用户名: 密码: 验证码:
中国地面太阳辐射长期变化特征及短期预报方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳辐射是自然环境中各种物理过程的主要能量来源,是驱动天气、气候形成和演变的基本动力,是地面生态系统的能量主要来源。太阳辐射在经过大气层时,由于受到云、水汽、大气中的CO2和臭氧等气体以及气溶胶粒子等的吸收、反射和散射作用,使到达地面的太阳辐射减弱。我国的太阳能资源十分丰富,各地太阳总辐射年曝辐量为3350-8370MJ/m2,大部分地区的太阳能资源优于欧洲和日本等太阳能利用发达国家,太阳能资源具有很大的开发潜力。本论文主要根据利用具有长年代(1961-2009年)的地面太阳总辐射、直接辐射和散射辐射以及有关气象要素的观测资料,采用线性倾向估计、小波分析和Mann-Kendall统计检验等方法,分析了中国地面太阳辐射长期变化特征,以及基于WRF模式的短期预报方法试验研究。研究结果表明:
     (1)中国近50年地面太阳总辐射长期变化趋势:在58个总辐射实际观测站中,通过α=0.05显著性检验的有34个站,其年太阳总辐射总体呈下降趋势,但随区域有所差异。其年代际距平变化趋势为:上世纪60年代和70年代以上升为主,但在70年代逐渐转为下降,80年代以后以下降明显为主,90年代以后个别站点略有上升。其累积距平的变化趋势有四类:一是先上升后下降型;二是先上升后下降,然后又略上升型;是先上升后下降,然后又上升型;四是变化不明显型。其年内变化,以冬季下降最为明显,春、夏、秋季为下降略明显。年太阳总辐射的年际周期为6~9年,年代际周期为10~13年、29~33年,突变时段大多发生在70年代。导致以上变化的原因很复杂,从有关要素与太阳总辐射的统计关系看,以年日照百分率、年平均风速、扬沙日数和年平均低云量的关系较大,还有人类活动引起的气候变化导致的影响,这些要素显著性的站点分布,具有一定的区域性和局地性。其中,年日照百分率和年平均风速与年太阳总辐射呈正相关,具有普遍意义。
     (2)中国近50年地面太阳直接辐射和散射辐射变化趋势特征:①采用归一化气候倾向系数方法,有更好的比较性,能较好地揭示辐射气候趋势的时空分布特征;②全国地面年太阳直接辐射和散射辐射的观测站点中,大部分站点呈下降趋势,但地区、年代际和季节有升降的差异。各站点的地面太阳直接辐射变化趋势只有变化明显和下降明显两类,地面年太阳散射辐射变化趋势为下降明显和变化不明显;③基于观测站点地理分布的特点,按气候带划分和站点占有的百分比进行分类统计分析,更能阐明辐射长期变化具有一定的地带性和局地差异性;④近50年全国14个站地面年太阳直接辐射的年代际周期为15~18年和33~34年。地面年太阳散射辐射的年际周期为8~10年,年代际周期为30~36年。站点的突变时间不完全一致,直接辐射的突变主要发生在60年代中期和70年代中期,散射辐射主要发生在80年代末到90年代初;⑤1961~2009年全国12个省级大城市地面年太阳直接辐射在80年代以前,大部分站点为明显上升,从80年代起至今以明显下降为主,但有波动。而地面年太阳散射辐射在2000年以前以下降明显为主,2000年以后以上升明显为主。⑥大部分省级大城市站点的直接辐射和散射辐射长期变化的下降趋势较其他城市更明显,这可能与城市化发展快慢引起的环境要素变化有关。⑦采用年太阳总辐射和年平均总云量、低云量实际观测资料,建立估算地面年太阳直接辐射和散射辐射的多元回归重建方程,具有较好的效果,可为增补该要素资料序列提供一种有效的方法
     (3)中国城市化对太阳辐射的影响:采用我国13个主要城市站点多年太阳辐射观测资料以及相关气象要素、城市人口等作为基本资料,采用气候倾向估计及有关要素的相关统计分析表明:①城市人口与总辐射的倾向系数呈显著性相关,随着城市由大到小,总辐射下降的倾向系数由大到小;②长年代的人口数据与地面年太阳辐射之间有一定的关系,两者之间的变化波动关系可用多项式模拟曲线表达,且绝大部分城市通过α=0.05显著性检验;③随着城市人口的增加与太阳辐射变化具有一定的相关关系,通过α=0.05显著性检验站点的地面太阳辐射增(减)趋势因城市环境条件不同而异。呈增加趋势的有拉萨、广州等,呈减少趋势的有格尔木、北京等。地面年太阳直接辐射呈减少趋势的有郑州、乌鲁木齐等,呈增加趋势的有拉萨、兰州等。地面年太阳散射辐射呈减少趋势的有格尔木、兰州等,呈增加趋势的有郑州、上海等。散直比呈减少趋势的有格尔木和兰州,呈增加趋势的有郑州、成都等。直射比呈减少趋势的有郑州、沈阳等,呈增加趋势的有格尔木、拉萨和兰州。散射比呈减少趋势的有格尔木和兰州,呈增加趋势的有郑州、沈阳等。
     (4)太阳能预报方法及其应用和问题:在参考了国内外大量有关太阳能预报文献的基础上,对太阳能预报方法的原理、机理以及具体的预报方法和应用进行了归纳评述。太阳能预报包括预测太阳辐射量和光伏发电功率,这对光伏发电系统并网运行有重要意义,是当前太阳能开发利用的一个关键问题。太阳辐射的预报方法主要有传统统计、神经网络、卫星遥感和数值模拟等方法。文中基于光伏发电应用的需求,分析了不同预报方法的优点和不足,并探讨了若干有待进一步改善的问题,展望了国内太阳能预报技术方法的发展和应用前景。根据目前实际应用于太阳能预报方法的个例看,主要是卫星资料、模式预报结果结合气象观测统计和外推方法,以及神经网络预测,而数值天气模式仍是当前预报的热点和难点。因此,今后太阳能预报技术的研究重点和方向主要是综合利用天气预报数据、卫星遥感数据以及地面云量观测信息,形成多层次、多信息融合的综合预报系统,可取得更好的太阳能预报效果。
     (5)基于WRF模式的短期逐时地面太阳总辐射预报试验:以新疆吐鲁番气象站为试点,预报试验期为2010年4月、7月、10月和2011年1月,每天对未来60小时进行逐时预报,并将预报结果分为24小时和48小时两段进行统计分析。试验结果表明:除1月份预报值系统偏大外,其他三个月预报结果与实际观测值趋势基本一致,并能刻画出天气转型时总辐射的波动变化。以4月份为例,两个时段的白天逐时总辐射预报值与观测值相关关系较好,均通过a=0.01的显著性检验。白天逐时总辐射预报值的相对误差与总辐射预报值的相关关系也较好,通过α=0.01的显著性检验。从预报值与实测值的平均相对误差看,有三分之二天数的日平均相对误差低于25%。从白天预报相对误差的逐时平均来看,中午时段相对误差最小,小于5%,9:00~14:00之间的相对误差低于20%,但早晚相对误差较大可达50%以上。
Solar radiation is the primary energy source of various physical processes in the natural environment, and is basic force of driving weather and climate format and evolute. Solar radiation is main source of energy of the terrestrial ecosystems. When solar radiation goes through the atmosphere, due to absorption, reflection and scattering of clouds, water vapor and atmospheric gases such as CO2 ozone and aerosol particles, it reduces. The solar energy resources of China are abundant. The total solar radiation exposure yearly around China is 3350-8370MJ/m2. Solar energy resources in most areas of China are better than ones of other countries such as Europe and Japan where solar energy is highly developed. Solar energy has great potential for development. This thesis is based on long-term (1961~2009) total solar radiation, direct radiation and diffuse radiation, and observations of meteorological elements. It uses linear trend, wavelet Analysis and Mann-Kendall(M-K) statistical test methods to analyze China's long-term variation of surface solar radiation. It is also based on short-term forecasting model based on WRF Experimental Studies. The results show that:
     (1)Regional long-term trend of global solar radiation in China:The global radiation and another meteorological elements data (1961~2009) from 58 meteorological stations is applied to analyze the global radiation characteristics and its relationship with another elements by the liner-trend estimation, wavelet analysis and M-K test. The results show that: Between of these 58 weather stations, the passages of significance test of 34 stations are at 95% confidence level. Meanwhile, among these 34 stations, the global radiation trend is ascent, but that is different from different area. The trend of the decadal deviation percentage:the main trend in 1960s is ascent, but gradually it dropped in the 70s, and it decreased significantly after 80s.After 90s, a little site are increase slightly. The trends of the cumulative variance have four types, such as up-down, up-down-a little elevation, up-down-no significant increase. For inner year change, there is the most obvious decline in winter, while a little decreases in spring, summer and autumn. The major cycles of global radiation are 6~9a、10~13a,29~33a. The sudden change periods are almost in the 70s. The reasons which lead to more changes are complex. According to the solar radiation with the relevant elements by statistical methods, the respectively relationship between the annual sunshine percentages, annual average wind speed, blowing sand and the average number of days low cloud cover with the global radiation are closer. In addition, the effect of climate change by human-induced is also important for such region distribution. Especially, the percentage of sunshine and mean annual wind speed was positively correlated with the annual total solar radiation. But the annual average temperature was negatively correlated with solar radiation, which may cause the temperature increase in the greenhouse. Some elements locally, such as blowing dust days and number of days should be negatively correlated in practical, but it is positively correlated by statistic. The impact mechanism is not clear, and needs further study.
     (2)The trend of direct and diffuse radiation in China over recent 50 years:In this paper, we used the direct and diffuse solar radiation data during 1961-2009 from 14 stations and during 1961-1991 from 49 stations in China. The present study based on the method of linear regression (taken time as an independent variable), wavelet analysis and Mann-Kendall statistical test. The characteristics of the direct and diffusion radiation are analyzed from different angles including that of decadal variation, long-term seasonal change, inter-decadal anomalies, cycle and abrupt change. The results showed:①The spatial and temporal distribution of the climatic trend for the direct and diffuse radiation was revealed by using the normalized climatic tendency coefficient. At the same time, these results are comparable.②The direct solar and diffuse radiation in China showed decrease trend, but there are many difference in the regions, inter-annual and seasonal trend of them.③Based on the characteristics of the geographical distribution on observation stations, according to the climate zone, it is classified with the percentage of sites by statistical method. A certain area and Local differences were exhibited clearly in the long-term changes of the radiation.④Using wavelet and MK test method, the statistical results show that the radiation in different regions with different period and abrupt change.⑤The long-term trends of the direct and diffuse radiation in most part of the provincial cities were decrease which was more obvious than in other cities. According to some study, such climatic phenomenon may be caused by environmental factor changes of urbanization relating to the development of different cities.
     (3)The influence of urbanization on solar radiation in China:The urban population, solar radiation and related meteorological observation data in 13 major cities was analyzed by the liner-trend estimation method. The results show that:In recent decades, due to urbanization and increasing population, the urban environment change caused by human activities had affected the long-term variations of surface solar radiation.①the urban population and the tendency coefficient of the global radiation was significant. The global radiation coefficient was decrease with the city size;②Ther are some relationship between the population data and the ground global radiation among 13 cities. Such relationship could be simulation by polynomial curve. Most of them the city could through the test of significance;③among the 13 cities, the changes of solar radiation and has a certain correlation with the urban population increasing, and the related coefficient of some city could be through the significance test (α= 0.05).The trend of the ground solar radiation due to the urban environmental conditions vary. Among them, some city show increasing trend, such as Lhasa, Guangzhou, and so on, showed an increasing trend in the city of the Golmud and Beijing, and so on. Direct solar radiation on the ground tended to decrease in the city of Zhengzhou, Urumqi, and so on, showed an increasing trend in the city of Lhasa, Lanzhou, and so on. The Ground diffuse solar radiation on a decreasing trend in the city of Golmud, and Lanzhou, and so on, showed an increasing trend in the city of Zhengzhou, Shanghai, and so on. The ratio of diffuse and direct radiation tended to decrease in the city of Golmud and Lanzhou, showed an increasing trend in the city of Zhengzhou, Chengdu, and so on. The ratio of direct and global radiation tended to decrease in the city of Zhengzhou, Shenyang, and so on, showed an increasing trend in the city of Golmud, Lhasa and Lanzhou, and so on. The ratio of diffuse and global radiation tended to decrease in the city of Golmud and Lanzhou,, showed an increasing trend in the city of Zhengzhou, Shenyang, and so on.
     (4)Review on methods of solar forecasting:reference to a large number of domestic and foreign literature about solar energy prediction, it was summarized and reviewed on the principle and mechanism of the solar energy prediction, the method for solar forecasting and its application. Solar forecast, including forecasts of solar radiation and photovoltaic solar power, is important for photovoltaic power generation system in network operation. Among them, the solar radiation prediction methods are involve the traditional statistics, neural networks, satellite remote sensing and numerical simulation methods; photovoltaic power generation forecast method is mainly statistical. Based on the application of photovoltaic power generation needs, the different advantages and disadvantages of some forecasting methods will be analyzed. At the same time, a lot of problems for further solar forecasting techniques research with the development of domestic will be proposed in this paper. In term of some case about practical solar energy, the main method is that satellite data, model predictions, meteorological observations data combine with statistics extrapolation methods and neural network, but numerical weather model is still the forecast difficult currently. Therefore, in the future, as for better effect of solar energy forecast, the solar forecasting technology includes model results, satellite remote sensing data, ground observations, and so on.
     (5)The global solar radiation short-term forecasting based on WRF model:The prediction test is on Turpan weather station for a trial of the next 60 hours in April 2010.The forecast results could be divided into two sections of 24 and 48 hours to statistical analysis.The results show that:The forecasting results are basically consistent with the actual observations data. The global radiation in cloudy could be forecasted. In addition, it could describe the global radiation during weather condition transformation. The hourly global radiation forecasts in two periods during the daytime have good correlation with the observed values, and it was adopted by the significant testα= 0.01. The correlation between hourly relative error during the daytime and prediction values are also good, by the significance testα= 0.01. For the average relative error of the prediction results and measured values, two-thirds days of were less than 25%. For the mean hourly relative error in daytime, the relative error at noon was least(less than 5%); the relative error during 9:00-14:00 was less than 20%, but the relative error sooner or later was up to 50% and above.
引文
[1]《大气科学词典》编委会大气科学词典[M].北京:气象出版社,1994:803.
    [2]J·A·达非、W·A·贝克曼著,葛新石等译.太阳能-热能转换过程[M]..北京:科学出版社,1980.
    [3]杨金焕.光伏系统减排CO2潜力的分析[A].第十届中国太阳能光伏会议论文集:迎接光伏发电新时代[C].2008,845-849.
    [4]石定环.可再生能源与可持续发展[J].中国科技产业,2008:15-18.
    [5]World Energy Council.2007. Deciding the Future:Energy Policy Scenarios to 2050[R]. London.
    [6]尹淞,郝继红.我国太阳能光伏发电技术应用综述[J].电力技术,2009,3:1-4.
    [7]马胜红.实施风力发电、生物质直燃发电、光伏发电溢出成本全网分摊的可行性分析[J].中国能源,2005,27(10):5-13.
    [8]赵玉文.太阳能利用的发展概况和未来趋势[J].中国电力,2003,36(9):63-69.
    [9]张伯泉,杨宜民.风力和太阳能光伏发电现状及发展趋势[J].中国电力,2006,39(6):65-69.
    [10]左大康,周允华,项月琴等.地球表层辐射研究[M].北京:科学出版社,1991.
    [11]刘晶淼,马金玉,李世奎等.华北平原北部太阳辐射及其地表平衡特征分析[J].太阳能学报,2009,30(5):577-585.
    [12]申彦波,赵宗慈,石广玉.地面太阳辐射的变化、影响因子及其可能气候效应的最新研究进展[J].地球科学进展,2008,23(9):915-923.
    [13]张素宁,田胜元.太阳辐射逐时模型的建立[J].太阳能学报,1997,18(3):273-277.
    [14]翁笃鸣.中国辐射气候[M].气象出版社,1998.
    [15]帕尔特里奇G W,普拉特W.C.M.R著.吕达仁等译.气象学和气候学中的辐射过程[M].北京:科学出版社,1981,73-81.
    [16]方先金.中国大气透明度系数的研究[J].南京气象学院学报,1985,3:293-305.
    [17]翁笃鸣,曾晓梅,方先金.青藏高原夏季大气透明度特征分析[J].南京气象学院学报,1983,2:139-149.
    [18]王炳忠,潘根娣.我国的大气透明度及其计算[J].太阳能学报,1981,2(1):13-22.
    [19]翁笃鸣,方先金,安改月.南京大气透明度系数气候特征的初步分析[J].气象科学,2:81-88.
    [20]沈志宝,王尧奇,季国良等.太阳辐射在山谷城市污染大气中的削弱[J].高原气象,1982,1(4):74-83.
    [21]申彦波,赵宗慈,石广玉.地面太阳辐射的变化、影响因子及其可能气候效应的最新研究进展[J].地球科学进展,2008,23(9):915-923.
    [22]赵东,罗勇,高歌等.1961年至2007年中国日照的演变及其关键气候特征[J].资源科学,2010,32(4):701-711.
    [23]Mishchenko M I, Geogdzhayev I V, Ross ow W B, et al. Long-term satellite record reveals likely recent aerosol trend [J]. Science,2007,315,1543,doi:10.1126/science.1136709.
    [24]Robock A. Volcanic and eruptions and climate [J]. Reviews of Geophysics,2000,38 (2):191~219.
    [25]Streets D G, Wu Ye, Chin Mian. Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition [J]. Geophysical Research Letters,2006,33, L15806, doi:10.1029 /2006GL026471.
    [26]IPCC. Climate Change 2007:The Physical Science Basis[R]//Solomon S, et al. eds. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York:Cambridge University Press,2007.
    [27]MishchenkoM Ⅰ, Geogdzhayev Ⅳ, CairnsB, et al. Past, present, and future of global aerosol climatologies derived from satellite observations:A perspective [J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2007,106:325-347.
    [28]MishchenkoM Ⅰ, Geogdzhayev Ⅳ. Satellite remote sensing reveals regional tropospheric aerosol trends [J]. Optics Express,2007,15(12):7423~7438.
    [29]Streets D G, Yu C, Wu Y, et al. Aerosol trends over China,1980-2000[J]. Atmospheric Research, 2008,88(2):174~182.
    [30]张春桂,彭云峰,林晶等.福建三大城市群气溶胶遥感监测及时空变化分析[J].气象,201036(8):92-99.
    [31]张美根,徐永福,张仁健等.东亚地区春季黑碳气溶胶源排及其浓度分布[J].地球物理学报,2005,48(1):46-51.
    [32]翁笃鸣.中国太阳直接辐射的气候计算及分布特征[J].太阳能学报,1986,7(2):121-130.
    [33]章基嘉,朱抱真,朱福康等.青藏高原气象学进展[M].北京:科学出版社,1988,23-28.
    [34]谢贤群,周允华,项月琴等.格尔木地区1979年8-8月的辐射特征[A].青藏高原学实验文集(一)[C].北京:科学出版社,1984,48-60.气象科
    [35]沈觉成,高家表.南京地区的辐射平衡特征[A].青藏高原气象科学实验文集(二)[C].北京:科学出版社,1984,70-81.
    [36]祝昌汉.再论总辐射的气候学计算方法(二)[J].南京气象学院学报,1982,
    [37]陈丹,周斌,郝楠等.对利用天顶散射光法测量大气组分含量的影响研究[J].物理学报,2006,50(10):10:5555-5561.
    [38]石玉林,陈传友,何贤杰等.资源科学[M].北京:高等教育出版社,2006.
    [39]Xu Q. The notable variation of solar radiation in winter in China [J]. Science in China (B),1990, 10:1112~1120.
    [40]杜春丽,沈新勇,陈渭民等.43a来我国城市气候和太阳辐射的变化特征[J].南京气象学院学报,2008,31(2):200-207.
    [41]李晓文,李维亮,周秀骥.中国近30年太阳辐射状况研究[J].应用气象学报,1998,9(1):24-31.
    [42]Gilgen H, Wild M, Ohmura A. Means and t rends of shortwave irradiance at the surface estimated from global energy balance archive data [J]. Journal of Climate,1998,11:2042~2061
    [43]Liepert B G. Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990[J]. Geophysical Research Letters,2002,29 (10):1421, doi: 10.1029/2002GL014910.
    [44]Wild M, Gilgen H, Roesch A, et al. From Dimming to Brightening:Decadal Changes in Solar Radiation at Earth's Surface [J]. Science,2005,308:847~850.
    [45]Wild M, Ohmura A, Makowski K. Impact of global dimming and brightening on global warming [J]. Geophysical Research Letters,2007,34, L04702, doi:10.1029/2006GL028031
    [46]Wild M. Global dimming and brightening:A review [J] Journal of Geophysical Research,2009, 114:D00D16.
    [47]杨胜朋,王可丽,吕世华.近40年来中国大陆总辐射的演变特征[J].太阳能学报,2007,8(3):27-232.
    [48]Che H Z, Shi G Y, Zhang X Y, et al. Analysis of 40 years of solar radiation data from China,1961~ 2000[J]. Geophysical Research Letter,2005,32, L06803, doi:10.1029/2004GL022322.
    [49]Shi G Y, Hayasaka T, Ohmura A, et al.2008. Data quality assessment and t he long-term t rend of ground solar radiation in China [J]. Journal of Applied Meteorology. Climatology,47:1006-1016.
    [50]王雅婕,黄耀,张稳.1961-2003年中国大陆地表太阳总辐射变化趋势[J].气候与环境研究,2009,14(4):405-413.
    [51]Xia X. A closer looking at dimming and brightening in China during 1961-2005 [J]. Annales Geophysicae,2010.28:1121-1132.
    [52]陈志华,石广玉,车慧正.近40a来新疆地区太阳辐射状况研究[J].干旱区地理,2005,28(6):734-739.
    [53]Zhang Y L, Qin B Q, Chen W M. Analysis of 40 year records of solar radiation data in Shanghai, Nanjing and Hangzhou in Eastern China [J]. Theoretical and Applied Climatology,2004,78:217~227.
    [54]查良松.我国地面太阳辐射量的时空变化研究[J].地理科学,1996,16(3):232-237.
    [55]M. Shahidehpour and F. Schwatrz, "'Don't let the sun go down on PV" [J]. IEEE Power Energy, 2(3),May,2004.
    [56]中投顾问产业研究监测中心著.我国光伏电站布局 遍地开花[R].中国领先产业研究机构,2010.
    [57]Almonacid F, Rus C, Perrez P J, et al. Estimation of the energy of a PV generator using artificial neural network [J]. Renewable Energy,2009,34 (12):2743-2750.
    [58]Kudo M, Nozaki Y, Endo H, et al. Forecasting electric power generation in a photovoltaic power system for an energy network [J]. Electrical Engineering in Japan,2009,167 (4):16-23.
    [59]陈昌松,段善旭,殷进军.基于神经网络的光伏阵列发电预测模型的设计[J].电工技术学报,2009,24(9):153-158.
    [60]栗然,李广敏.基于支持向量机回归的光伏发电出力预测[J].中国电力,2008,41(2):74-78.
    [61]Didier M, Lucien W, Yves P, et al. Performance prediction of grid-connected photovoltaic systems using remote sending [R]. International Energy Agency Photovoltaic Power Systems Programme, IEA PVPS Task Report IEA-PVPS T2-07,2008.
    [62]Whitaker C, Townsend T U, Newmiller J D, et al. Application and validation of a new PV performance characterization method [A]//Proc IEEE PVSC[C],1997:1253-1256.
    [63]Lorenz E, Hurka J, Heinemann D, et al. Irradiance forecasting for the power prediction of gridconnected photovoltaic systems [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2009,2 (1):2-10.
    [64]周德佳,赵争鸣,吴理博等.基于仿真模型的太阳能光伏电池阵列特性的分析[J].清华大学学报,2007,47(7):1109-1112.
    [65]Shimada T, Kurokawa K. Grid-connected photovoltaic systems with battery storages control based on insolation forecasting using weather forecast [J]. Renewable Energy,2006:228-230.
    [66]Voyant C, Muselli M, Paoli C. Predictability of PV power grid performance on insular sites without weather stations:use of artificial neural networks [A].24th European Photovoltaic Solar Energy Conference[C],2009:1-4.
    [67]Perpinan O, Lorenzo E, Castro M A. On the calculation of energy produced by a PV grid-connected system [J]. Progress in Photovoltaics:Research and Applications,2006,15(3):265-274.
    [68]Yona A, Tomonobu S, Saber A Y. Application of neural network to 24-hour-ahead generating power forecasting for PV System [A]. Proc IEEE PES [C],2008:1-6.
    [69]Beyer H G, Bethke J, Drews A, et al. Identification of a general model for the MPP performance of PV-modules for the application in a procedure for the performance check of grid connected systems [A]. 19th European Photovoltaic Solar Energy Conference[C],2004:7-11.
    [70]Durisch W, Tille D, Worrz B, et al. Characterisation of photovoltaic generators [J]. Applied Energy, 2000,65 (14):273-284.
    [71]W. Durisch, B. Bitnar, C. Jean, et al. Efficiency model for photovoltaic modules and demonstration of its application to energy yield estimation [J]. Solar Energy Materials and Solar Cells,2007,91(1):79-84.
    [72]Notton G., Lazarov V, Stoyanov L. Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations[J]. Renewable Energy,2010,35(2):541-554.
    [73]李芬,陈正洪,成弛等.太阳能预报方法的发展[J].气候变化研究进展,2011,7(2):136-142.
    [1]魏凤英.现代气候统计诊断与预测技术(第二版)[M].北京:气象出版社,2007.
    [2]符淙斌,王强.气候突变的定义与检测方法[J].大气科学,1992,16(4):482-493.
    [3]吴洪宝,吴蕾.气候变率诊断和预测方法[M].北京:气象出版社,2005.
    [4]Ooyama, K. V, A thermodynamic foundation for modeling the moist atmosphere [J].J.Atmos.Sci, 1990, (47),2580~2593.
    [5]Laprise, R., The Euler Equation of motion with hydrostatic pressure as independent variable [J].Mon.Wea.Rev,1992(120),197~207.
    [6]Haltiner, G. J., and R. T. Williams, Numerical prediction and dynamic meteorology [J]. John wiley&Sons, Inc.,1980,477.
    [1]文小航,尚可政,王式功等.1961-2000年中国太阳辐射区域特征的初步研究[J].中国沙漠,2008,28(3):554-561.
    [2]赵东,罗勇,高歌等.1961年至2007年中国日照的演变及其关键气候特征[J].资源科学,2010,32(4):701-711.
    [3]韩霄,张美根,韩志伟等.东亚地区气溶胶光学厚度时空分布模拟与分析[J].中国科学:地球科学,2010,40(10):1446-1458.
    [1]祝昌汉.我国直接辐射的计算方法及分布特征[J].太阳能学报,1985,6(1):1-11.
    [2]祝昌汉.我国散射辐射的计算方法及其分布[J].太阳能学报,1984,242-249.
    [3]赵东,罗勇,高歌.我国近50年来太阳直接辐射资源基本特征及其变化[J].太阳能学报,2009,30(7):946-952.
    [4]翁笃鸣,张文宗.青藏高原夏季的散射辐射[J].南京气象学院学报,1984,1:28-35.
    [5]Skartveit A, Olseth J A. Horizontal and vertical illuminance/irradiance from the IDMP station in Geneva [A]. Proceedings of the Third Satellight meeting [C],1997, Les Marecottes, January 16-17.
    [6]李韧,季国良,杨文等.敦煌地区晴空散射辐射影响因子的统计特征[J].高原气象,2003,23(1):116-122.
    [7]查良松.a.我国地面太阳辐射量的时空变化研究[J].地理科学,1996,16(3):232-237.
    [8]Shi G Y, Hayasaka T, Ohmura A, et al.. Data quality assessment and t he long-term t rend of ground solar radiation in China[J]. J. Appl. Meteor. Climatology,2008,47:1006-1016.
    [9]杨胜朋,王可丽,吕世华.近40年来中国大陆总辐射的演变特征[J].太阳能学报,2007,8(3)227-232.
    [10]李晓文,李维亮,周秀骥.中国近30年太阳辐射状况研究[J].应用气象学报,1998,9(1):24-31.
    [11]Che H Z, Shi G Y, Zhang X Y, et al. Analysis of 40 years of solar radiation data from China,1961-2000[J]. Geophysical Research Letters,2005,32:L06803.
    [12]《中华人民共和国气候图集》编委会.中华人民共和国气候图集[M].北京:气象出版社,2002,6-7.
    [13]魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,2007.
    [14]赵东.中国太阳能长期变化及计算方法研究[D].南京:南京信息工程大学:2009.
    [15]杜春丽,沈新勇,陈渭民等.43a来我国城市气候和太阳辐射的变化特征[J].南京气象学院学报,2008,31(2):200-207.
    [16]张雪芹,彭莉莉,郑度等.1971-2004年青藏高原总云量时空变化及其影响因子[J].地理学报,2007.62(9):959-969.
    [17]王炳忠,潘根娣.我国的大气透明状况[J].气象学报,1982,40(4):443-452.
    [18]杜军,边多,胡军等.西藏近35年日照时数的变化特征及其影响因素[J].地理学报,2007,62(5):492-500.
    [19]孙贤明,韩一平.冰水混合云对可见光的吸收和散射特[J].物理学报,2006,55(2):682-687.
    [20]申彦波,赵宗慈,石广玉.地面太阳辐射的变化、影响因子及其可能气候效应的最新研究进展[J].地球科学进展,2008,23(9):915-923.
    [21]韩永,王体健,饶瑞忠等.大气气溶胶物理光学特性研究进展[J].物理学报,2008,57(11):7396-7407.
    [22]王炳忠,刘庚山.我国气溶胶浑浊状况再研究[J].太阳能学报,1992,13(1):79-85.
    [23]曾燕,邱新法,刘绍民.起伏地形下天文辐射分布式估算模型[J].地球物理学报,2005,48(5):1028-1033.
    [1]魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,2007.[Wei Feng-ying. Statistic Diagnose and Foreshadow Technology in Present Climate [M]. Beijing:Meteorological Press,2007.]
    [2]吴洪宝,吴蕾,气候变率诊断和预测方法[M].北京:气象出版社,2005.[WU Hongbao, WU Lei. Method for Diagnosing and Forecasting Climate Variability [M]. Beijing:Meteorological Press,2005]
    [3]地质出版社地图编辑室.使用中国地图册[M].北京:地质出版社,2010.
    [1]李晓文,李维亮,周秀骥.中国近30年太阳辐射状况研究[J].应用气象学报,1998,9(1):24-31.
    [2]Xia, A close looking at dimming and brightening in China during 1961-2005[J]. Annales Geophysicae, 2010,28,1121-1132,
    [3]罗云峰,吕达仁,李维亮等.近30年来中国地区大气气溶胶光学厚度的变化特征[J].科学通报,2000,45:549-554.
    [4]张雪芹,彭莉莉,郑度等.1971-2004年青藏高原总云量时空变化及其影响因了[J].地理学报,2007.62(9):959-969.
    [5]杜军,边多,胡军等.西藏近35年日照时数的变化特征及其影响因素[J].地理学报,2007,62(5):492-500.
    [6]Heinemann D. Zur Steuerung regenerativer Energieversorgungssysteme unter Verwendung von Energie-wettervorhersagen[D]. Doctor Dissertation:Universitat Oldenburg.,1990
    [7]Femia N, Petrone G, Spagnuolo G, et al.Optimization of perturb and observe maximum power point racking method [J]. IEEE Transactions on Power Electronics,2005,20(4):963-973.
    [8]Kim I S, Kim M B, and Youn M J. New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system [J]. IEEE Transactions on Industrial Electronics,2006,53(4):1027-1035.
    [9]Xiao W, Lind M G J, Dunford W G et al. Real-time identification of optimal operating points in photovoltaic power systems [J]. IEEE Transactions on Industrial Electronics,2006,53(4):1017-1026.
    [10]Ding J, Cheng X, and Fu T. Analysis of series resistance and P-T characteristics of the solar cell Vacuum [J],2005,77(2):163-167.
    [11]Hiyama T, Kouzuma S, Imakubo T. Identification of optimal operating point of PV modules using neural network for real time maximum power tracking control [J]. IEEE Transactions on Energy Conversion,1995,10(2):360-367.
    [12]Chakraborty S, Weiss M D, Simoes M G. Distributed intelligent energy management system for a Single-Phase High-Frequency AC microgrid[J]. IEEE Transactions on Industrial Electronics,2007, 54(1):97-109.
    [13]Iga A, Kaneko T, Ishihara Y. Research of an evaluation method of photovoltaic output and generated energy connected with a power grid [A]. Transmission and Distribution Conference and Exhibition:Asia Pacifi[C]. IEEE/PES, Oct.,2002,3:1641-1646.
    [14]李锦萍,宋爱国.北京晴天太阳辐射模型与ASHRAE模型的比较[J].首都师范大学学报,1998,19(1):35-38.
    [15]Ren M J, Wright J A.2002. Adaptive diurnal prediction of ambient dry-bulb temperature and solar radiation [J]. HVAC and Research,8 (4):383-401.
    [16]高国栋,陆渝蓉.气候学[M].北京:气象出版社,1988:1-32.
    [17]Martin L, Zarzalejo L F, Polo J, et al. Prediction of global solar irradiance based on time series analysis:application to solar thermal power plants energy production planning [J].Solar Energy,2010, 84(10):1772-1781.
    [18]Reikard G. Predicting solar radiation at high resolutions:A comparison of time series forecasts [J]. Solar Energy 83 (2009) 342-349.
    [19]Pandit S M and Wu S M. Time Series and System Analysis with Applications [M]. New York: John Wiley & Sons,1983.
    [20]Kawashima M, Dorgan C E, Mitchell J W. Hourly thermal load prediction for the next 24 hours by ARIMA, EWMA, LR, and an Artificial Neural Network[J]. ASHRAE Transactions,1995,101(1):186-200.
    [21]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2003.
    [22]周晋,吴业正,晏刚等,利用神经网络估算太阳辐射[J].太阳能学报,2005,26(4):509-512.
    [23]De Souza J L, Nicacio R M, Moura M A. Global Solar radiation measurements in Maceio, Brazil[J]. Renewable energy,2005,30(8):1203-1220.
    [24]Cao J C, Cao S H.2006. Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis [J]. Energy,31(15):3435-3445.
    [25]Pattanasethanon S, Lertsatitthanakorn C, Atthajariyakul S, et al.. An accuracy assessment of empirical sine model, a novel sine model and an artificial neural network model for forecasting illuminance/irradiance on horizontal plane of all sky types at Mahasarakham, Thailand [J]. Energy Conversion and Management,2008,49(8):1999-2005.
    [26]Cao S, Cao J.2005. Forecast of solar irradiance using recurrent neural networks combined with wavelet analysis [J]. Applied Thermal Engineering,25(2-3):161-172.
    [27]Azadeh A, Maghsoudi A, Sohrab Khani S. Using an Integrated Artificial Neural Networks Model for Predicting Global Radiation:The Case Study of Iran [J]. ICREPQ.
    [28]Sfetsos A, Coonick A H. Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques[J].Solar Energy,2000,68(2):169-178,
    [29]Mellita A, Pavanb A M. A 24-h forecast of solar irradiance using artificial neural network:Application for performance prediction of a grid-connected PV plant at Trieste, Italy [J]. Solar Energy,2010, 84(5):807-821.
    [30]Cao J, Lin X. Study of hourly and daily solar irradiation forecast using diagonal recurrent wavelet neural networks[J]. Energy Conversion and Management,2008,49:1396-1406
    [31]Mellita A, Eleuchb H, Benghanemc M, et al. An adaptive model for predicting of global, direct and diffuse hourly solar irradiance [J]. Energy Conversion and Management,2010,51(4):771-782.
    [32]曹双华,曹家枞.太阳逐时总辐射混沌优化神经网络预测模型研究[J].太阳能学报,2006,27(2):164-169.
    [33]曹双华,曹家枞,刘凤强.小波分析在太阳辐射神经网络预测中的应用研究[J].东华大学学报,2004,30(6):18-22;
    [34]潘守义.现代气候学原理[M].北京:气象出版社,1994.
    [35]Parishward G V, Bhardwaj R K, Nema V K. Estimation of hourly solar radiation for India [J]. Renewable Energy,1997,12(3):303-313.
    [36]Muneer T, Gul M, Kambezedis H. Evaluation of an all-sky meteorological radiation model against measureed hourly data [J]. Energy Convers Mgmt,1998,39(3/4):303-307.
    [37]Raja I A.1994. Insolation sunshine relation with elevation and latitude [J]. Solar Energy, 53(1):53-56.
    [38]Berh H D. Solar radiation on tilted south oriented surfaces:Validation of transfer-model [J]. Solar Energy,1984,43(3):161-168.
    [39]Lin W X. A general correlation for estimating the monthly average daily radiation incient on a horizontal surface in Yunnan Province, China [J]. Solar Energy,1988,41(1):1-3.
    [40]Copinathan K K.. Solar sky radiation estimation techniques [J]. Solar Energy,1992,49(1):9-11.
    [41]张礼平,丁一汇,李清泉等.遗传神经网络释用气候模式预测产品的实验研究[J].气候与环境研究,2008,13(5):681-687.
    [42]林星春,曹家枞,刘春雁.基于小波网络的次日太阳逐时总辐射预测技术研究[J].能源技术,28(1):70-75.
    [43]Cao S H, Cao J C. Forecast of solar irradiance using recurrent neural networks combined with wavelet analysis [J]. Applied Thermal Engineering,2005,25 (2-3):161-172.
    [44]Beyer H G, Costanzo C, Heinemann D, et al. Short range forecast of PV energy production using satellite image analysis [A]. Proc.12th European Photovoltaic Solar Energy Conference[C]. Amsterdam, 1994:1718-1721.
    [45]Bannehr L, Rohn, M. and Warnecke, G.A Functional Analytic Method to Derive Displacement Vector Fields From Satellite Image Sequences [J]. International Journal of Remote Sensing,1996,17,383-392.
    [46]Cote S and Tatnall A R. L. A Neural Network Based Method for Tracking Features from Satellite Sensor Images [J]. International Journal of Remote Sensing,1995,16,3695-3701.
    [47]Hammer A, Heinemann D, Hoyer C, et al. Solar Energy Assessment Using Remote Sensing Technologies [J]. Remote Sensing of Environment,2003,86,423-432.
    [48]Kaifel A K, Jesemann P. An adaptive filtering algorithm for very short-range forecast of cloudiness applied to Meteosat data [A]. Proc.9th Meteosat Users Meeting[C]. Locarno,1992.
    [49]Hammer A, Heinemann D, Lorenz E,et al. Short-term forecasting of solar radiation:a statistical approach using satellite data [J]. Solar Energy,67(1-3),1999:139-150.
    [50]Konrad J and Dubois E. Bayesian Estimation of Motion vector Fields [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,11,910-927.
    [51]Armstrong M A. Comparison of MM5 forecast shortwave radiation with data obtained from the atmospheric radiation measurement program [D]. Master of Science Scholarly Paper, University of Maryland, USA,2000.
    [52]Zamora R J, Solomon S, Dutton E G, et al.:Comparing MM5 Radiative Fluxes with Observations Gathered During the 1995 and 1999 Nashville Southern Oxidants Studies[J]. Journal of Geophysical Research,2003,108 (D2),4050, doi:10.1029/2002JD002122.
    [53]Grell G A, Dudhia J, Stauffer D R. A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5)[R]. Technical Note NCAR/TN-398+STR, National Center for Atmospheric Research, Boulder,1995, USA,121.
    [54]Heinemann D, Lorenz E, Girodo M. Forecasting of solar radiation[A] International Workshop on Solar Resource from the Local Level to Global Scale in Support to the Resource Management of Renewable Electricity Generation [C]. Ispra:Institute for Environment and Sustainability,2004.
    [55]American Meteorological Society.Glossary of Meteorology [M].2nd Edition,2000, Boston, USA.
    [56]Glahn H R and Lowry D A. The Use of Model Output Statistics (MOS) in Objective Weather Forecasting [J]. Journal of Applied Meteorology,1972,11,1203-1211.
    [57]Jensenius J S and Cotton G F. The Development and Testing of Automated Solar Energy Fore-casts Based on the Model Output Statistics (MOS) Technique [A]. Proc.1st Workshop on Terrestrial Solar Resource Forecasting and on the Use on Satellites for Terrestrial Solar Resource Assessment[C], Newark, 1981, American Solar Energy Society.
    [58]Heck P W and Takle E S. Objective Forecasts of Solar Radiation and Temperature [J]. Iowa State Journal of Research,1987,62,29-42.
    [59]Jensenius J S. Insolation Forecasting [A]. In:R. L. Hulstrom (Ed.):Solar Resources Cambridge:MIT Press,1989.Jensenius J S. Insolation Forecasting. In:R. L. Hulstrom (Ed.):Solar Resources[C]. MIT Press, Cam-bridge,1989:335-349.
    [60]Bofinger, S and Heilscher, G. Solar Radiation Forecast Based on ECMW and Model Output Statistics. Technical Report[R]. ESA/ENVISOLAR, AO/1-4364/03/I-IW, EOEP-EOMD.2004
    [61]刘同旭.110kV锥山变电站光伏并网发电系统研究[J].机械与电子,2010,7:101-102.
    [62]谢标锵,沈辉,朱薇桦.六种太阳电池光伏阵列实际发电性能比较[A].第十届中国太阳能光伏会议论文集:迎接光伏发电新时代[C],2008:900-908.
    [63]李芬,陈正洪,成弛等.太阳光伏发电量预报方法的发展[J].气候变化研究进展,2011,7(2):136-142.
    [64]Radziemska E. The effect of temperature on the power drop in crystalline silicon solar cells [J]. Renewable Energy,2003,28:1-12
    [65]Voyant C, Muselli M, Paoli C, et al. Predictability of PV power grid performance on insular sites without weather stations:use of artificial neural networks [A]. In:EU PVSEC:Proceeding 24th European Photovoltaic Solar Energy Conference [C].Hamburg:WIP-Renewable Energies,2009.
    [66]Perpinan O, Lorenzo E, Castro M A. On the calculation of energy produced by a PV grid-connected system [J]. Progress in Photovoltaics:Research and applications,2006,15(3),265-274
    [67]Yona A, Tomonobu S, Saber A Y. Application of Neural Network to 24-hour-ahead Generating Power Forecasting for PV System [J]. in Proc. IEEE PES,2008, pp:1-6
    [68]Beyer H G, Bethk J, Drews A, et al. Identification of a general model for the MPP performance of PV-modules for the application in a procedure for the performance check of grid connected systems[A]. 19th European Photovoltaic Solar Energy Conference[C],2004,7-11
    [69]Durisch W, Bitnar B, Jean C, et al. Efficiency model for photovoltaic modules and demonstration of its application to energy yield estimation [J]. Solar Energy Materials and Solar Cells,2007,91(1):79-84.
    [70]Notton G, Lazarov V, Stoyanov L. Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations[J]. Renewable Energy,2010,35(2):541-554
    [71]贺琳.含光伏并网发电系统的多电源结构优化研究[D].北京:北京建筑工程学院,2010.
    [72]姜涛,戴水东,吴靖.基于灰色模型的短期电力负荷预测系统设计[J].江苏电器,2008,3:47-49.
    [73]赵勇,李永刚.灰色理论在中长期负荷预测中的应用[J].内蒙古科技与经济,2008,156(2):83-84.
    [74]刘克,实用马尔可夫决策过程[M].北京:清华大学出版社,2004,11:1-13.
    [75]重庆,夏清,刘梅,相德.应用于负荷预测中的回归分析的特殊问题[J].电力系统自动化.1998,22(10):38-41.
    [76]赵宏伟,任震,黄雯莹。基于周期自回归模型的短期负荷预测[J].中国电机工程学报.1997.17(5):347-350.
    [77]侯志坚等.电力系统短期负荷预报的几种改进手段[J].电力系统自动化.1996,20(7)27-31.
    [78]陆海峰,单渊达.电力系统的递推自适应超短期负荷预报[J].电网技术,2000,24(3):28-31.
    [79]瑰昀,罗耀华,刘勇等.基于ARMA模型的电力系统负荷预测方法研究[J].信息技术,2002,7(6):74-76.
    [80]招海丹,余德伟.模糊专家系统用于短期负荷预测修正的初步探讨[J].华东电力,2000,5:24.
    [81]甘文泉,王朝晖,胡保生.结合神经元网络和模糊专家系统进行电力短期负荷预测[J].西安交通大学学报,1998,32(3):28-32
    [82]Yang K H,Zhu J J,Wang B S,et al. Design of Short-Term Load Forecasting Model Based on Fuzzy Neural Networks[A]. Intelligent Control and Automation,2004. WCICA 2004. Fifth World Congresson[C],3,June 15-19:2038-2041.
    [83]Senjyu T, Mandal P,Uezato K, et al. Next Day Load Curve Forecasting Using Hybrid Correction Method [J].IEEE Transactions on Power Systems,2004,99(99):1-8.
    [84]Ling S H, Leung F H E, Lam H K, et al.. Short-term Electric Load Forecasting Based on a Neural Fuzzy Network[J]. Industrial Electronics, IEEE Transactions on,2003,50(6):1305-1316.
    [85]杜磊,闫晖.基于BP神经网络的电力系统负荷预测[J].能源与环境,2008,4:18-19.
    [86]张尧,席云华,胡金磊等.基于PCA和RBF神经网络的中长期负荷预测方法[J].电力系 统,2008,27(2):61-64.
    [87]张博,魏智军.基于模糊神经网络与灰色理论的负荷预测方法[J].内蒙古电力技术,2008,26(1):48-50.
    [88]杨桦.波分析及其在电力系统中的应用[M].重庆:重庆大学,1997.
    [89]谢宏,陈志业,牛晓东,赵磊.基于小波分解与气象因素影响的电力系统n负荷预测模型研究[J].中国电机工程学报,2001.21(5):5-10
    [90]邰能灵,侯志俭,李涛等.基于小波分析的电力系统短期负荷预测方法[J].中国电机工程学报,2003,23(1):45-49
    [91]张智晟,孙雅明,王兆峰等.优化相空间近邻点与递归神经网络融合的短期负荷预测[J].中国电机工程学报,2003,23(8):44-49
    [92]Mori H, Urano S. Short-Term Load Forecasting with Chaos Time Series Analysis [A]. International Conference on Intelligent Systems Applications to Power Systems, ISAP,1996,28 Jan-2 Feb,133-137.
    [93]梁志珊,于丽敏,付大鹏,张化光.基于Lyapunov指数的电力系统短期负荷预测[J].中国电机工程学报,1998,18(5):368-371.
    [94]陈昌松,段善旭,殷进军.基于神经网络的光伏阵列发电预测模型的设计[J].电工技术学报,2009,24(9):153-158.
    [95]栗然,李广敏.基于支持向量机回归的光伏发电出力预测[J].中国电力,2008,41(2):74-78.
    [1]王炳忠.我国的太阳能资源及其计算[J].太阳能学报,1980,1(1):1-9.
    [2]缪仁杰,李淑兰.太阳能利用现状与发展前景[J].应用能源技术,2007,113(5):28-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700