用户名: 密码: 验证码:
北山地区典型Cu矿中元素地球化学分布规律及成矿预测方法技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北山地区地处哈萨克斯坦板块、塔里木板块、华北板块交汇部位,在地质演化史中经历了复杂的造山运动和多期次的岩浆活动,为该区创造了有利的成矿地质条件。迄今为止已经发现中型铜矿床2处,小型铜矿床1处,铜矿(化)点58处,显示出良好的铜矿找矿前景。但是区内特大型、大型铜矿地质找矿工作尚未取得突破,表明现有铜矿地质找矿方法技术仍需改进和完善,而化探方法技术即在此列。本文选择以北山地区具有典型代表意义的白山堂斑岩型铜矿、辉铜山矽卡岩型铜矿为研究对象,以成矿地球化学环境理论为指导,兼顾铜矿化过程中发生富集的元素和发生贫化的元素,系统开展元素地球化学分布规律的研究,意在总结出能有效反映铜矿成矿地球化学环境的勘查地球化学指标,通过开展元素表生活动性规律研究,总结元素表生环境中活动特性与原生环境中活动特性之间的继承关系;并以上述研究结果为基础,开展北山地区铜多金属矿的成矿远景区预测和找矿靶区优选方法技术研究工作,为北山地区铜多金属矿地质找矿工作指明方向。
     白山堂铜矿储量最大的铜矿体赋存在华力西中期流纹斑岩体与蓟县系平头山群地层接触带上,其成矿作用与流纹斑岩体有关。在矿区内开展矿体及围岩中元素地球化学分布规律研究,从中总结出两类勘查地球化学指标共33项,包括20项富集指标和13项贫化指标。元素表生活动性规律研究结果表明:(1)与岩石丰度相比,不同母岩中元素富集贫化特征差异明显,且土壤中元素含量明显受母岩控制;(2)土壤粗粒级在物质组成、化学成分上与母岩更为接近;(3)土壤-4~+40目粒级中发生富集元素的表生富集作用最为强烈,而发生贫化的元素的表生富集作用则相对偏弱;(4)随着样点到矿体距离的增加,土壤-4~+40目粒级中Cu、Mo等元素含量明显降低,而Na2O元素含量则较明显升高;(5)以-4~+40目粒级为有效采样介质,很好地圈出了元素的正异常及负异常,指导该区找矿靶区优选工作。
     辉铜山矽卡岩型铜矿铜矿体赋存在奥陶系花牛山群大理岩与燕山早期钾长花岗岩体的接触带上,其成矿作用明显受钾长花岗岩控制。依据矿体及围岩中元素地球化学分布规律研究结果,总结出两类共24项勘查地球化学指标,包括17项富集指标和7项贫化指标。元素表生活动性规律研究显示:(1)与岩石丰度相比,不同母岩中元素富集贫化特征差异明显,且土壤中元素含量明显受母岩控制;(2)土壤粗粒级的物质组成及化学成分更接近于母岩;(3)不同类型土壤中元素的表生富集作用也不尽相同,在-40目粒级中,大部分元素的表生富集作用达到最强,并且元素的表生富集作用与粘土矿物含量呈正相关关系,与主要造岩矿物含量呈负相关关系;(4)随着样点到矿体距离的增加,土壤-4~+40目粒级中Cu、Mo等发生富集的元素含量明显降低,而Ba、Sr等发生贫化的元素含量则略有升高:(5)以-4~+40目粒级为有效采样介质开展试验工作,结合矿化过程中发生富集元素形成的正异常和发生贫化元素形成的负异常,综合进行靶区优选的方法,具有更加直接和准确的指示作用。
     在北山地区成矿远景区预测方法技术研究中,依据元素地球化学性质及不同元素与Cu之间对数含量一元线性回归分析结果,总结出了两类四组共13项预测指标,并根据数据百分位方法确定异常下限和异常上限,以此为基础,提出了综合预测指标;同时,对预测过程中涉及的基本预测单元、异常图件编制、预测指标异常的分类等作了明确的规定和详细的说明。以上述研究结果为基础,圈定北山地区A、B、C类综合预测指标异常共85处,其中A类36处,B类25处,C类24处;划分出北山地区铜多金属矿成矿远景区共15处,并依据各成矿远景区成矿地质条件分析结果,预测各成矿远景区的成矿前景。
     选择北山地区两类共五处综合预测指标异常开展找矿靶区优选示范工作,取得成果如下:(1)指出白山堂铜矿试验区三矿带和四矿带重叠部位北部的一处有利Cu成矿地段;(2)确定2010-1号试验区主成矿元素应该为As、Sb,并指出一处有利成矿地段;(3)指明2009-1号试验区成矿前景不明朗;(4)2009-2号试验区研究结果显示,该区Ⅲ号Cu异常具有较好的成矿前景;(5)指出2010-2号试验区中一处有Cu矿成矿前景较好的地段,并依据地质背景分析,认为该地段如果成矿,形成热液型矿床的可能性不大。
Beishan region locates in the intersection part of Kazakhstan plate, Tarim plate and North China plate. Complex organic movement and multiple-period magmatic movements in long geological evolution history, created favorable metallogenic geological conditions in Beishan region. Two medium-scale copper deposits, one small-scale copper deposit, fiftyeight ore or mineralized occurrences have been found out in this region heretofore, which shows good prospects for copper deposits exploration. However, geological prospecting for super larger-scale or large-scale copper deposits has not been made breakthroughs, which give the facts that the geological prospecting methods and technology of copper ore, including geochemistry exploration methods and techniques, needs to be mended and improved.
     Two typical deposits, including Baishantang porphyry copper mine and Huitongshan copper mine, were chosen as study targets in this paper. Based the metallogenic geochemical environment theory, and taking account of enriched and depleted elements in copper mineralization process, elements geochemical distribution was systematically studied for summarizing geochemistry indexes which can effectively reflect copper ore-formation; supergene activity regular of elements was researched in order to illustrate the inheritances of elements'activity from primitive to supergene environment. Based on these results, the methods and techniques of forecasting metallogenic prospective areas about copper-polymetallic deposits and prospecting targets optimization were studied for demonstrating the direction of geological exploration.
     The largest reserves ore body of Baishantang mining district, whose metallogeny was controlled by Middle Hercynian rhyolite-porphyry, hosted in the contact belt between rhyolite-porphyry body and stratum of Jixian series Pitoushan group. Two groups in total of 33 exploration geochemistry indicators, consisting of 20 enriched indicators and 13 depleted indicators, were summed up by the study results of elements distribution in ore-body and hosted rocks. The study results of elements supergene activity demonstrate:1. the characteristic of elements enrichment and depletion among different parent rocks show obvious differences, and the contents of elements in soils was controlled by parent rock; 2. comparing with fine fraction, the material and chemical composition of coarse fraction of soil show more similar to parent rocks; 3. in-4~+40 fraction of soils, enriched elements show most intensive supergene enrichment, but more weaker supergene depletion of depleted elements; 4. as the distance of samples to ore-body increasing, the contents of Cu, Mo significantly decreased in-4~+40 fraction of soils, inversely, the content of Na2O increased; 5. positive and negative anomalies were delineated based on taking-4~+40 fraction in effective sampling medium, which directed the prospecting targets optimization.
     Huitongshan skarn copper ore-body, whose metallogeny was obviously influenced by Early Yanshan feldspar granite body, hosted in the contact belt between stratums of Ordovician Huaniushan group and feldspar granite body. Two groups in total of 24 exploration geochemistry indicators, consisting of 17 enriched indicators and 7 depleted indicators, were summed up by the study results of elements geochemical distribution in ore-body and hosted rocks. The study results of elements supergene activity reveal:1. the characteristic of elements enrichment and depletion among different parent rocks show obvious differences, and the contents of elements in soils was controlled by parent rock; 2. comparing with fine fraction, the material and chemical composition of coarse fraction of soil show more similar to parent rocks; 3. different soils show different supergene enrichments, in-40 fraction of soils, the supergene enrichment of almost elements achieve most intensively; positive correlation between elements enrichment and the contents of clay mineral and negative relationship between elements enrichments and the contents of rock-forming mineral were discovered; 4. as the distance of samples to ore-body increasing, the contents of Cu, Mo significantly decreased in-4~+40 fraction of soils, inversely, the content of Ba、Sr slightly increased; 5. based on taking-4~+40 fraction in effective sampling medium the experiment of prospecting target optimization was carried out, the results show that integrate the positive anomalies formed by enriched elements and negative anomalies formed by depleted elements in mineralization process to optimize prospecting target, can show more substantive and exact indication to discover ore-body.
     In the study of methods and techniques of metallogenic prospecting areas prediction,2 kinds and 4 groups in total of 13 forecasting indicators were found out on the basis of elements geochemical characteristic and the logarithmic contents linear regression analysis results between Cu and other elements; the upper limit and lower limit of anomalies were made sure by percentile method; comprehensive predictive indicator was put forward. Furthermore, basic prediction unit, anomaly maps production and classification of predictive indicators anomalies were definitely specified and detailed illuminated. Base on the aforesaid researching results,3 kinds in total of 85 comprehensive predictive indicator anomalies, including 36 A anomalies,25 B anomalies and 24 C anomalies, were delineated; 15 copper-polymetallic deposits prospecting areas were made out, and metallogenic prospect of each area was forecasted on the basis of the analysis of metallogenic geological condition of each area.
     Prospecting target optimization was carried out in 2 kinds in total of 5 comprehensive predictive indicator anomalies based the study of anomaly structure, the achievements were showed as following:1.in Baishantang copper deposit test region, a favorable section for Cu metallogeny, which located in the northern of the overlapping position of No.3 and No.4 ore belt, was pointed out; 2. in No.2010-1 test region, As and Sb were made sure as main metallogenic elements, a favorable metallogenic section was clearly showed; 3. results showed that No.2009-2 test region do not has distinct metallogenic prospects; 4. in No.2010-2 test region, a favorable section for Cu metallogeny was pointed out, hydrothermal type deposits unlikely formed in this section based on geological setting analysis.
引文
毕伏科,肖文暹,阎同文.成矿系列的缺位问题及在成矿预测中的应用[J].矿床地质,2006,25(6):735-742.
    陈俊,郑勇,高俊宝,王君良,庞建材.新疆北山马蹄山一带寒武纪地层厘定及找矿意义[J].新疆地质,2009,27(3):222-225.
    陈哲夫.新疆铜矿类型与找矿靶区[J].新疆地质,2003,21(2):190-194.
    成秋明.成矿过程奇异性与矿床多重分形分布[J].矿物岩石地球化学通报,2008,27(3):298-305.
    成秋明.非线性成矿预测理论:多重分形奇异性-广义自相似性-分形谱系模型与方法[J].地球科学—中国地质大学学报,2006,31(3):337-346.
    迟清华,鄢明才.应用地球化学元素丰度数据手册[M].北京:地质出版社,2007:2-29.
    曹新志,王燕.成矿预测方法的理论基础及分类[J].地质科技情报,1993,12(1):69-72.
    Cox D P, Singer D A.矿床模式[M].宋伯庆等,译.北京:地质出版社,1986:1~378.
    陈永清,王世称.综合信息成矿系列预测的基本原理与方法[J].山东地质,1995,11(1):55-62.
    曹积飞,杨秋荣,李英生,康桂玲.粘土矿物对重金属有害元素吸附性研究[J].环境科学与技术,2008,1:42-44.
    代文军,刘明强.甘肃北山北带北亚带西缘泥盆纪火山岩地球化学特征[J].甘肃地质,2008,17(3):13-21.
    杜佩轩,王敬凯,沙丁茂,杨玉杰.库普幅1:20万区域地球化学勘查开发性试验[J].陕西地质,2001,19(1):71-78.
    戴自希.我国短缺矿产的问题和对策—铜[J].中国地质,1999,264(5):45-49.
    地质科学院情报所.国外地质资料选编(十八)—国外斑铜矿[R].地质科学院情报所,1978:1-10.甘肃省地质矿产局.甘肃省区域地质志[M].北京:地质出版社,1989.
    龚全胜,刘明强,梁明宏,李海林.北山造山带大地构造相及构造演化[J].西北地质,2006,36(1):11-17.
    格里戈良C.B等.苏联固体矿产化探规范[R].地质矿产部情报研究所译,1982:78-95.弓秋丽,朱立新,马生明,席明杰.斑岩型铜矿床地球化学勘查中岩石化学指标研究[J].物探与化探,2009a,33(1):31-34.
    江思宏,聂凤军.北山地区花岗岩类成因的Nd同位素制约[J].地质学报,2006,80(6):826-841.
    江思宏,聂凤军,陈文,刘妍,白大明,刘新宇,张思红.北山明水地区花岗岩时代的确定及其地质意义[J].岩石矿物学杂志,2003a,22(2):107-111.
    江思宏,聂凤军,陈文,刘妍,白大明,刘新宇,张思红.甘肃辉铜山矿床燕山期钾长花岗岩的发现及其地质意义[J].矿床地质,2003b,22(2):185-191.
    康明,岑况,吴悦斌,沈镛立,叶荣.北山戈壁荒漠景观1:5万地球化学测量方法研究[J].地质与勘探,2004,40(3):64-68.
    刘明强,龚全胜,代文军,党引业,王建军,李跃敏.甘肃北山红石山以北地区前奥陶纪地层的发现[J].地质通报,2004,23(11):1160-1161.
    李景春,赵安生,崔惠文.北山北带地质构造特征[J].贵金属地质,1996,5(1):59-68.
    刘艳红,王学求.金属活动态提取技术在十红滩铀矿的应用[J].吉林大学学报(地球科学版),2006,36(2):183-186.
    刘向晚.中国矿产品对外贸易现状及对策[J].经济师,2009(4):48-49.
    刘崇民.金属矿床原生晕研究进展[J].地质学报,2006(10):1528-1537.
    李文渊主编.西北地区矿产资源找矿潜力[M].北京:地质出版社,2006.
    刘英俊,邱德同,刘亚东.勘查地球化学[M].北京:科学出版社,1987:147.
    李朝阳,徐贵忠,胡瑞忠,黄瑞华,张玉学,梅厚钧,杨蔚华,谭凯旋,王奎仁.中国铜矿主要类型特征及其成矿远景[M].北京:地质出版社,2000:57-59.
    刘雪亚,王荃.中国西部北山造山带的大地构造及演化[J].地学研究,1995,(28):37-48.
    李长江,麻土华,朱兴盛,胡永和,赵乃良.1999.矿产勘查中的分形、混沌与ANN[M].北京:地质出版社,39-73.
    梁祥济.中国矽卡岩和矽卡岩矿床形成机理的实验研究[M].北京:学苑出版社,2000:91-116.
    路凤香,桑隆康.岩石学[M].北京:地质出版社,2002:285-287.
    罗先熔.勘查地球化学[M].北京:冶金工业出版社,2007:]2-13.
    梅华林,于海峰,左国朝,李铨.甘肃敦煌—北山早前寒武纪岩石组合—构造初步框架[J].前寒武纪研究进展,1997,20(4):47-54.
    马生明,朱立新,周国华,张金炳.高山峡谷区影响土壤测量找矿效果的元素表生活动特性[J].地质与勘探,2002,38(5):58-62.
    马生明,朱立新,刘崇民,陈晓锋,梁胜跃.斑岩型Cu(Mo)矿床中微量元素富集贫化规律研究[J].地球学报,2009,30(6):821-830.
    马思根,何明勤.计算机综合信息与成矿预测[J].计算机与现代化,2009,11:175-178.
    内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社,1991.
    聂凤军,江思宏,白大明,王新亮,苏新旭,李景春,刘妍,赵省民.北山地区金属矿床成矿规律及找矿方向[M].北京:2002,地质出版社.
    聂凤军,江思宏,白大明,张义,赵月明,王新亮.北山中南带海西-印支期岩浆活动与金的成矿作用[J].地球学报,2003a,24(5):415-422.
    聂凤军,江思宏,自大明,刘妍,张义,赵月明,安存杰,王新亮,苏新旭.蒙甘新相邻(北山)地区金铜矿床时空分布特征及成矿作用[J].矿床地质,2003b,22(3):234-245.
    欧阳宗圻,李惠.典型有色金属矿床地球化学异常模式[M].北京:科学出版社,1990.
    朴寿成,刘树田,连长云,杨永强.地球化学负异常及其找矿意义[J].地质与勘探,1996,32(2):46-50.
    何进中.试论甘肃特殊景观区区域化探[J].物探与化探,2002,26(2):102-105.
    韩吟文,马振东.地球化学[M].北京:地质出版社,2003.
    胡云中,任天祥,马振东,邓坚,汪明启.中国地球化学场及其与成矿关系[M].北京:地质出版社,2006:2-10.黄崇轲,白冶,朱裕生,王惠章,尚修志2001.中国铜矿床(上册)[M].北京:地质出版社,1-366.
    胡受奚,周顺之,刘孝善,陈泽铭等.矿床学(上册)[M].北京:地质出版社,1982:85-86.
    任天祥,赵云,张华,杨少平.内蒙干旱荒漠区域化探工作方法初步研究[J].物探与化探,1984,8(5):285-296.
    任天祥,伍宗华,羌荣生.区域化探异常筛选与查证的方法技术.北京:地质出版社,1998.
    阮天健,朱有光.地球化学找矿[M].北京:地质出版社,1985:2-10.
    芮宗瑶,秦克章,张立生,梅燕雄,闫升好,朱裕生,刘亚玲,王登红,余金杰.国内外斑岩型铜矿研究进展[R].中国地质调查局,2002:1-100.
    任纪舜,王作勋,陈炳蔚等.从全球看中国大地构造—中国及邻区大地构造图简要说明[M].北京:地质出版社,1999.
    斯梅斯洛夫A A,鲁德尼克B A,金科夫H M,帕奈奥托夫A Y.地球化学预测与找矿[M].北京:地质出版社,1985:76-77.
    史长义,汪彩芳.区域次生地球化学负异常模型及其意义[J].物探与化探,1995,19(2):104-113.
    史长义,张金华.大中型铜矿区域地球化学异常预测评价研究[J].地质与勘探,1998,34(6):24-28.
    史长义,张金华,黄笑梅.中国铜多金属矿田区域地质地球化学异常结构模式及预测评价[M].北京:地质出版社,2002:2-40.
    史长义,张金华等.福建紫金山陆相次火山岩型铜金矿田区域地质地球化学异常结构模式[J].物探与化探,1996,20(3):180-188.
    孙新春,程昱辰,黄增保,魏志军.甘新蒙北山北带北亚带甘肃段的岩浆岩地质特征[J].甘肃地质,2009,18(3):8-13.
    孙承辕,张干.漠滨金矿区外围地层及矿区围岩中金负异常及其地球化学意义[J].地质与勘探,1993,29(3):47-52.
    孙忠军,任天祥,向运川.西藏冈底斯东段成矿系列区域地球化学预测[J].中国地质,2003,30(1):105-112.
    申维.2003.分形混沌与矿产预测[M].北京:地质出版社,1-59.
    孙治军,马丽,张民,陈宝成,宋付朋.山东主要果园土壤的粘土矿物组成及其吸附特性[J].水土保持学报,2007,21(3):57-60.
    邵拥军,贺辉,张贻舟等.基于BP神经网络的湘西金矿成矿预测[J].中南大学学报,2007,38(6):1192-198.
    汤艳杰,贾建业,谢先德.粘土矿物的环境意义[J].地学前缘(中国地质大学,北京),2002,9(2):337-343.
    陶炳昆.甘肃省铜矿床主要类型及其找矿潜力分析[J].甘肃地质学报,1995,4(2):44-54.
    王学求,迟清华,孙宏伟.荒漠戈壁区超低密度地球化学调查与评价—以东天山为例[J].新疆地质,2001,19(3):200-206.
    王学求,刘占元,白金峰,孙彬彬.深穿透地球化学对比研究两例[J].物探化探计算技术,2005,27(3):250-255.
    王瑞廷,毛景文,任小华,旺军谊,欧阳建平,袁炳强.区域地球化学异常评价的现状及其存在的问题[J].中国地质,2005,32(1):168-175.
    王方成,魏志军,张国英,孙新春.甘肃北山北带红石山地区志留纪地层新资料[J].地质通报,2004,23(11):1162-1163.
    王永江,耿树方,李长江.北山大地构造深部成因与浅部成矿特征遥感综合分析[J].中国地质,2009,36(3):714-727.
    王玉往,姜福芝.北山地区各时代火山岩组合特征及分布[J].中国区域地质,1997,16(3):298-304.
    王玉往,姜福芝,祝新友,吴俞斌.北山地区斑岩铜矿含矿岩体的某些地质特征及判别标志[J].有色金属矿产与勘查,1996,5(4):204-212.
    王伏泉.白山堂铜矿床两期有关岩体的Rb-Srr等时线年龄及其稀土配分特征[M].矿物岩石地球化学通报,1996,15(3):187-190.
    王明志,李闫华,鄢云飞等.若干成矿预测理论研究综述[J].资源环境与工程,2007,21(4):363-369.
    王自杰,赵鹏大.基于地质异常研究的矿产预测[J].华东地质学院学报,1996,19(2):133-138.
    王世称,陈永良,夏立显.综合信息矿产预测理论与方法[M].北京:科学出版社,2000:1-343.
    王功文,杜杨松.玉龙铜矿带成矿多元信息综合分析与找矿靶区优选[J].现代地质,2000,14(2):158-164.
    吴淦国,邓军.1999.金属矿床矿田构造研究现状.见:《当代矿产资源勘查理论与方法》[M].京:地质版社,316-325.
    王国荣.层间氧化带砂岩型铀矿床中粘土矿物与铀矿化关系初探[J].西北铀矿地质,2004,30(1):26-29.
    王之峰,马生明,朱立新,吴昆明.冲积平原区重金属元素异常解析中矿物学方法[J].岩石矿物学杂志,2003,22(4):437-441.
    吴承烈,徐外生,刘崇民.中国主要类型铜矿勘查地球化学模型[M].北京:地质出版社,1998.
    吴承烈.斑岩铜铝矿地球化学异常特征与评价的初步研究[J].物探与化探,1978,2(3):1-5.
    魏克涛,李享洲,张晓兰.铜绿山铜铁矿床成矿特征及找矿前景[J].资源环境与工程,2007,21(增刊):41-46.
    魏为兴.福建沿海地区表层土壤矿物分布特征及地质和环境意义[J].岩矿测试,2009,28(1):125-130.
    新疆维吾尔自治区地质矿产局.新疆维吾尔自治区区域地质志[M].北京:地质出版社,1993.
    谢学锦.区域化探[M].北京:地质出版社,1979.
    谢学锦.地质词典(五)[M].北京:地质出版社,1981:23-24.
    谢学锦,李善芳,吴传壁,张立生,任天祥,郑康乐,朱炳球.二十世纪中国化探(1950-200)[M].北京:地质出版社,2009:31.
    徐志刚,陈毓川,王登红,陈郑辉,李厚民.中国成矿区带划分方案[M].北京:地质出版社,2008:24-135.
    徐明钻,朱立新,马生明,陈晓锋.多重分形模型在区域地球化学异常分析中的应用探讨[J].地球学报,2010,31(4):611-618.
    邢学文,胡光道.模糊逻辑法在秦岭-松潘成矿区金矿潜力预测中的应用[J].吉林大学学报(地球科学版),2006,36(2):298-303.
    杨合群,李英,赵国斌,王永和,杨建国,李文明,姜寒冰,谭文娟,张开春.新疆—甘肃—内蒙古衔接区地层对比及其意义[J].西北地质,2009a,42(4):60-75.
    杨建国,杨合群,杨林海,李文明,李英.北山地区北东向构造对金钨锡钼(稀土)矿床控制初探[J].大地构造与成矿学,2004,28(4):404-412.
    杨合群,李英,杨建国,李文明,杨林海,赵国斌.北山造山带的基本成矿特征[J].西北地质,2006,39(2):78-95.
    杨合群,李英,李文明,杨建国,赵国斌,王小红.北山花岗岩S型/I型空间变化规律及含矿性[J].地球学报,2009b,30(5):627-633.
    殷勇,张旗,殷先明,赵彦庆.甘肃北山埃达克岩特征及其找矿意义—几个与埃达克质岩石有关的Cu、Mo、Au矿实例[J].甘肃地质,2009,18(1):6-11.
    殷先明.甘肃北山印支燕山期花岗岩成矿作用与找矿工作再研究[J].甘肃地质,2008,17(3):1-5.
    殷勇.甘肃省斑岩铜矿成矿作用及找矿方向[J].甘肃地质,2007,16(1-2):23-27.
    叶荣,王学求,赵伦山,陈德兴,傅渊慧.戈壁覆盖区金窝子矿带深穿透地球化学方法研究[J].地质与勘探,2004,40(6):65-70.
    叶天竺,肖克炎,严光生.矿床模型综合地质信息预测技术研究[J].地学前缘,2007,14(5):11-19.
    殷先明.甘肃北山斑岩型铜矿找矿研究[J].甘肃地质学报,2003,12(2):1-5.
    鄢明才,迟清华.中国东部地壳与岩石的化学组成[M].北京:地质出版社,1997.
    余昌训,彭渤,唐晓燕,谢淑容,杨广,尹春艳,涂湘林,刘茜,杨克苏.湘中下寒武统黑色页岩土壤的地球化学特征[J].土壤学报,2009,46(4):557-570.
    杨自安,徐国端,邹林,张普斌.遥感与多元地学信息综合找矿定位预测[J].矿产与地质,2004,18:343-345.
    冶金工业部地质研究所.中国斑岩铜矿[M].北京:科学出版社,1984:86-106.
    张国英.新疆北山黑石山地区下泥盆统大南湖组地层的发现[J].地层学杂志,2006,30(4):347-350.
    张国英.甘肃北山北部双沟山地区发现泥盆系雀儿山群地层[J].地层学杂志,2008,32(1):51-54.
    张新虎,刘建宏,赵彦庆.甘肃省成矿区(带)研究[J].甘肃地质,2008,17(2):1-8.
    张发荣,牛卯胜.甘肃北山地区成矿带划分及基本特征[J].甘肃地质学报,2003,12(1):50-57.
    赵泽辉,郭召杰,王毅.甘肃北山柳园地区花岗岩类的年代学、地球化学特征及构造意义[J].岩石学报,2007,23(8):1847-1860.
    张发荣,李宗杰,周会武.甘肃北山地区铜矿找矿模型及找矿远景[J].甘肃地质学报,2002,11(1):63-68.
    庄道泽.新疆东天山地区土屋、延东铜矿地球化学特征与异常查证方法[J].地质与勘探,2003,39(5):67-71.
    张华,杨少平,刘应汉,刘华忠.新疆西昆仑地区干旱荒漠景观区域化探方法技术初步研究[J].新疆地质,2001,19(3):221-227.
    赵善定,王学求.荒漠戈壁区地表疏松层中元素的分布规律[J].物探与化探,2006,30(6):517-520.
    赵绢,孙泽昆,李明喜.青海景观区特征和地球化学勘查方法技术[J].物探与化探,2004,28(3):239-241.
    张苺,曹新元.中国铜矿资源可供性研究[J].中国矿业,2003,12(2):13-18.
    张延瑞.全国主要成矿远景区矿产资源调查评价重点选区研究[R].北京:中国地质调查局,2003.
    朱有光,蒋敬业,李泽九.试论中国重要景观区区域地球化学异常系统评价的量化模型[J].物探与化探,2002,26(1):17-22.
    周俊法.地球化学负异常的地质找矿意义[J].地质与勘探,1987,23(4):65-69.
    左国朝,何国琦.北山板块构造及成矿规律[M].北京:北京大学出版社,1990:1-209.
    朱有光,李泽九,胡以铿,孙善才,刘建宏,李兴海,徐家乐.区域地球化学异常系统评价的思路和方法[J].地质科技情报,1997,16(2):97-103.
    赵俊林,刘培桐,李天杰.乔治王岛地区元素土壤与母岩间化学组成的相互关系[J].南极研究,1990,2(1):53-65.
    赵文涛,王喜宽,张青,瘳蕾,赵锁志,李世宝.河套地区土壤矿物组成分析及与各元素的关系[J].物探与化探,2009,33(1):16-19.
    赵珊茸,边秋娟,凌其聪.结晶学及矿物学[M].北京:高等教育山版社,2004:370-371.
    中国地质调查局.地质调查标准汇编—地球化学勘查分册[R].北京:2006:176-179.
    周良仁,蔡厚维.花牛山印支期岩体的地质特征[J].西北地质,1992,13(3):7-13.
    周济元,张斌,张朝文等.东天山古大陆及其边缘银、铼、钼、金和铜矿地质[M].北京:地质出 版社,1996:1-191.
    赵一鸣,林文蔚,毕承思,李大新,蒋崇俊.中国矽卡岩矿床[M].北京:地质出版社,1990:1-20.
    朱裕生.矿产资源评价方法学导论[M].北京:地质出版社,1984:2-24.
    朱裕生.成矿预测方法[J].中国地质,1988,11(12):28-30.
    赵鹏大,王京贵,饶明辉,李浩昌.中国地质异常[J].地球科学—中国地质大学学报,1995,20(2):117-127.
    赵鹏大,池顺都,陈永清.查明地质异常:成矿预测的基础[J].高校地质学报,1996,2(4):361-373.
    赵鹏大,孟宪国.地质异常与矿产预测[J].地球科学—中国地质大学学报,1993,18(1):39-47.
    赵鹏大,陈永清.基于地质异常单元金矿找矿有利地段圈定与评价[J].地球科学—中国地质大学学报,24(5):443-448.
    赵鹏大.矿产勘查理论与方法[M].武汉:中国地质大学出版社,2005:1-116.
    朱裕生.矿产预测理论—区域成矿学向矿产勘查延伸的理论体系[J].地质学报,2006,80(10):1518~1527.
    朱裕生,肖克炎,丁鹏飞,金丕兴,李纯杰,梅燕雄,曾昭健,黎世美,瞿伦全,陈圆明,宋玉玖,江西根,毕惠亭.成矿预测方法通则之二成矿预测方法[M].北京:地质出版社,1997:1-179.
    庄道泽,王世称,焦学军.土屋、延东铜矿田综合信息预测模型[J].新疆地质,2003,21(3):293-297.
    於崇文.成矿动力系统在混沌边缘分形生长—一种新的成矿理论与方法论(上)[J].地学前缘,2001,8(3):9-27.
    於崇文.成矿动力系统在混沌边缘分形生长—一种新的成矿理论与方法论(下)[J].地学前缘,2001,8(4):471-488.
    朱霞萍,白德奎,李锡坤,曾江萍,曹三勇.镉在蒙脱石等粘土矿物上的吸附行为研究[J].岩石矿物学杂志,2009,28(6):643-648.
    A A Levinson. Introduction to exploration geochemistry[M]. Calgary:Alberta,1974:71.
    Aung Pwa, Mcpueen K G. Regolith geochemical exploration using acid insoluble residues as a sample medium for gold and base metal deposits in the cobar region, N S W.Australia[J]. Journal of geochemistry Exploration,1999,67(O1):15-31.
    Anand R.R., Gilkes R.J., Armitage T.& Hillyer J. The influence of microenvironment on feldspar weathering in lateritic saporite[J]. Clay Minerals,1985,33:31-46.
    Adriano D. C. Trace Elements in the Terrestrial Environment[M]. Springer,1986.
    Boynton W. V. Geochemistry of the rare earth elements:meteorite studies,In:Henderson P (ed.), Rare earth element geochemistry[M]. Elservier:1984:63-114.
    Bai D.C.& Duthie D.M.L. The effect of weathering in the silt fractions on the apparent stability of chlorite in Scottish soil clays[J]. Geoderma,1984,34:221-227.
    Barnhisel R.L.& Bertsch P.M. Chlorites and hydroxy interlayered vermiculite and smectite. Pp.729-788 in:minerals and soil environment (J.B. Dixon and S.B. Weed, editors)[M]. Published by the Soil Science Society of America, Madison, Wisconsin,1989.
    Beane, R.E.,Titley, S.R. Porphyry copper deposits:hydrothermal alteration and mineralization[J]. Econ.GeoI.,75th Anniversary,1981,214-234.
    Beaumier M. Multi-element geochemical domains-an aid to exploration. In Proceedings of Exploration'87(ed. G. D. GARLAND)[J]. Ontario Geol. Surv. Spec.1989, Vol.3,439-488.
    Christopher C B, Paulr L. Fractals in petroleum geology and earth process[J]. Plenum Press New York, 1995,1:317.
    G.J.S. Govett. Handbook of Exploration Geochemistry, Vol.3. Rock Geochemistry in Mineral Exploration[M]. Elsevier, Amsterdam,1983:461pp.
    Goldschimidt, V.M. The principles of distribution of chemical elements in minerals and rocks. J. Chem. Soc. London, March,1937:pp.655-673.
    Goldschimidt, V.M. Geochemistry[M]. Clarendon Press, Oxford,1954:730pp.
    Harris D P, Rieber M. Evaluation of the United States Geological Survey's three-step assessment methodology[J]. U.S. Geological Survey Open-File Report,1993, (258-A):675-687.
    H.E Hawkes, J S Webb. Geochemistry in mineral exploration[M]. Haper and Rowp.1962:67-69.
    I.D.M. Robertson, G.F.Taylor. Depletion Halos in fresh rocks surrounding the Cobar orebodies, N.S.W., Australia:Implications for Exploration and ore genesis[J]. Journal of Geochemical Exploration, 1987,27:77-89.
    I S Goldberg, G Y Abramson. Depletion and enrichment of primary haloes:their importance in the genesis of and exploration for mineral deposits[J]. Geochemistry,2003,3(3):57-73.
    Issai S. Goldberg.Vertical migration of elements from mineral deposits[J]. Journal of Geochemical Exploration.1998,61:191-202.
    John A.C. Fortescue. Landscape geochemistry:retrospect and prospect-1990[J]. Applied Geochemistry, 1992, Vol.7. pp.1-53.
    Jian Bai, Alok Porwal, Craig Hart, Arianne Ford, Le Yu. Mapping geochemical singularity using multifractal analysis:Aplication to anomaly definition on stream sediments data from Funin Sheet, Yunnan, China[J]. Journal of Geochemical Exploration,2009, doi:10.1016/gexplo.2009.09.002.
    Ludden J N, Thompson G. Behavior of rare earth elements during submarine weathering of tholeiitic basalt [J]. Nature,1978,274:147-149.
    Liu Chongmin, Xu Waisheng. Primary geochemistry anomalies in the Caijiaying Pb-Zn-Ag deposits, Hebei, China[J]. Journal of Geochemical Exploration,1995, (55):25-32.
    McCammon R B, Briskey J A. A proposed national mineral resource assessment[J]. Nonrenewable Resources,1992,1 (4):259-265.
    M. J. Wilson. Weathering of the primary rock-forming minerals:processes, products and rates[J]. Clay Minerals,2004,39:233-266.
    McLennan S M. Relationships Between The Trace Element Composition of Sedimentary Rocks and Upper Continental Crust[J]. Geochem. Geophys. Geosys.2001,2 (article no.200GC000109).
    M. A. Olade and W. K. Flechter. Trace Element Geochemistry of the Highland Valley and Guichon Creek Batholith in Relation to Porphyry Copper Mineralization[J]. Economic Geology,1976,71:733-748.
    Nesbitt H W, Markovics G. Weathering of granodioritic crust long-term storage of elements in weathering profile and petrogenesis siliciclastic sediments [J]. Geochemica et Cosmochimica Acta,1997, 61(8):1653-1670.
    Peyman Afzal, Ahmad Khakzad, Parviz Moarefvand, N. Rashidnejad Omran, Bijan Esfandiari, Younes Fadakar Alghalandis. Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran[J]. Journal of Geochemical Exploration,2010,104(1):34-46.
    Plant J A. Development in regional geochemistry for mineral exploration [J]. Applied Earth Science, 1988,971:116-140.
    P.N. Ranasinghe, G.W.A.R. Fernado, C.B. Dissanayaka, M.S. Rupasinghe. Stream sediment geochemistry of the upper Mahaweli River Basin of Sri Lanka-Geological and environmental significance[J]. Journal of Geochemical Exploration,2008, (99):1-28.
    P.N. Ranasinghe, G.W.A.R. Fernado, C.B. Dissanayaka, M.S. Rupasinghe, D.L. Witter. Stastistical evaluation of stream sediment geochemistry in interpreting the river catchment of high-grade metamorphic terrains[J]. Journal of Geochemical Exploration,2009, (103):97-114.
    Qin K Z, Sun S, Li J L, Fang T H, Wang S L, Liu W. Paleozic epithermal Au and porphyry Cu Deposits in North Xinjiang, China:Epochs, Featuresm Tectonic Linkage and Exploration Significance[J]. Resource Geology,2002,52(4):291-300.
    Qiuming Cheng, Agterberg F P, Ballantyne S B. The separation of geochemical anomalies from background by fractal methods[J]. Geochemical Exploration,1994,51(2):109-130.
    Qiuming Cheng. The perimeter-area fractal model and its application to geology[J]. Math.Geol,1995, 27(1):69-82.
    Renguang Zuo, Qinming Cheng, F.P. Agterberg, Qinglin Xia. Application of singularity mapping technique to identify local anomalies using stream geochemical data, a case study from Gangdese, Tibet, western China[J]. Journal of Geochemical Exploration,2009, (101):225-235.
    Rohrlach, B.D.& Loucks, R.R. Multi-million-year cyclic ramp-up of volatiles in a lower crustal magma reservoir trapped below the Tampakan copper-gold deposit by Mio-Pliocene crustal compression in the southern Philippines. In:Porter, T.M. (ed.) Super porphyry copper and gold deposits[M]. A global perspective. PGC Publishing, Perth,2005,2,270.
    Stephen V Richardson, Stephen E Kesler, Eric J Essene, Lois M Jones. Origin and Geochemistry of the Chapada Cu-Au Deposit, Goias, Brazil:A Metamorphosed Wall-Rock Porphyry Copper Deposit[J]. Economic Geology,1986,81:1884-1898.
    Shi Changyi, Wang Caifang. Regional geochemical secondary negative anomalies and their significance[J]. Journal of Geochemical Exploration,1995,55:11-23.
    Taylor S R and McLennan S M. The Continetal Crust:Its Composition and Evolution[M]. London: Blackwell Scientific Publications.1985,312pp
    Taylor S R and McLennan S M. The Chemical Composition Evolution of The Continental Crust[J]. Review Geophysics,1995, Vol.33, pp.241-265
    V. Austria, C.Y. Chork. A study of the application of regression analysis for trace element data from stream sediment in New Brunswick. Journal of Geochemical Exploration,1976, (6):211-232.
    Wang Xueqiu, Wen Xueqin, Ye Rong, Liu Zhanyuan, Sun Binbin, Zhao Shanding, Shi Shujun and Wei Hualing. Vertical variations and dispersion of elements in arid desert regolith:a case study from the Jinwozi gold deposit, northwestern China[J]. Geochemistry:Exploration, Environment, Analysis,2007, Vol.7, 163-171.
    陈杰.四川得荣-稻城地区铜矿找矿靶区优选.四川大学硕士论文.2008:60-62.
    代玉财,程松林,赖涛,程扶华,陈疆.新疆北山金铜矿评价成果报告.新疆维吾尔自治区地质调查院,2004.
    甘肃省地质局地质力学区测队.中华人民共和国区域地质调查报告(辉铜山矿幅)(1:50000)1980.
    甘肃省地质局第一区域地质测量队.中华人民共和国区域地质测量报告(红柳园幅)(1:200000)(矿产部分).1966.
    弓秋丽.斑岩型铜多金属矿地球化学勘查新指标研究.中国地质科学院硕士学位论文.2009b.
    胡朋.北山南带构造岩浆演化与金的成矿作用.中国地质科学院博士论文.2007.
    李冰.矿化信息载体矿物标型特征在铜多金属矿地球化学异常评价中的应用.中国地质科学院地球物理地球化学勘查研究所基本科研业务费专项资金成果报告.2010.
    梁胜跃.乌努格吐山斑岩型铜钼矿床地球化学异常结构研究.中国地质科学院硕士学位论文.2010b.
    马生明,朱立新,徐明钻.北山地区铜矿成矿地球化学环境研究及找矿2010年度工作方案.中国地质科学院物化探研究所,2010.
    杨合群,李英,赵国斌,杨建国,李文明,杨林海,李百祥,赵善定.北山成矿带找矿重大疑难问题研究成果报告.中国地质调查局西安地质调查中心,2008:117-130.
    杨合群,李文明.北山地区CuNiPbZnAu地球化学异常图.中国地质调查局西安地质矿产研究所,2005.
    杨帅师,张玉宝.内蒙古北山成矿远景区矿产资源评价报告.内蒙古自治区地质调查院,2006.
    赵建国,张有奎,崔彬,樊新祥,刘养雄,冯军.甘肃北山铜资源潜力评价报告.西安地质矿产研究所,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700