Physiol, 2007, 292: C70–C81
    [177]Josef Stepanek, Michel Vincent, Pierre-Yves,et al. C→G base mutations in the CArG box of c-fos serum response element alter its bending flexibility. [J]FEBS Journal, 2007, 274: 2333-2348
    [178]Zhang SX, Gras EG, Wycuff D,et al. Identification of direct serum response factor gene targets during DMSO induced P19 cardiac cell differentiation. [J]J Biol Chem, 2005, 280:19115–19126.
    [179]Balza RO Jr, Misra RP. Role of the serum response factor in regulating contractile apparatus gene expression and sarcomeric integrity in cardiomyocytes. [J] J Biol Chem, 2006, 281:6498–6510.
    [178]Treisman R. Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. [J] Cell, 1986, 46:567–74.
    [179]Phan-Dinh-Tuy F, Tuil D, Schweighoffer F, et al. The“CC.Ar.GG”box: a protein-binding site common to transcription-regulatory regions of the cardiac actin, c-fos, and interleukin-2 receptor genes. [J]Eur J Biochem, 1988, 173:507–15.
    [180]Mohun T, Garrett N, Treisman R. Xenopus cytoskeletal actin and human c-fos gene promoters share a conserved protein-binding site. [J] EMBO J, 1987, 6:667–73.
    [181]Leung S,Miyamoto NG. Point mutational analysis of the human c-fos serum responsible factor binding site. [J]Nucl Acid Res, 1989, 14: 1177–95.
    [182]Pellegrini L, Tan S, Richmond TJ. Structure of serum response factor core bound to DNA. [J] Nature, 1995, 376:490–8.
    [183]Miano JM, Olson EN. Expression of the smooth muscle cell calponin gene marks the early cardiac and smooth muscle cell lineages during mouse embryogenesis. [J]. J Biol Chem, 1996, 271:7095–103.
    [184]Hautmann MB, Madsen CS, Mack CP, Owens GK. Substitution of the degenerate smooth muscle (SM) $-actin CC(A/T-rich)6GG elements with c-fos serum response elements results in increased basal expression but relaxed SM cell specificity and reduced angiotensin II inducibility. [J].J Biol Chem, 1998, 273:8398–406.
    [185]Miano JM, Carlson MJ, Spencer JA, Misra RP. Serum response factor-dependent regulation of the smooth muscle calponin gene. [J].J Biol Chem, 2000, 275:9814–22.
    [186]Causier, B. et al. An Antirrhinum ternary complex factor specifically interacts with C-function and SEPALLATA-like MADSbox factors. [J].Plant Mol. Biol, 2003, 52: 1051–1062
    [187]Egea-Cortines, M. et al..Ternary complex formation between theMADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus.[J]EMBO J, 1999, 18: 5370–5379
    [188]Nougalli-Tonaco, I.A. et al. In vivo imaging of MADS-box transcription factor interactions. [J]. J. Exp. Bot, 2006, 57: 33–42
    [189]Ferrario, S. et al. The MADS box gene FBP2 is required for SEPALLATA function in petunia. [J].Plant Cell, 2003, 15:914–925
    [190]Theissen, G. Development of floral organ identity: stories from the MADS house. [J].Curr. Opin. Plant Biol, 2001, 4: 75–85
    [191] Theissen, G. and Saedler, H. Plant biology: floral quartets. [J].Nature, 2001, 409: 469–471
    [192]Miano, J.M. Serum response factor: Toggling between disparate programs of gene expression. [J].J Mol Cell Cardiol, 2003, 35: 577–593.
    [193]Philippar, U., Schratt, G., Dieterich, C., et al.. The SRF target gene Fhl2 antagonizes RhoA/MAL-dependent activation of SRF. [J]Mol Cell, 2004, 16: 867–880.
    [194]James J. Tomasek, Joel McRae,Gary K. Owens, et al. Regulation ofα-Smooth Muscle Actin Expression in Granulation Tissue Myofibroblasts Is Dependent on the Intronic CArG Element and the Transforming Growth Factor-β1 Control Element [J]. Am J Pathol, 2005, 166:1343–1351.
    [195]Shore, P. and Sharrocks, A.D. The MADS-box family of transcription factors. [J]. Eur. J. Biochem, 1995, 229: 1–13
    [100]Riechmann, J.L. and Meyerowitz, E.M. MADS domain proteins in plant development. [J]. Biol. Chem, 1997, 378: 1079–1101
    [196]Jennifer A. H, Brian R. W, et al. 5′CArG degeneracy in smooth muscleα-actin is required for injury-induced gene suppression in vivo. [J].J Clin Invest, 2005, 115(2): 418–427.
    [197]Mack, CP; Owens, GK..Regulation of smooth muscle alpha-actin expression in vivo is dependent on CArG elements within the 5′and first intron promoter regions. [J] Circ. Res, 1999,84:852–861
    [198]Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. [J].J Mol Biol, 1961, 3:318–356.
    [199]Britten RJ, Davidson EH. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. [J]. Q Rev Biol, 1971, 46:111–138.
    [200]Wray GA. The evolutionary significance of cis-regulatory mutations. [J]. Nat Rev Genet., 2007, 8:206–216.
    [201]King, M. C.,. Wilson A. C..Evolution at two levels in humans and chimpanzees. [J] Science 1975.188:107–116.
    [202]Praveen S, Hoa G, Joshua B. P,et al. Genome-Wide Analysis of Natural Selection on Human Cis-Elements. [J]. PLoS ONE. 2008; 3(9): e3137.
    [203] Mukherjee S, Berger M F, Jona G, et al. Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays[J]. Nat Genet, 2004, 36:1331–1339.
    [204]王秀荷,张静.酵母基因上游序列中潜在的转录正调控位点分析[J].生物化学与生物物理进展, 2005, 10: 953-958.
    [205] Wasserman W W, Krivan W. In silico identification of metazoan transcriptional regulatory regions[J]. Naturwissenschaften, 2003, 90:156-166.
    [206]Chang, H.Y., Sneddon, J.B., Alizadeh, A.A., et al. Gene expression signature of fibroblast serum response predicts human cancer progression: Similarities between tumors and wounds. [J]. PLoS Biol,2004, 2: E7.
    [207]Chang, H.Y., Nuyten, D.S., Sneddon, J.B., et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. [J]. Proc. Natl. Acad. Sci, 2005, 102: 3738–3743
    [208]Niu Z, Li A, Zhang SX, Schwartz RJ. Serum response factor micromanaging cardiogenesis. [J]. Curr Opin Cell Biol, 2007,19:618–627.
    [209]Parmacek MS. Myocardin-related transcription factors: critical coactivatorsregulating cardiovascular development and adaptation. [J]. Circ Res, 2007, 100:633– 644.
    [210]Lang, G., Gombert, W.M., and Gould, H.J. A transcriptional regulatory element in the coding sequence of the human Bcl-2 gene. [J]. Immunology, 2005, 114: 25–36.
    [211]Zhu H, Roy AL, Prywes R,et al. Serum response factor affects preinitiation complex formation by TFIID in vitro. [J]New Biologist, 1991, 3:455–64.
    [212] McDonald O G., Wamhoff B R., Owens G K.,et al. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo [J]J. Clin. InvETS, 2006, 116:36–48
    [213]Zhu H, JoliotV, Prywes R. Role of transcription factor TFIIF in serum response factor-activated transcription. [J]J Biol Chem, 1994, 269: 3489–97.
    [214]Joliot V, Demma M, Prywes R. Interaction with RAP74 subunit of TFIIF is required for transcriptional activation by serum response factor. [J]Nature, 1995, 373:632–5.
    [215]Mack CP, Thompson MM, Owens GK, et al. Smooth muscleα-actin CArG elements coordinate formation of a smooth muscle cell-selective, serum response factor-containing activation complex. [J] Circ Res, 2000, 86:221–32.
    [216] Cheng G, Hagen T P., Menick D R,et al. The Role of GATA, CArG, E-box, and a Novel Element in the Regulation of Cardiac Expression of the Na1-Ca21 Exchanger [J] Gene, 1999, 274(18).:119–126,
    [217] Yin F, and Paul B. Herring GATA-6 Can Act as a Positive or Negative Regulator of Smooth Muscle-specific [J] Gene Expression, 2005, 6: 4745–4752.
    [210]Hahn MW. Detecting natural selection on cis-regulatory DNA. [J]. Genetica, 2007, 129:7–18.
    [211] Spielman RS, Bastone LA, Burdick JT, et al. Common genetic variants account for differences in gene expression among ethnic groups. [J].Nat Genet., 2007,39:226–231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700