用户名: 密码: 验证码:
准噶尔盆地克夏断裂带成岩作用对不整合输导性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油气勘探程度的提高,不整合油气藏越来越来受到人们的重视,已成为油田增储上产的重要目标。关于不整合的研究,前人做了大量工作,但是对于不整合输导性能方面的研究还较少,而成岩作用对不整合输导性能的影响的研究在国内外更是属于一个全新的课题。
     论文在消化和吸收前人大量研究成果的基础之上,根据野外露头观察、岩心观察描述、所采样品的多种分析测试结果以及对收集到的大量地震、录井、地化和测井资料的统计分析整理,研究克夏断裂带不整合的类型划分及分布、空间结构及厚度、岩性配置类型及分布等多种特征。研究区不整合平面上可划分为(多期)削截不整合、超覆不整合、断褶不整合、褶皱不整合及平行不整合五种类型,不整合油气藏主要分布于多期削截不整合和削截不整合分布区域;纵向上不整合具有不整合面之上岩石、风化粘土层及半风化岩石带三层结构;从山前到盆地依次发育多期削截不整合→褶皱不整合、断褶不整合、削截不整合→超覆不整合→平行不整合,不整合面之上岩石厚度逐渐变薄,而风化粘土层逐渐变厚;不整合面之上岩石存在5种岩性,半风化岩石带存在7种岩性;侏罗系顶部不整合、三叠系顶部不整合、二叠系顶部不整合分别组成16种、22种、28种岩性配置类型,不整合油气藏主要分布在AHJ(砾-泥-砂)、AHK(砾-泥-砾)、BHJ(砂-泥-砂)和BHK(砂-泥-砾)四种岩性配置分布区域。不整合可形成以不整合面之上岩石(主要为底砾岩)和半风化岩石带为主的两种有效运载层。
     油气沿不整合运移存在录井、包裹体、薄片及地球化学等多方面显示,证明不整合在研究区内是重要的油气运移通道;样品中发现三期流体包裹体,说明不整合内至少发生过三次大规模油气运移和三次大规模胶结作用;地化特征表明不整合输导体系内油气大规模运移的方向为玛北地区→乌夏地区和玛北地区→克百地区。
     在不整合特征研究的基础上,选取了重32井区、夏9井区、玛北油田和克75井区四个典型不整合油气藏进行精细解剖。结果表明,研究区不整合油气藏输导体系均表现为以断裂-不整合为主的复合型;不整合面之上岩石原始物性较好,利于形成超覆油气藏;半风化岩石带溶蚀孔隙发育,利于形成不整合遮挡型油气藏。不整合油气藏的发育和分布受“两线一结构”的控制,即超覆线控制不整合面之上岩石中超覆型油气藏的分布范围,剥蚀尖灭线控制半风化岩石带内不整合遮挡型油气藏的分布范围,风化粘土层的发育程度及封闭能力是成藏的关键。
     通过对115块普通薄片样品、6块扫描电镜样品的观察和分析总结大量前人薄片、扫描电镜、X衍射等实验分析结果,对上述四个不整合半风化岩石带的成岩序列、成岩阶段进行了划分;并分析总结了其成岩特征,认为半风化岩石带成岩特征比较显著,主要体现为:溶蚀孔隙发育,微裂缝较为发育,岩石蚀变现象普遍而有规律。半风化岩石蚀变规律表现为不同不整合之间,从浅到深,蚀变作用逐渐变强;同一不整合,蚀变作用随距离不整合面距离的增加而减弱。
     综合不整合特征及成岩特征研究,对成岩作用对不整合输导性能的影响进行了定性评价及定量描述。研究区影响不整合半风化岩石带储集性能的成岩作用主要是压实作用、胶结作用、溶蚀作用和破裂作用;压实作用和胶结作用使孔隙减少,溶蚀作用和破裂作用使孔隙增加。将视压实率、视胶结率和视溶蚀率作为衡量的压实作用、胶结作用和溶蚀作用的作用强度的定量参数,根据对研究区不整合资料的统计结果明确了几种成岩作用程度的划分界限,并按影响程度对不同不整合几种成岩作用所起作用的先后进行了排序。重32井区侏罗系顶部不整合半风化岩石带为压实作用>胶结作用>溶蚀作用>破裂作用;夏9井区三叠系顶部不整合半风化岩石带和克75井区佳木河组顶部不整合半风化岩石带为压实作用>溶蚀作用>胶结作用>破裂作用;玛北油田二叠系顶部不整合半风化岩石带压实作用>胶结作用=溶蚀作用>破裂作用。另外,风化粘土层的突破压力随深度的增加呈指数关系增加,推断稳定地区埋深较大的不整合风化粘土层具有较好的封闭能力,可以达到符合封盖油气的标准。
     最后,综合研究区不整合的分布特征、成藏特征以及成岩特征,预测乌尔禾油田-夏子街油田-玛北油田结合部的玛北斜坡二叠系~三叠系地层为不整合油气藏的有利分布区。
With the higher level of hydrocarbon exploration, unconformity reservoirs have being paid more and more attention and become primary exploration targets in oilfields. Predecessors have done a lot of work about unconformity, but less work about the capability of unconformity. The study about the impacts of diagenesis on carrying capability of unconformity is a new topic in domestic.
     On the basis of a large number of previous studies, this dissertation studied several characteristics of unconformity, such as the type, the distribution, the spatial structure, the depth, and the lithology combination, according to the observation of the outcrop, the core and the samples and a mass of collected data of seismic, mud logging, geochemical and well logging. There are six types of unconformity in study area: muti-truncation unconformity, truncation unconformity, overlap unconformity, fault-fold unconformity, fold unconformity and parallel unconformity, and unconformity reservoirs mainly distribute in multi-truncation unconformity and truncation unconformity. The unconformity has three parts in vertical from top to bottom: rock above the unconformity, weathered clay and semi-weathered rock. From uplift belt to depression, there are muti-truncation unconformity→fold unconformity, fault-fold unconformity, truncation unconformity→overlap unconformity→parallel unconformity in order, and the thickness of rock above the unconformity become thinner, weathered clay become thicker. The rock above the unconformity has five types of lithology, and the semi-weathered rock has seven. The conformity above the top of Jurassic, Triassic, Permian has six, twenty-two, twenty-eight types of lithology combination separately. And unconformity reservoirs mainly exist in the following four types: AHJ (conglomerate- clay- sandstone), AHK (conglomerate- clay- conglomerate), BHJ (sandstone- clay- sandstone), BHK (sandstone- clay- conglomerate). The unconformity may have two effective transport passages: rock above the unconformity (conglomerate above the unconformity especially) and semi-weathered rock.
     The evidence of hydrocarbon migration in unconformity, which was showed in logging, inclusions, slices and geochemistry characteristics, indicated that the unconformities were important migration pathways. It was found that the hydrocarbon experienced wide-ranging migrations and cementations three times at least. And the directions of hydrocarbon migration, which were from Mabei oilfied to Wuxia district and from Mabei oilfied to Kebai district, can be shown from the characteristics of the geochemistry.
     Based on the unconformity characteristic research, making fine anatomy for four typical unconformity reservoirs, which locate in Wellblock Zhong32, Wellblock Xia9, Mabei Oilfield, Wellblock Ke75. The transportation system of unconformity reservoirs performs as compounded type of fault and unconformity mostly in study area.The rock above conformity, the original physical characteristics of which are good, is beneficial to form overlap reservoirs. And the semi-weathered rock, which has more dissolution pores, is propitious to form unconformity-screened reservoirs. The distribution of unconformity reservoirs are mainly controlled by“two lines and one structure”, ie., overlap line controls the distribution of overlap reservoirs in the rock above unconformity, pinch-out line controls the distribution of unconformity-screened reservoirs in semi-weathered rock, the development ability and sealing ability of weathered clay are crucial to the formation of unconformity reservoirs.
     Through the observation of 115 common thin sections and 6 scanning electron microscope samples and the analysis of previous test result of lots of thin sections, scanning electron microscope and X-diffraction, diagenetic sequences and diagenetic stages of semi-weathered rock in the four unconformity above are divided. And diagenetic characteristics were summarised, which are distinct. It has a lot of dissolution pores and more cracks. Rock’s alteration characteristics are widespread and regular, which become stronger between different unconformities and become weaker in the same uncomformity with increasing depth.
     Based on the study of the characteristics of unconformity and diagenesis, the impacts of diagenesis on carrying capability of unconformity were studied by qualitative evaluation and quantitative description. The main diagenesis, which influence the physical character of the reservoirs, are compaction, cementation, dissolution and fracturing. Compaction and cementation make pores decrease, dissolution and fracturing make pores increase. Using apparent compaction rate, apparent cementation rate and apparent dissolution rate to measure compaction, cementation and dissolution separately as quantitative parameters, then determined the classification boundaries and distinguished various levels for different diagenesis according to statistics. The sequences about the effect level that the four kinds of diagenesis are different in distinct areas, which is compaction> cementation> dissolution> fracturing in Wellblock Zhong32, compaction> dissolution> cementation> fracturing in Wellblock Xia9 and Wellblock Ke75, compaction> dissolution= cementation> fracturing in Mabei Oilfield. In addition, weathered clay has enough sealing capability in stable region and a deeper depth, which would reach the standard to seal hydrocarbon, as breakthrough pressure of weathered clay increases exponentially with depth.
     Finally, based on the study of unconformity characteristics of distribution, hydrocarbon accumulation and diagenesis, predicting Mabei slope area is the favorable zone of unconformity reservoirs, which located in the junction among Wuerhe Oilfield, Xiazijie Oilfield and Mabei Oilfield.
引文
[1]查全衡,韩征,刘殿升.中国石油地质的若干特点及其对储量增长的影响[J].石油学报,1999,20(5):1-6.
    [2] Klemme H. D.. Petroleum basins-classifications and characteristics[J]. Journal of Petroleum Geology, 1980, 3: 187-207.
    [3]张厚福.石油地质学(第三版)[M].北京:石油工业出版社,1999.
    [4]裘怿楠,薛叔浩,应凤祥.中国陆相油气储集层[M].北京:石油工业出版社,1997:147-217..
    [5]赵澄林.沉积学原理[M].北京:石油工业出版社,2003,15-21.
    [6]王尚文.中国石油地质学[M].北京:石油工业出版社,1985.
    [7]庞雄奇,陈冬霞,李丕龙,等.隐蔽油气藏资源潜力预测方法探讨与初步应用[J].石油与天然气地质,2004,25(4):370-376.
    [8] Levorsen A. I.. Relation of oil and gas pools to unconformities in the midcontinent region[A]. In:Wrather W. E., Lahee F. H..Problem of petroleum geology[C]. AAPG Sidney Powers Memorial Volume, 1934, 761-784.
    [9]李明诚.油气运移基础理论与油气勘探[J].地球科学,2004,29(4):379-383.
    [10] Hindle A. D.. Petroleum migration pathways an charge concentration: A three-dimensional model[J]. AAPG Bulletin, 1997, 81(9): 1451-1481.
    [11] Schowalter T. T.. Mechanics of secondary hydrocarbon migration and entrapment[J]. AAPG Bulletin, 1979, 63(5): 723-760.
    [12] Dembicki H. J., Anderson M. J. Secondary migration of oil: Experiments supporting efficient movement of separate, buoyantoil phase along limited conduits[J]. AAPG Bulletin, 1989, 73(8): 1018-1021.
    [13] Catalan L., Xiao W. F., Chatzis I., et al. An experimental study of secondary oil migration[J]. AAPG Bulletin, 1992, 76(5): 638-650.
    [14]李明诚.石油与天然气运移(第三版)[M].北京:石油工业出版社,2004.
    [15] John S.. Interregional unconformities and hydrocarbon accumulation[J]. AAPG Memoir 26, 1984.
    [16] James Hutton. Investigation of the laws observable in composition, dissolution and restoration of land up on the globe[J]. Royal Society Edinburgh Transactional, 1988, 109-304.
    [17] Li Pilong, Zhang Shanwen, Xiao Huanqin, et al. Exploration of Subtle Trap in Jiyang Depression[J]. Petroleum Science, 2004, 1(2): 13-21.
    [18] Bethke C.M..田世澄译.伊利诺斯盆地中石油的长距离运移[J].地质科技情报,1992,11(增刊):42-62.
    [19]惠荣耀.准噶尔盆地西北缘的油气运移[J].石油实验地质,1987,9(1):65-68.
    [20] McNeal R.P.. Hydrodynamic entrapment of oil and gas in Bistfield, San Juan County, New Mexico[J]. AAPG Bulletin, 1961, 45: 315-329.
    [21] Harms J.C.. Stratigraphic traps I a valley fill, western Nebraska[J]. AAPG Bulletin, 1966, 50: 2119-2149.
    [22] Smith D.A.. The oretical considerations of sealing and nonsealing faults[J]. AAPG Bulletin, 1966, 50: 363-374.
    [23] Berg R.R.. Capillary pressure in stratigraphic traps[J]. AAPG Bulletin, 1975, 59(6): 939-959.
    [24] Hindle A.D.. Petroleum migration pathways and charge concentration: A three dimensional model Reply[J]. AAPG Bulletin, 1999, 83: 1020-1023.
    [25] Bekele E., Person M., Marsily G.. Petroleum migration pathways and charge concentration: A three dimensional model Disccussion[J]. AAPG Bulletin, 1999, 83: 1015-1019.
    [26] Allen A, Allen J. R.. Basin Analysis: Principles and Applications[M]. London: Blackwell Scientific Publishin g, 1990.
    [27] Walters R.F.. Differential entrapment of oil and gas in Arbuckle dolomite of central Kansas[J]. AAPG Bulletin, 1958, 42(9): 2133-2173.
    [28] Vail P., Mitchum R., Thompson S.. Seismic stratigraphy and global changes of sea level, part 3: relative changes of sealevel from coastal onlap[A]. Seismic stratigraphy applications to hydrocarbon exploration[C]. AAPG Memoir 26, 1977, 63-97.
    [29] Brown L. F., Fisher W. L.. AAPG Continuing Education Course Note Series (1): Seismic stratigraphic interpretation and petroleum exploration[M]. Tulsa: AAPG, 1979, 1-181.
    [30]潘钟祥.不整合对于油气运移聚集的重要性[J].石油学报,1983,4(4):1-10.
    [31]吴亚军,张守安,艾华国.塔里木盆地不整合类型及其与油气藏的关系[J].新疆石油地质,1998,19(2):101-105.
    [32]陈中红,查明,吴孔友,等.陆梁隆起侏罗系顶部不整合面特征与油气运聚[J].新疆石油地质,2002,23(4):283-285.
    [33]查明,张一伟,邱楠生.油气成藏条件及主要控制因素[M].北京:石油工业出版社,2003.
    [34]罗凯声.不整合研究在准噶尔盆地勘探中的作用[J].新疆石油地质,2003,24(6):543-545.
    [35]曹剑,胡文瑄,张义杰,等.准噶尔盆地油气沿不整合运移的主控因素分析[J].沉积学报,2006,24(3):399-405.
    [36]杨勇,查明.准噶尔盆地乌尔禾-夏子街地区不整合发育特征及其在油气成藏中的作用[J].石油勘探与开发,2007,34(3):304-309.
    [37]付广,段海凤,孟庆芬.不整合及输导油气特征[J].大庆石油地质与开发,2005,24(1):13-16.
    [38]牟中海,何琰,唐勇,等.准噶尔盆地陆西地区不整合与油气成藏的关系[J].石油学报,2005,26(3):16-20.
    [39]隋风贵,赵乐强.济阳坳陷不整合结构类型及控藏作用[J].大地构造与成矿学,2006,30(2):161-166.
    [40]尹微,陈昭年,许浩,等.不整合类型及其油气地质意义[J].新疆石油地质,2006,27(2):239-241.
    [41]常波涛.陆相盆地中不整合体系与油气的不均一性运移[J].石油学报,2006,27(5):19-23.
    [42]郭维华,牟中海,赵卫军,等.准噶尔盆地不整合类型与油气运聚关系研究[J].西南石油学院学报,2006,28(2):1-3.
    [43]何琰,牟中海.准噶尔盆地不整合类型和分布规律[J].西南石油大学学报,2007,29(2):61-64.
    [44]陈建平,查明.准噶尔盆地环玛湖凹陷二叠系不整合特征及其在油气运移中的意义[J].石油勘探与开发,2002,29(4):29-31.
    [45]周小军,林畅松,刘景彦,等.塔里木盆地主要构造不整合的分布特征及其与对油气成藏的控制作用[J].新疆石油天然气,2006,2(1):1-4.
    [46]张克银,艾华国,吴亚军.碳酸盐岩顶部不整合面结构层及控油意义[J].石油勘探与开发,1996,23(5):16-19.
    [47]曲江秀,查明,田辉,等.准噶尔盆地北三台地区不整合与油气成藏[J].新疆石油地质,2003,24(5):386-388.
    [48]吴孔友,查明,洪梅.准噶尔盆地不整合结构模式及半风化岩石的再成岩作用[J].大地构造与成矿学,2003,27(3):270-276.
    [49]王艳忠,操应长,王淑萍,等.不整合空间结构与油气成藏综述[J].大地构造与成矿学,2006,30(3):326-329.
    [50]洪太元,蔡希源,何治亮,等.准噶尔盆地腹部白垩系底部不整合特征[J].新疆地质,2006,24(3):229-233.
    [51]何登发.不整合面的结构与油气聚集[J].石油勘探与开发,2007,34(2):142-149.
    [52]刘克奇,蔡忠贤,张淑贞,等.塔中地区奥陶系碳酸盐岩不整合带的结构[J].地球科学与环境学报,2006,28(2):41-44.
    [53]张卫海,查明,曲江秀.油气输导体系的类型及配置关系[J].新疆石油地质,2003,24(2):118-120.
    [54]刘华,吴智平,张立昌,等.辽河盆地东部凹陷北部地区Es1+2/Es3不整合面与油气运聚的关系[J].石油大学学报(自然科学版),2003,27(6):8-11.
    [55]肖乾华,李美俊,彭苏萍,等.辽河东部凹陷北部不整合类型及油气成藏规律[J].石油勘探与开发,2003,30(2):43-45.
    [56]张凡芹,王伟锋.东营凹陷南斜坡古近系不整合及其在油气成藏中的作用[J].石油天然气学报(江汉石油学院学报),2005,27(2):294-297.
    [57]张建林.地层不整合对油气运移和封堵的作用[J].油气地质与采收率,2005,12(2):26-29.
    [58] Surdam R. C., Crossey L. J., Hagen E. S., et al. Organic-inorganic interaction and sandstone diagenesis[J]. AAPG Bulletin, 1989, 73(1): 1-23.
    [59] Magoon L.B., Dow W. G.. The petroleum system-from source to trap[J]. AAPG Memoir, 1994, 60: 1-49.
    [60] Cao Jian, Zhang Yijie, Hu Wenxuan, et al. The permian hybrid petroleum system in the northwest margin of the Junggar Basin, northwest China[J]. Marine and Petroleum Geology, 2005, 22(3): 331-349.
    [61]罗晓容.油气运聚动力学研究进展及存在问题[J].天然气地球科学,2003,14(5):337-346.
    [62] Tokunaga T., Imogi K., Matsubara O., et al. Buoyancy and interfacial force effects on two-phase displacement patterns: An experimental study[J]. AAPG Bulletin, 2000, 84(1): 65-74.
    [63] Bethke C.M., Reed J.D., Oltz D.F..Long-range petroleum migration in the Illinois Basin[J]. AAPG Bulletin, 1991, 75(5): 925-945.
    [64]汤良杰,金之钧,庞雄奇.多期叠合盆地油气运聚模式[J].石油大学学报(自然科学版),2000,24(4):67-70.
    [65]付广,吕延防,薛永超,等.油气运移通道及其对成藏的控制[J].海相油气地质,1999,4(3):24-28.
    [66]赵文智,何登发,池英柳,等.中国复合含油气系统的基本特征与勘探技术[J].石油学报,2001,22(1):6-13.
    [67]赵忠新,王华,郭齐军,等.油气输导体系的类型及其输导性能在时空上的演化分析[J].石油实验地质,2002,24(6):527-532.
    [68] Levorsen A . I.. Geology of Petroleum[M]. San Francisco: Freeman Company, 1954.
    [69]吕修祥,周新源,李建交,等.塔里木盆地塔北隆起碳酸盐岩油气成藏特点[J].地质学报,2007,81(8):1057-1063.
    [70]付广,许泽剑,韩冬玲,等.不整合面在油气藏形成中的作用[J].大庆石油学院学报,2001,25(1):1-4.
    [71]陆克政.关于不整合的分类和含油气盆地不整合的分布[J].华东石油学院学报,1980,(3):10-18.
    [72]李新民,丁勇,张旭,等.巴楚—麦盖提地区不整合面特征与油气分布关系[J].新疆石油地质,2001,22(6):475-477.
    [73]陈中红,查明,朱筱敏.准噶尔盆地陆梁隆起不整合面与油气运聚关系[J].古地理学报,2003,5(1):120-126.
    [74]陈中红,查明,吴孔友,等.准噶尔盆地陆梁地区油气运移方向研究[J].石油大学学报(自然科学版),2003,27(2):19-22.
    [75]孙永壮.东营凹陷南斜坡地层油藏成藏规律[J].油气地质与采收率,2006,13(4):52-54.
    [76]李长宝.车镇凹陷不整合特征及地层油气藏形成模式[J].石油地质与工程,2007,21(5):16-19.
    [77]蔡春芳,梅博文,马亭,等.塔里木盆地不整合面附近成岩改造体系烃-水-岩相互作用[J].科学通报,1995,40(24):2253-2256.
    [78]赵卫军,支东明,党玉芳,等.准噶尔盆地陆西地区侏罗系西山窑组顶界不整合结构特征及其与油气关系[J].新疆地质,2007,25(1):92-95.
    [79]张守安,吴亚军,佘晓宇,等.塔里木盆地不整合油气藏的成藏条件及分布规律[J].新疆石油地质,1999,20(1):15-17.
    [80]闫相宾,张涛.塔河油田碳酸盐岩大型隐蔽油藏成藏机理探讨[J].地质论评,2004,50(4):370-376.
    [81]牛彦良.海拉尔盆地潜山油藏油气沿不整合面、断层和砂体运移的控制因素[J].大庆石油地质与开发,2007,26(2):27-29.
    [82]何登发.塔里木盆地的地层不整合面与油气聚集[J].石油学报,1995,16(3):14-21.
    [83]庞雄奇,陈冬霞,张俊.隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J].岩性油气藏,2007,19(1):1-8.
    [84]ЩвсновM C.沉积岩石学(上册)[M].朱星恒等译.北京:地质出版社,1955,39-43.
    [85] Pettijohn F J.沉积岩[M].李汉瑜等译.北京:石油工业出版社,1981,254-260.
    [86]成都地质学院编.沉积岩石学[M].北京:中国工业出版社,1961,58-72.
    [87] Bathurst R G C.碳酸盐沉积物及其成岩作用[M].中国科学院地质研究所译.北京:科学出版社,1977,239-304.
    [88]РухинЛВ.沉积岩石学原理(上册)[M].杨世儒等译.北京:地质出版社,1955,243-248.
    [89] Chilingar G V, Bissell H J, Fairbridge R W.碳酸盐岩[M].冯增昭等译.北京:石油化学工业出版社,1978,30-31.
    [90]周书欣.对成岩作用及其阶段划分的意见[J].石油勘探与开发,1981,(3):10-13
    [91] Kossovskaya A G, Shutov V D. Main a aspects of the epigenesist problem[J]. Sedimentology, 1970, 15(1/2): 11-40.
    [92] Fairbridge R W. Syndiagenesis-anadiagenesis-epidiagenesis: phases in lihogenesis, in: Iarsen G, Chilingar G V,ed. Diagenesis in sediments and sedimentary rocks 2[J]. Amsterdam: Elevier, 1983, 17-114.
    [93] Schmidt V, McDonald D A.砂岩成岩过程中的次生储集孔隙[M].陈荷立,汤锡元译.北京:石油工业出版社,1982,1-30.
    [94]夏文杰,李秀华.沉积成岩作用阶段划分的有关问题[J].地质论评,1995,41(5):444-451.
    [95]沙庆安、陈景山、潘正莆.论成岩作用阶段的划分和术语的选用岩石学报,1986,2(2):42-49.
    [96]付娟,李文厚.储层成岩作用研究综述[J].科技情报开发与经济,2010,20(22):164-165.
    [97]刘宝珺.沉积岩石学[M].北京:地质出版社,1980,59-79.
    [98] SY/T 5477-92,中华人民共和国石油天然气行业标准碎屑岩成岩阶段划分[S].北京:石油工业出版社,1992.
    [99] SY/T 5477-2003,中华人民共和国石油天然气行业标准碎屑岩成岩阶段划分[S].北京:石油工业出版社,2003.
    [100]吴素娟,黄思静,孙治雷,等.鄂尔多斯盆地三叠系延长组砂岩中的白云石胶结物及形成机制[J].成都理工大学学报(自然科学版),2005,32(6):569-575.
    [101]黄思静,梁瑞,黄可可,等.鄂尔多斯盆地上古生界碎屑岩储层中的鞍形白云石胶结物及其对储层的影响[J].成都理工大学学报(自然科学版),2010,37(4):366-376.
    [102]王芙蓉,何生,何治亮,等.准噶尔盆地腹部永进地区砂岩储层中碳酸盐胶结物特征及其成因意义[J].岩石矿物学杂志,2009,28(2):169-178.
    [103]陈涛,蒋有录.地层不整合油气输导模式探讨——以济阳坳陷为例[J].新疆石油地质,2008,29(5):578-580.
    [104]高长海,查明,曲江秀,等.柴达木盆地东部不整合结构的地球物理响应及油气地质意义[J].石油学报,2007,28(6):32-36.
    [105]杨子成,张金亮.东营凹陷南斜坡原油生物标志物特征和油源对比[J].中国海洋大学学报,2008,38(3):453-460.
    [106]曹剑,胡文瑄,姚素平.准噶尔盆地西北缘油气成藏演化的包裹体地球化学研究[J].地质论评,2006,52(5):700-707.
    [107]张义杰,曹剑,胡文瑄.准噶尔盆地油气成藏期次确定与成藏组合划分[J].石油勘探与开发,2010,37(3):257-262.
    [108]吴胜和,熊琦华.油气储层地质学[M].北京:石油工业出版社,1998.
    [109]蒋凌志,顾家裕,郭彬程.中国含油气盆地碎屑岩低渗透储层的特征及形成机理[J].沉积学报,2004,22(1):13-18.
    [110] Walderhaug O. Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs. AAPG Bull, 1996, 80: 731-745.
    [111]朱国华.碎屑岩储集层孔隙的形成、演化和预测[J].沉积学报,1992,10(3):114-132.
    [112]史基安,王琪.影响碎屑岩天然气储层物性的主要控制因素[J].沉积学报,1995,13(2):128-139.
    [113]程晓玲.粘土矿物成岩作用对油气储集性和产能的影响——以苏北盆地台兴油田阜三段储层为例[J].石油实验地质,2003,25(2):164-168.
    [114]郑浚茂,庞明.碎屑储集岩的成岩作用研究[M].武汉:中国地质大学出版社,1989,69-117.
    [115]陆红.江苏地区侏罗─白垩系储层砂岩的成岩作用研究[J] .石油实验地质,1997,19(3):228.
    [116]孟元林,肖丽华,王建国,等.粘土矿物转化的化学动力学模型及其应用[J].沉积学报,1996,l4(2):110-116.
    [117]李昌存.塔里木盆地克孜勒苏群碎屑岩成岩作用研究[J].石油实验地质,1998,20(2):135.
    [118]朱家祥.碎屑岩成油组合的成岩作用研究[J].石油实验地质,1988,10(3):223.
    [119]史基安,晋慧娟,薛莲花.长石砂岩中长石溶解作用发育机理及其影响因素分析[J].沉积学报,1994,12(3):67-75.
    [120]李汶国,张晓鹏,钟玉梅.长石砂岩次生溶孔的形成机理[J].石油与天然气地质,2005,26(2):220-229.
    [121] Kupecz J A, Gluyas J and Bloch S. Reservoir quality prediction in sandstones and carbon-ates: An overview. AAPG Memoir, 1997: 69.
    [122]王宝清,张荻楠,刘淑芹,等.龙虎泡地区高台子油层成岩作用及其对储集岩孔隙演化的影响[J].沉积学报,2000,18(3):414-418.
    [123]刘林玉,陈刚,柳益群,等.碎屑岩储集层溶蚀型次生孔隙发育的影响因素分析[J].沉积学报,1998,16(2):97-101.
    [124]张鹏.准噶尔盆地西北缘乌夏地区成岩作用与储层评价[D].山东东营:中国石油大学(华东),2004.
    [125]杨晓萍,裘怿楠.鄂尔多斯盆地上三叠统延长组浊沸石的形成机理、分布规律与油气关系[J].沉积学报,2002,20(4):628-632.
    [126]李克永,李文厚,陈全红,等.鄂尔多斯盆地镰刀湾地区延长组浊沸石分布与油藏关系[J].兰州大学学报(自然科学版),2010,46(6):23-28.
    [127]孙玉善.克拉玛依油区沸石类矿物特征及其与油气的关系[J].岩相古地理,1993,13(2):37-48.
    [128] Beard D C, Weyl P K. Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bulletin, 1973, 57(2): 349-369.
    [129]薛莲花,史基安,晋慧娟.辽河盆地沙河街组砂岩中碳酸盐胶结作用对孔隙演化控制机理研究[J].沉积学报,1996,14(2):102-109.
    [130]刘孟慧,赵澄林.碎屑岩储层成岩演化模式[M].北京:石油大学出版社,1993.
    [131]傅强.成岩作用对储层孔隙的影响[J].沉积学报,1998,16(3):92-96.
    [132]柳益群,李文厚.陕甘宁盆地东部上三叠统含油长石砂岩的成岩特点及孔隙演化[J].沉积学报,1996,14(3):88-96.
    [133]柳益群,李文厚,冯乔.鄂尔多斯盆地东部上三叠统含油砂岩的古地温及成岩阶段[J].地质学报,1997,71(1):65-74.
    [134]史基安,王金鹏,毛明陆,等.鄂尔多斯盆地西峰油田三叠系延长组长6-8段储层砂岩成岩作用研究[J].沉积学报,2003,21(3):373-380.
    [135]郑俊茂,赵省民,陈纯芳.碎屑岩储层的两种不同成岩序列[J].地质论评,1998,44(2):207-212.
    [136] England W.A., Mackenzie A.S., Mann D.M., et al.The movement entrapment of petroleum fluid in the subsurface[J]. Journal of Geological Society, Landon, 1987, 144(2): 327-347.
    [137] Weber K.J.. How heterogeneity affects oil recovery[A]. Lake L.W., Carroll Jr H.B.. Reservoir Characterization[C]. NewYork:Academic Press, 1986: 487-544.
    [138]王琪,史基安,薛莲花,等.碎屑储集岩成岩演化过程中流体-岩石相互作用特征[J].沉积学报,1999,17(4):584-590.
    [139] Walderhaug O. Modeling quartz cementa-tion and porosity in Middle Jurassic Brent Group sandstones of the Kvitebjrn Field Northern North Sea[J]. AAPG Bull., 2000, 84: 1325-1339.
    [140]黄思静,侯中建.地下孔隙率和渗透率在空间和时间上的变化及影响因素[J].沉积学报,2001,19(2):224-232.
    [141]李德江,杨威,谢增业,等.准噶尔盆地克百地区三叠系成岩相定量研究[J].天然气地球科学,2008,19(4):468-473.
    [142]刘伟,窦齐丰,黄述旺,等.成岩作用的定量表征与成岩储集相研究——以科尔沁油田交2断块区九佛堂组(J3jf)下段为例[J].中国矿业大学学报,2002,31(5):399-403.
    [143]寿建峰,朱国华.砂岩储层孔隙保存的定量预测研究[J].地质科学,1998,33(2):244-250.
    [144]曾伟,黄继祥.川中-川南过渡带上三叠统香溪群储层成岩作用的定量评价与成岩相[J].矿物岩石,1996,16(4):64-69.
    [145] Bloch S. Secondary porosity sandstones: sig-nificance, origin, relationship to subaerial unconformities, and effect on predrilling reservoir quality prediction. In:Wilson M D. ed. Reservoir quality assessment and predic-tion in clastic rocks. SEPM Short Course, 1994, 30: 137-159.
    [146]高建军,徐炜炜.大民屯凹陷成岩作用定量表征及有利区带预测[J].内蒙古石油化工,2010,15:28-133.
    [147] Weber K.J., Kantorowicz J.D. and Williams H..Geological modelling of hydrocarbon reservoirs[J]. Marine and Petroleum Geology, 1991, 8(2): 245-246.
    [148] Dykstra H, Parsons R L.The prediction of oil recovery by waterflood[C]. SecondRecovery of Oil in the United States, 1950: 160-174.
    [149] Bloch S, Lander R H and Bonnell L. Anoma-lously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. AAPG Bull., 2002, 86(2): 301-328.
    [150]孙思敏.低渗透储层成岩作用定量表征与成岩储集相——以吉林新立油田泉头组三、四段为例[J].沉积与特提斯地质,2007,27(2):100-105.
    [151] Bloch S and Stephen G F. Preservation of shallow plagioclase dissolution porosity during burial: Implications for porosity pre-diction and aluminum mass balance. AAPG Bull., 1993, 77(9): 1488-1501.
    [152]王瑞飞,陈明强.储层沉积-成岩过程中孔隙度参数演化的定量分析——以鄂尔多斯盆地沿25区块、庄40区块为例[J],地质学报,2007,81(10):1432-1438.
    [153]陈振岩,孟元林,高建军,等.鸳鸯沟洼陷西斜坡成岩作用定量表征及有利区带预测[J]地学前缘,2008,15(1):71-79.
    [154]王华,郭建华.塔中地区石炭系碎屑岩储层成岩作用对孔隙演化控制的定量研究[J].岩石矿物学杂志,2009,28(3):277-284.
    [155]金振奎,刘春慧.黄骅坳陷北大港构造带储集层成岩作用定量研究[J].石油勘探与开发,2008,35(5):581-587.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700