用户名: 密码: 验证码:
局地暴雨中的自组织过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用自动站、多普勒雷达、卫星云图、常规天气图和NCEP/NCAR 1°×1°的网格点资料,分析了2006年7月27日山东半岛东部致灾暴雨中的自组织过程;探索了热带低压倒槽、高空西风槽和副热带高压等天气尺度环境场对云团自组织的作用。用一个准地转正压涡度方程模式,数值研究了随机分布的多个小尺度涡对涡旋自组织的影响。研究了负排熵指数的自组织。在多个例的基础上,提炼了自组织发生发展的若干预测判据,并用这些判据开展了暴雨事件的预测应用研究,取得了好的效果。
     主要进展如下:
     (1)发现局地暴雨中云团自组织存在阶段性特征,即一次局地暴雨过程并不是一次云团的自组织完成的,而是多次自组织完成的。如在2006年7月27日山东半岛东部致灾暴雨过程中,可清楚识别出4次云团的自组织。
     (2)发现不同尺度系统的相互作用对自组织有重要影响。这里,不同尺度系统既包括比中尺度云团大的天气尺度系统,也包括比中尺度云团小的小尺度的系统。前者包括高空西风槽、热带低压倒槽和副热带高压,它们提供了云团自组织的环境场条件;后者包括随机分布的小尺度的系统,它们提供了云团自组织的微环境场条件。以往同类研究中、小尺度系统系人为给定的;本文中、小尺度系统系随机生成的,减少了人为性。随机分布小尺度涡的引进,可导致自组织终态的差异。
     (3)把自组织理论和耗散结构理论的工作思路结合起来,结果显示,负排熵指数自组织的区域清楚地反映了暴雨的落区,可为对流性暴雨中心落区预报提供有益的信息。
     (4)在分析2000-2007年夏季卫星云图资料的基础上,发现山东省区域性或大范围暴雨天气过程中,产生暴雨的中尺度云团的发展演变经历了由无组织到有组织、由不规则云形到规则云形的过程。得到了云团的自组织的若干判据,并在业务中初步应用。
This paper analyzes a hazard heavy rain occurred on July 27 2006 in eastern part of Shandong Peninsula by using automatic stations, Doppler radar, satellite images, conventional weather maps and NCEP/NCAR 1°×1°grid point data, and explores effects of the environmental field on the synoptic scale on clouds self-organization such as tropical low pressure trough, high-altitude westerly trough and the subtropical high and so on. Numerical study of influences of multiple randomly distributed small-scale vortexes on the vortex self-organization has been carried on with a quasi-geostrophic barotropic vorticity equation model. Also self-organizations of negative removal entropy index have been studied in this paper. On the basis of many cases, a number of predicted criteria of occurrence and development of self-organization have refined, which are used to study prediction of heavy rain events, and achieve good results.
     Major developments are as follows:
     (1) Stage characteristics of self-organization of clouds in local heavy rain are found, which is one local rainstorm don't complete by only one but several self-organization. As in a hazard heavy rain process, on July 27 2006 in eastern part of Shandong Peninsula,4 clouds self-organizing process could be identified clearly.
     (2) It is found that the interaction of different scale systems have a major impact on self-organization. Systems at different scales include synoptic-scale systems larger than mesoscale clouds and small-scale systems smaller than mesoscale clouds. Synoptic-scale systems, the former, provide environment field conditions of self-organization including high-altitude westerly trough, tropical low pressure trough and the subtropical high. The latter include small-scale randomly distributed systems, and they provide micro-environment field conditions of self-organization. Although small-scale systems were artificially given in previous similar studies, which is random generated in this research in order to reduce the artificiality. The introduction of randomly distributed small-scale vortex could lead to differences in final state of self-organization.
     (3) Making the self-organization theory and dissipative structures theory together into work ideas shows the convergence of negative removal entropy index of self-organization reflects the rainstorm falling area clearly, and provides useful information to falling center forecast of convective rain.
     (4) On the basis of analyzing summer satellite image data from 2000 to 2007, it is found that the evolution of mesoscale clouds which can cause rainstorm experiences processes from non-organized to organized, from irregular shape to regular, and obtained a number of criteria of self-organization clouds, which have been initially applied in operational applications.
引文
[1]宋俭,王红.前言:300年来自然灾害与人类社会,大劫难:300年来世界重大自然灾害纪实.武汉,武汉大学出版社,2003.
    [2]秦大河.影响我国的主要气象灾害及其发展态势,中国应急救援.2008年06期:4-6.
    [3]王有振.经历“75.8”-对水文规律再认识.中国气象学会2005年年会论文集:6653-6656.
    [4]王景昌.济南两次特大暴雨过程的对比分析.山东气象.1988,8(4):4-8
    [5]尹承美,卓鸿,胡鹏,等.FY-2产品在济南“7.18”大暴雨临近预报中的应用.气象.2008,34(1):27-34.
    [6]陶诗言,张小玲,张顺利.长江流域梅雨锋暴雨灾害研究.北京,气象出版社.2004,21.
    [7]王振江,王志强,等.气象灾害防御条例读本.北京,气象出版社.2010,2
    [8]周秀骥.21世纪的大气科学—纪念中国气象学会成立周年.气象学报.1994,52(3):257-260.
    [9]周嘉陵.多涡自组织的数值研究和诊断分析[D].南京:南京信息工程大学博士学位论文.2005.
    [10]M.艾根,P.舒斯特尔著,曾国屏,沈小峰译,超循环论,译者的话,上海译文出版社.2.
    [11]Yong I M, Crawford S W. Interactions and self-organization in the soil-microbe complex. Science,2004,304:1634-1637.
    [12]Koppel van de J, Bakker W D, Herman J P, et al. The self-organization and vegetation collapse in salt marsh ecosystems. American Naturalist, 2005,165:1-12.
    [13]Kong Y H, Wu F M, Huang H, et al. Self-organized crystallization mechanism of nom-equilibrium 2:1 type phyllosilicate systems. Science in China, series D,2002,45 (1):45-52.
    [14]Hasi B M, Jian W, Li Q Q, et al. Self-organizing feature map neural network classification of the ASTEK data based on wavelet fusion. Science in China, Series D,2004,47(7):651-658.
    [15]Jiang P, Xie S S, Yao J N, et al. Two-dimensional self-organization of 1-nomanethiol capped gold nanoparticles. Chinese Sci Bull, 2001,46(12):946-998.
    [16]Prigogine I N Cr. Self-organization in non-equilibrium system, from dissipative structures to order through fluctuations. New York:Wiley, 1977:60pp.
    [17]Hakes,1983[48J Haken H. S. An Introduction:Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry and Biology. Berlin&New York, Springer-Verlag,1983:191 pp.
    [18]孔佑华,吴锋民,黄辉,等.绿泥间蜡石及其寄主表现单晶的自组织成因.中国科学,D辑.2000,32(2):188-194.
    [19]孔佑华,吴锋民,黄辉,等.非平衡2:1型层硅酸盐体系的自组织结晶机理.中国科学,D辑.2001,31(4):321-326.
    [20]哈斯巴干,马达文,李启青,等.基于小波融合的ASTER数据自组织特征映射神经网络分类研究.中国科学,D辑.2003,33(9):895-902.
    [21]哈斯巴干,马建文,李启青,戴芹.多波段遥感数据的自组织神经网络降维分类研究,武汉大学学报(信息科学版).2004,29(5):461-465.
    [22]何声太,姚建年,解思深,等.表面包敷1—壬基硫酸醇的银纳米粒子形成过程及其自组织有序阵列.中国科学,A辑.2001,31(6):534-538.
    [23]孙刚,武杰,张敏刚.关于纳米结构自组织合成的分析.系统辩证学学报.2003,11(2):80-81.
    [24]马余强.软物质的自组织.物理学进展.2002,22(1):73-98.
    [25]董丽芳,李雪辰,尹增谦,等.大气压介质阻挡放电中的组织斑图结构.物理学报.2002,51(10):2296-2301.
    [26]宋卫国,范维澄,汪秉宏.中国森林火灾的自组织临界性.科学通报.2001,46(6):501-505.
    [27]王裕宜,詹钱登,陈晓清,等.泥石流体的应力应变自组织临界特性,科学通报,2003,48(9):976-980.
    [28]李仕雄,姚令侃,蒋良维.影响沙堆自组织临界性的内因与外因.科技通报.2003,19(4):279-281.
    [29]李远富,姚令侃,邓域才.单石坡沙堆模型自组织临界性实验研究.西南交通大学学报.2000,35(2):121-125.
    [30]郑锋.自组织理论方法对城市地理学发展的启示.经济地理.2002,22(6):652-654.
    [31]谭遂,杨开忠,荀丽娜,等.一种基于自组织理论的城市与区域空间格局演变模型研究.经济地理.2003,23(2):149-153.
    [32]周丽峰,张科翔.陕西中部一次强风暴天气过程分析.陕西气象.2003,第3期,23-25.
    [33]周萃英等.滑坡灾害系统的自组织.中国地质大学学报.1996,21(6):604-607
    [34]宋卫国,范维澄,汪秉宏.中国森林火灾的自组织临界性.科学通报.2001,46(6):501-505.
    [35]王裕宜,詹钱登,陈晓清,等。泥石流体的应力应变自组织临界特性.科学通报.2003,48(9):976--980.
    [36]朱晓华,蔡运龙.中国自然灾害灾情统计和自组织临界性特征.地理科学.2004,24(3):264-269.
    [37]陈陟,周明煜,钱粉兰,等.我国西部高原大气边界层中的对流活动.应用气象学报.2002,13(2):142-155.
    [38]Maassen S R, Clercx H J, van Heijst G J F. Self-organization of quasi-two-dimensional turbulence in stratified fluids in square and circular containers. Physics of Fluids,2002,14(7):2150-2169.
    [39]17 Maassen S R, Clercx H J H, van Heijst G J F. Self-organization of decaying quasi-two- dimensional turbulence in stratified fluids in rectangular containers. J Fluid Mech,2003,495:19-33.
    [40]Luo, Z., and C. Liu,2008:A numerical study of multiple vortex self-organization as forced by mesoscale topogralhy. Meteorology an Atmospheric Physics,99,65-76 (SCI).
    [41]封国林等.大型涡旋自组织临界态的观测证据.热带气象学报.1994,10(2):154-160.
    [42]马禹,王旭,陶祖钰.中国及邻近地区中尺度对流系统的普查和时空分布特征.自然科学进展.1997,7(6):701-706.
    [43]邓秋华等.“9817”鄂东南持续特大暴雨的分析.暴雨.灾害(三).北京:气象出版社,1999:115-124.
    [44]彭新东,吴晓鸣,坪木和久.积云对流参数化对一次梅雨锋暴雨过程影响的模拟检验.高原气象.1999,18(3):451-461.
    [45]钱正安,胡隐樵,龚乃虎等.“93.5.5”特强沙尘暴的调查报告及分析.中国沙尘暴研究.北京:气象出版社.1997:37-43.
    [46]廖移山,李俊,王晓芳,等.2007年7月18日济南大暴雨的β中尺度分析.2009年第七次全国动力气象学术会议论文摘要.
    [47]付丹红,郭学良.积云并合在强对流系统形成中的作用.2007,大气科学.31(04) :22-28.
    [48]项续康.1989年7月川东大暴雨中尺度对流系统分析.1995,气象.21(3):30-34(8)
    [49]甄长忠.78810冰雹过程的分析,1981.大气科学.5(4):456-460
    [50]崔春光等.1998年7月鄂东特大暴雨过程的数值模拟试验.暴雨.灾害(三).北京:气象出版社.1999:89-95.
    [51]程艳红等.一次江淮大暴雨过程中尺度系统结构分析,气象科学,2002.22(3):313-320.
    [52]陈陟,周明煜,钱粉兰等.我国西部高原大气边界层中的对流活动.应用气象学报.2002,13(2):142-155.
    [53]周丽峰,张科翔.陕西中部一次强风暴天气过程分析.陕西气象.2003,3:23-25.
    [54]Venkatesh T N, Mathew J. Prediction of tropical cyclone genesis using a vortex merger index, Geophys Res Lett,2004,31, L04105, doi: 10.1029/2003GL019005.
    [55]Ritchie, E. A., J. Simpson, W. T. Liu, J. Halverson, C. Velden, K. F. Brueske, and H. Pierce (2003), Present day satellite technology for hurricane research:A closer look at formation and intensification, in Hurricane Coping with Disaster, Spec. Publ. Ser., vol.55, edited by R. H. Simpson et al., chap.12, pp.249-289, AGU, Washington, D. C.
    [56]Ritchie, E. A., and G. J. Holland (1997), Scale interactions during the formation of Typhoon Irving, Mon. Weather Rev.,125,1377-1396.
    [57]Montgomery, Michael T., Enagonio, Janice.1998:Tropical Cyclogenesis via Convectively Forced Vortex Rossby Waves in a Three-Dimensional Quasigeostrophic Model. Journal of the Atmospheric Sciences:Vol.55, No.20:3176-3207.
    [58]2001 Enagonio, J., and M. T. Montgomery (2001), Tropical cyclogenesis via convectively forced Rossby waves in a shallow water primitive equation model. J. Atmos. Sci.58:685-705.
    [59]2004, Hendricks E. A., M. T. Montgomery and C. A. Davis.2004:The Role of "Vortical" Hot Towers in the Formation of Tropical Cyclone Diana (1984). Journal of the Atmospheric Sciences:Vol.61, No.11: 1209-1232.
    [60]罗哲贤.多尺度系统中台风自组织的研究.气象学报.2005:63(5):672-682.
    [61]周秀骥,罗哲贤,高守亭.涡旋自组织的两类可能机制.中国科学,D辑.2006,36(2):201-208.
    [62]周嘉陵,马镜娴,陈联寿,罗哲贤.初始涡的结构与尺度对涡旋自组织影响的研究.气象学报.2006,64(5):537-551.
    [63]周嘉陵,马镜娴,陈联寿,等.多涡自组织的初步研究.气象学报.2006,64(4):464-473.
    [64]沈武,周嘉陵,马镜娴,等.非轴对称双涡相互作用的研究.气象学报.2006,64(4):453-463.
    [65]Luo, Z., and C. Liu (2007), A tropical storm:Self-organization and complexity, Geophys. Res. Lett.,34, L05802, doi:10.1029/2006GL028612.
    [66]Luo, Z., and C. Liu (2007), A validation of the fractal dimension of cloud boundaries, Geophys. Res. Lett.,34, L03808, doi:10.1029/2006GL028472.
    [67]Luo, Z., and C. Liu (2007), An investigation into axisymmetrization of a vortex embedded in horizontal shearing currents, J. Geophys. Res., 112, D06103, doi:10.1029/2006JD007087.
    [68]Luo Z, Liu C. Diversity of microenvironments and the complexity of vortex motion. Geophys Res Lett,2006,33, L24805, doi: 10.1029/2006GL027765.
    [69]Luo Z, Liu C. An investigation into the sensitivity of idealized vortex interactions to initial conditions and island topography. Geophys Res Lett,2006,33, L01809, doi:10.1029/2005GL024543.
    [70]罗哲贤,马革兰,平凡.涡旋环流区域内精细复杂结构的研究.中国科学:地球科学.2010,40(7):947-952.
    [71]Luo, Z., X.Zhou, and S. Gao,2006:Two possible mechanisms for vortex self-organization. Sience in Chana:series D,49:202-211
    [72]Luo, Z and Y. Gao,2008:Influence of mesoscale topography on vortex intensity. Progress in Natural Science,18:71-78
    [73]Ping Fan, Luo Zhexian, and Ju Jianhua,2006:The numerical studies of vortexes and precipitating clouds merging in the middle latitude continent, Chinese Physics letters,15:784-787
    [74]Ping Fan, Luo Zhexian,2007:Numerical simulation of Meiyu front and the diagnosis of moist vorticity. Progress in Natural Science, 17:1341-1347
    [75]Ping Fan, Luo Zhexian, and Li Xiaofan,2008:Kinematics, Cloud Microphysics and Spatial Structures of Tropical Cloud Clusters:A Two-Dimensional Cloud Resolving Modeling Study, Atmospheric Research, 88:323-336
    [76]GAO, S., F. Ping,2004:A convective vorticity vector associated with tropical convection:A two-dimensional cloud-resolving modeling study, Journal Geophysics Research,109(2004), D14106, doi: 10.1029/2004JD004807.
    [77]Ping Fan, Luo Zhexian,2007:Effects of Ice Microphysics and its Interaction with Radiation on Tropical Equilibrium States:A Two-Dimensional Cloud-Resolving Modeling Study, Month Weather Review, 135:2794-2802
    [78]Ping Fan, Luo Zhexian,2009:Effects of Ice Microphysics on a Tropical Coupled System, Dynamics of Atmospheres and Oceans, Doi:10.1016/j. dynatmoce
    [79]Ping Fan, Luo Zhexian, and Li Xiaofan 2007:Effects of Salinity on Long-Term Tropical Atmospheric and Oceanic Variability, Atmospheric Research,84:78-83
    [80]任健,马镜娴,陈联寿,等.三类物理过程对台风强度影响的研究.2003.气象学报.61(6):718-732.
    [81]Yu, H., and H.J.Kwon,2005:Effect of TC-Trough interaction on the intensity change of two typhoons. Weather Forecasting,20,199-210.
    [82]Luo, Z.,2004:Nonlinear interaction of axisymmetric circulation and nonaxisymmetric disturbances in hurricanes. Sience in Chana:series D,47,58-67.
    [83]Luo, Z., and C.Li.2008:An investigation into effect of randomly distributed small scale vortices on vortex self-organization. Acta Meteor Sinica,22(2).143-151.
    [84]滕代高,罗哲贤,李春虎,等.斜压大气中台风涡旋自组织的研究.气象学报.2008,64(4):455-463.
    [85]黄文根.我国暴雨研究的进展.气象科技.1979.7(3):16-19.
    [86]曹钢锋,张善君,朱官忠,等.山东天气分析与预报.北京:气象出版社.1988,159-160.
    [87]王建捷,李泽椿.1998年一次梅雨锋暴雨的中尺度对流系统的模拟与诊断分析.气象学报.2002,60(2):146-155.
    [88]程麟生,冯伍虎.“98.7”暴雨β中尺度低涡生成发展结构演变:双向四重嵌套网格模拟.气象学报.2003,61(4):385-394.
    [89]许小峰,孙照渤.非地转平衡流激发的重力惯性波对梅雨锋暴雨影响的动力学研究.气象学报.2003,61(6):655-660.
    [90]辜旭赞.梅雨锋降水运动诊断分析与(大)暴雨形成.气象科技.2006,34(2):170-174.
    [91]王莉萍,沈桐立,崔晓东等.一次冷涡暴雨的中尺度对流云团分析及数值模拟研究.气象科技.2006,34(1):22-28.
    [92]周国兵,隆霄,刘毅.重庆市”529”暴雨天气过程诊断分析与数值模拟.气象科技.2006,34(1):29-34.
    [93]何立富,黄忠,郝立生.”0374”南京特大暴雨中尺度对流系统分析,气象科技.2006,34(4):446-454.
    [94]徐双柱,金琪,肖艳娇,等.泥石流暴雨个例中尺度分析.气象科技,2005,33(3):240-244.
    [95]周淑玲,吴增茂.山东半岛一次中β尺度暴雨的数值模拟分析.中国海洋大学学报.2005,35(60):900-906.
    [96]闫丽凤,蔡则鹏,王建国.场相似在汛期暴雨预报中的应用.气象.1999,25(2):33-39.
    [97]于希里,闫丽凤.山东半岛北部沿海强对流云团与局地暴雨.气象科技.2001,29(1):39-41.
    [98]崔晶,张丰启,吕守敏.连续暴雨过程中的中-β尺度大暴雨的成因分析.气象.2005,31(10):72-75.
    [99]崔晶,张丰启.山东半岛东部中尺度大暴雨过程成因分析.气象.2003,29(10):33-37.
    [100]谭志华,杨晓霞.”99.8”山东特大暴雨的螺旋度分析.气象.2000,26(9):7-11.
    [101]Shuman P Michael, Koermer J P, Reynolds S D. Heavy precipitation events from tropical cyclone remnants in the Eastern United States[C]. The 81st Ams Annual Meeting, Albuquerque, New Mexico.2001.
    [102]Englehart P J, Douglas A V. The role of eastern North Pacific tropical stroms in the rainfann clinatology of western Mexcio[J]. Inter J of clim,2001,21(11):1357-1370.
    [103]Hasegawa A. Tropical Cyclone and Heavy Precipitation over the Western North Pacific in present and Doubled co2 climates simulated by the CCSR/NIES/FRCGC T106 AGCM[C]. The 2nd International Workshop on the Kyosei Project, Feb24-26, Hawaii,2005.
    [104]韩晖.近50年中国台风暴雨研究.北京师范大学硕士学位论文.2005.
    [105]Ren Fumin, Wu Guoxiong, Dong Wenjie. Changes in tropical cyclone precipitation over China[J]. Geophysical Research Letters,2006,33.
    [106]陶诗言,丁一汇,周晓平.暴雨和强对流天气的研究.大气科学.1979,3(3):227-238.
    [107]陶诗言.中国之暴雨.北京:科学出版社.1980,225.
    [108]DANG R Q. Recent advances in research on the mechanisms and causes of exceptional rainfall associated with tropical cyclones in China. WMO/TD,1998,875:23-26.
    [109]陈久康,丁治英,陶祖钰等.中低纬度环流系统相互作用对登陆台风暴雨突然增幅的影响.台风科学、业务试验和天气动力学理论的研究(第四分册).北京:气象出版社.1996.52-54.
    [110]董美莹,陈联寿,郑沛群,等.登陆热带气旋暴雨突然增幅和特大暴雨之研究进展.热带气象学报.2009,25(4):495-502.
    [111]曹钢锋,朱官忠,朱君鉴.登陆北上热带气旋倒槽造成的北方特大暴雨.大气科学研究与应用(三)[M].北京:气象出版社.1992.44-51.
    [112]陈联寿,徐祥德等.热带气旋动力学引论.北京:气象出版社.2002.10-11.
    [113]陶祖钰,田佰军,黄伟.9216号台风登陆后的不对称结构和暴雨.热带气象学报.1994,10:69-77.
    [114]杨金锡,洪吉.能量锋生与台风倒槽暴雨.南京气象学院学报.1986,9(1):47-54.
    [115]蒋尚城,林楠.85年9号台风与辽宁特大暴雨的卫星云图分析.北京大学学报.1988,24(3):351-361.
    [116]钱自强,张德.上海地区台风倒槽暴雨分析.大气科学.1985.9(4):400-405.
    [117]Palmen E. Vertical circulation and release of kinetic energy during the development of hurricane hazel into an extratropical storm [J]. Tellus,1958,10(1):1-23.
    [118]D Mego G J, Bosart L F. The transformation of tropical storm Agnes into an extratropicalcyclone, PartⅠ:the observed fields and vertical motion computations [J].Mon Wea Rev,1982,110(5):385-411.
    [119]D Mego G J, Bosart L F. The transformation of tropical storm Agnes into an extratropical cyclone, Part Ⅱ:moisture, vorticity and kinetic energy budgets[J].Mon Wea Rev,1982,110(5):412-433.
    [120]丁治英,陈久康.不同雨强台风的诊断对比与数值试验研究.南京气象学院学报.1995.18(2):234-241.
    [121]丁治英,张兴强,何金海等.非纬向高空急流与台风远距离中尺度暴雨的研究.热带气象学报.2001.17(2):144-154.
    [122]孙建华,赵四雄.登陆台风引发的暴雨过程之诊断研究.大气科学.2000.24(2):223-237.
    [123]朱洪岩,陈联寿,徐祥德.中低纬度环流系统的相互作用及其暴雨特征的摸拟研究.大气科学,2000.24(5):669-675.
    [124]柳崇健,刘英,徐辉.熵流与大气系统的演变,大气科学.2007,31(3):1251-1256.
    [125]仪垂祥.大气系统中的熵,大气科学.1989,13(3):367-372.
    [126]章国材.大气中的耗散结构.大气科学.1986,10(1):107-112.
    [127]柳祟健.大气耗散结构理论.北京:气象出版社.1988,26-65.
    [128]李听,沈树勤,吴光.一次淮北连续暴雨的熵分析.气象科学.1992,12(3),326-332.
    [129]Jesop. Peixot and Abrahham H. Oort.气候物理学.吴国雄等译.北京:气象出版社.1995,320-323.
    [130]马开玉.暴雨过程的等熵研究.气象科学.1992,12(2):47-56.
    [131]钱维宏,张霆.熵平衡方程及其在短时降水预报中的应用.气象科学.1989,9(1),118-127.
    [132]尤凤春,一次暴雨—大暴雨过程的熵诊断分析.气象.1994,20(8):47-49.
    [133]李任承,顾光芹.关于假相当位温的精确计算.气象.1990,16(3):13-17.
    [134]李任承.对流层大气的负熵流和熵产生.气象.2001,27(11):22-26.
    [135]符长锋.台风暴雨大气熵变场的诊断和对比分析.应用气象学报.1991,2(4):408-415.
    [1]黄文根.我国暴雨研究的进展.气象科技.1979.7(3):16-19.
    [2]王建捷,李泽椿.1998年一次梅雨锋暴雨的中尺度对流系统的模拟与诊断分析.气象学报2002,60(2):146-155.
    [3]程麟生,冯伍虎.“98.7”暴雨β中尺度低涡生成发展结构演变:双向四重嵌套网格模拟.气象学报.2003,61(4):385-394.
    [4]许小峰,孙照渤.非地转平衡流激发的重力惯性波对梅雨锋暴雨影响的动力学研究.气象学报.2003,61(6):655-660.
    [5]辜旭赞.梅雨锋降水运动诊断分析与(大)暴雨形成.气象科技.2006,34(2):170-174.
    [6]王莉萍,沈桐立,崔晓东,等.一次冷涡暴雨的中尺度对流云团分析及数值模拟研究.气象科技.2006,34(1):22-28.
    [7]周国兵,隆霄,刘毅.重庆市”529”暴雨天气过程诊断分析与数值模拟..气象科技.2006,34(1):29-34.
    [8]何立富,黄忠,郝立生.“0374”南京特大暴雨中尺度对流系统分析.气象科技.2006,34(4):446-454.
    [9]徐双柱,金琪,肖艳娇,等.泥石流暴雨个例中尺度分析.气象科技.2005,33(3):240-244.
    [10]周淑玲,吴增茂.山东半岛一次中β尺度暴雨的数值模拟分析.中国海洋大学学报.2005,35(60):900-906.
    [11]闫丽凤,蔡则鹏,王建国.场相似在汛期暴雨预报中的应用.气象.1999,25(2):33-39.
    [12]于希里,闫丽凤.山东半岛北部沿海强对流云团与局地暴雨.气象科技.2001,29(1):39-41.
    [13]崔晶,张丰启,吕守敏.连续暴雨过程中的中-β尺度大暴雨的成因分析.气象.2005,31(10):72-75.
    [14]崔晶,张丰启.山东半岛东部中尺度大暴雨过程成因分析.气象.2003,29(10):33-37.
    [15]谭志华,杨晓霞.“99.8”山东特大暴雨的螺旋度分析.气象.2000,26(9):7-11.
    [1]Yong I M, Crawford S W. Interactions and self-organization in the soil-microbe complex. Science,2004,304:1634-1637.
    [2]Koppel van de J, Bakker W D, Herman J P, et al. The self-organization and vegetation collapse in salt marsh ecosystems. American Naturalist, 2005,165:1-12.
    [3]Kong Y H, Wu F M, Huang H, et al. Self-organized crystallization mechanism of nom-equilibrium 2:1 type phyllosilicate systems. Science in China, series D,2002,45 (1):45-52.
    [4]Hasi B M, Jian W, Li Q Q, et al. Self-organizing feature map neural network classification of the ASTEK data based on wavelet fusion. Science in China, Series D,2004,47(7):651-658.
    [5]Jiang P, Xie S S, Yao J N, et al. Two-dimensional self-organization of 1-nomanethiol capped gold nanoparticles. Chinese Sci Bull,2001,46(12): 946-998.
    [6]周秀骥.21世纪的大气科学——纪念中国气象学会成立70周年.气象学报,1994,52(3):257-260.
    [7]周秀骥,罗哲贤,高守亭.涡旋自组织的两类可能机制.中国科学D辑,2006,36(2):201-208.
    [8]Chen Y, Yau M K. Spiral bands in a simulated hurricane. Part I:vortex Rossby wave verification. J Atmos Sci,2001,58:2128-2145.
    [9]Luo Z, Liu C. An investigation into the sensitivity of idealized vortex interactions to initial conditions and island topography. Geophys Res Lett,2006,33:L01809, doi:10.1029/ 2005GL024543.
    [10]Luo Z, Liu C. Diversity of microenvironments and the complexity of vortex motion. Geophys Res Lett,2006,33, doi:10.1029/2006GL027765
    [11]Luo Z, Liu C. An investigation into axisymmetrization of a vortex embedded in horizontal shearing currents. J Geophys Res,2007,112: D06103,doi:10.1029/2006JD007087.
    [12]Luo Z, Liu C. A validation of fractal dimension of cloud bound-aries. Geophys Res Lett,2007,34:L03808, doi:10.1029/2006GL028472.
    [13]Luo Z. Nonlinear interaction of axisymmetric circulation and non-axisymmetric disturbances in hurricanes. Science in China, D series,2004,47:58-67.
    [14]罗哲贤.多尺度系统中台风自组织的研究.气象学报,2005,63(5):672-682.
    [15]沈武,周嘉陵,马镜娴等.非轴对称双涡相互作用的研究.气象学报,2006,64(4):453-463
    [16]周嘉陵,马镜娴,陈联寿等.多涡自组织的初步研究.气象学报,2006,64(4):464-473.
    [17]Iga K, Watanabe T. The scaling law of quasi-geostrophic turbu-lence with weak energy dissipation. J Meteor Soc Japan,2003,81 (5):895-907.
    [18]Clercx HJH, Heijst G J F van. Energy spectra for decaying 2Dturbulence in a bounded domain. Phys Rev Lett,2000,85(2):306-309.
    [19]Reinaud J N, Dritschel D G, Koudella C R. The shape of vortices in quasi-geostrophic turbulence. J Fluid Mech,2003,474:175-192.
    [20]Iwayama T, Shepherd T G, Watanabe T. An'ideal'form of decaying two-dimensional turbulence. J Fluid Mech,2002,456:183-198.
    [21]Bracco A, LaCasce J, Pasquero C, et al. The velocity distribution of barotropic turbulence. Phys Fluids,2000,12:2478-2488.
    [22]Holland G J, Dietachmayer G S, Ritchie E A. Contributions by mesoscale systems to the meandering motion of tropical cyclones. I:theory. World Meteorological Organization Technical Document-No.472, 1991, Ⅳ.62-Ⅳ.71.
    [23]周秀骥.大气随机动力学与可预报性.气象学报,2005,63(5):806-811.
    [24]周秀骥.暖云降水微物理机制的研究.北京:科学出版社,1964:105pp.
    [25]Ooyama K V. Conceptual evolution of the theory and modeling of the tropical cyclone. J Meteor Soc Japan,1982,60:369-380.
    [26]Simpson J, Ritchie E A, Holland G J, et al. Mesoscale interactions in tropical cyclone genesis. Mon Wea Rev,1997,125:2643-2661.
    [27]Rind D. Complexity and climate. Science,1999,284:105-10.
    [1]蒋伯仁,孙兴池,张少林.山东主汛期暴雨分析及预报研究综述.山东气象,2005.25(2):1-4.
    [2]曹钢锋,张善君,朱官忠,等.山东天气分析与预报.北京:气象出版社,1988.156-180.
    [3]李昌义,顾润源,张飒,等.山东区域性暴雨和局地性暴雨物理量场特征分析.暴雨落区预报实用方法.北京:气象出版社2000.108-114.
    [4]李昌义,顾润源,张飒,等.物理量综合指数预报山东暴雨落点方法研究.暴雨落区预报实用方法.北京:气象出版社,2000.1-4.
    [5]李昌义,顾润源,张飒,等.暴雨站数预报在暴雨落点预报中的应用.气象,1999.25(8):25-29.
    [6]李昌义.客观暴雨预报在暴雨落点预报中的应用[C]//暴雨落区预报实用方法.北京:气象出版社,2000.38-43.
    [7]李昌义,顾润源,孙兴池,等.非线性因子预报山东暴雨站数的研究.暴雨落区预报实用方法.北京:气象山版社,2000:48-52.
    [8]闫丽凤,蔡则鹏,等.场相似在汛期暴雨预报中的应用.气象,1999,25(2):33-39.
    [9]张经珍,郝家学,侯淑梅,等.黄河三角洲短期暴雨预报系统].气象,1998,24(9):46-50.
    [10]刘文,赵玉金,张善君,等.GMS卫星遥感资料监测暴雨技术].气象,2003,29(3):49-53.
    [1]仇永炎.北方盛夏台风暴雨的天气型及其年纪变率.气象,(23)723(7):3-4.
    [2]柳崇健.大气耗散结构理论.北京:气象出版社,1988.
    [3]李任承,符长锋,吴万素.熵的演化与暴雨形成和落区的探讨.气象,1995,21(3):313-220.
    [4]李如生.非平衡态热力学和耗散结构.北京:清华大学出版社,1986.
    [5]符长锋,李任承,赵振东,等.广义相当位温及其扩展应用.气象,2006,32(3): 11-17.
    [6]符长锋.台风暴雨大气熵变场的诊断和对比分析.应用气象学报,1991,2(4):408-414.
    [7]符长锋,李任承,吴万素.广义相当位温及其在天气预报中的应用.空军气象学院学报,1994,15(3):213-220.
    [8]Iribarne J V, Godson W L. Atmospheric thermodynamics. Boston-U. S. A:D. Reidel Publishing Company,1973.
    [9]丁治英,张兴强,何金海,等.非纬向高空急流与远距离台风中尺度暴雨的研究.热带气象学报,2001.17(2):144-148
    [10]蒋尚城.远距离台风影响西风特大暴雨的过程模式.气象学报,1988,41(2):148-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700