用户名: 密码: 验证码:
云南麻栗坡南秧田钨矿床成矿流体特征与成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滇东南老君山是我国一个重要的锡钨多金属成矿区,己发现矿种26种以上,这些矿床主要分布在南秧田-茶叶山(W)、大竹山-新寨(Sn-W)、曼家寨-铜街(Sn-Zn)三个矿集区,矿床成因类型主要为矽卡岩型。本论文在前人研究成果的基础上,选择南秧田白钨矿矿床进行系统研究,重点进行了矿床地质特征、流体包裹体、稳定同位素、成岩成矿年代学及综合分析对比等方面的研究,探讨了成矿流体来源、演化、矿床成因及成矿动力学背景,并将南秧田与新寨矿田、南秧田与都龙矿田分别进行了对比研究,取得了如下成果:
     1.滇东南老君山锡钨多金属成矿区属于滇东南-桂西锡钨多金属成矿带,大地构造位置位于滨太平洋构造域,华南褶皱系越北隆起北缘。赋矿地层主要为寒武系变质岩系,主要岩性为片岩、二云二长片麻岩、斜长片麻岩、变粒岩等;岩浆岩主要为酸性-基性火山岩和酸性侵入岩,区域构造以NW向、NS向和EW向断裂为主。
     2.对南秧田白钨矿矿床西侧的老君山花岗岩体进行了LA-ICPMS锆石U-Pb测年、地球化学特征、岩石学等方面的研究。三期岩体的LA-ICP-MS锆石U-Pb年龄分别为87.2±0.6Ma、86.8±0.4Ma和85.9±0.4Ma。老君山花岗岩体的岩石地球化学特征为强过铝质、富硅、富碱,铝饱和指数A/CNK范围为1.10~1.38;岩体的哈克图解表明在岩浆演化过程中岩体经历了强烈的分离结晶作用;岩体富集Rb、La、Zr等大离子亲石元素,强烈亏损Ba、Sr、Ti等不相容元素;稀土元素球粒陨石标准化配分曲线呈均一趋势,并发育明显的负Eu异常;岩体源岩来源于陆壳物质的部分熔融。
     3.南秧田白钨矿矿体主要赋存在下寒武统冲庄组变质岩系中。矿体形态简单,主要呈层状和似层状产出,空间上与矽卡岩密切相关。矿石类型主要为矽卡岩白钨矿型。矿床的形成经历了4个成矿阶段,分别为矽卡岩阶段、退化蚀变阶段、石英硫化物阶段和方解石硫化物阶段。白钨矿主要形成于退化蚀变阶段。
     4.南秧田钨矿床流体包裹体主要有三种类型:富液相包裹体、富气相包裹体和含子矿物多相包裹体。包裹体气相成分以H2O、CH4和N2为主,含少量C02,液相成分以H20为主。成矿早期流体包裹体均一温度分布于200~340℃,盐度ω(NaCleq)为6.45~53.26%,流体密度范围为0.83-1.15g/cm~3;成矿晚期均一温度主要集中于160~300℃,ω(NaCleq)主要介于4-8%,流体密度变化于0.67-0.96g/cm~3,与早期相比,温度、盐度和密度明显降低。
     5.石榴石、石英和方解石的δ18 OsMOW值变化于3.78‰~16.23‰,δ~18OH2O值介于4.52‰~10.28‰,δD值为-83‰0~59‰,说明成矿流体主要为岩浆水,可能混合少量变质水;矿石中方铅矿的铅同位素组成较为一致,206pb/204pb变化范围为18.5301~18.5325,207pb/204pb变化范围介于15.7332~15.7369,208pb/204pb变化范围为39.0456~39.0587,表明矿石铅的来源较浅,成矿物质以壳源为主;634S值变化范围集中在4.2‰~8.1‰,表明硫源主要来自地幔,但受到地壳混染影响。
     6.选取南秧田白钨矿矿床矿石中辉钼矿和新寨锡矿床中与锡石共生的金云母为研究对象,分别运用Re-Os同位素定年和40Ar-39Ar阶段加热方法进行成矿年代测定。研究表明,辉钼矿Re-Os年龄为209.1±3.3Ma~214.1±3.1Ma,金云母40mr-39A1.坪年龄为209.5±1.1Ma,等时线年龄为209.0±2.2Ma,暗示华南地区存在晚三叠世成矿作用。
     7.南秧田钨矿区钨的成矿作用可能与热液叠加作用有关。老君山花岗岩体是较晚期形成的部分岩体,可能还有未被发现的较早期形成的“体中体”。矿床形成于印支期后造山晚期或后碰撞阶段,它们的形成受控于拉张-裂解的动力学背景。
     8.南秧田矿田与新寨矿田它们在地层、矿体特征、成矿流体及成矿时代等方面有一定的相似之处:(1)主要出露的地层均为寒武系变质岩系;(2)钨、锡矿体均顺层呈层状产出,产状与围岩基本一致;(3)流体包裹体均一温度变化范围较大,盐度普遍较低;(4)矿化作用均发生于印支期晚三叠世末;南秧田矿田与都龙矿田在地层、岩体控矿因素、构造控矿因素及成矿时代等方面有一定的差异性。
     9.区域主要的控矿构造为北西向构造、南北和东西十字型构造、老君山褶皱构造、岩浆侵入接触构造和层间滑脱构造。
Laojunshan is an important Sn-W-related metallogenic province in Southeastern Yunnan where more than 26 Sn (W) deposits have been explored, locating at the ore concentration areas named Nanyangtian-Chayeshan, Dazhushan-Xinzhai, Manjiazhai-Tongjie, respectively. The main genetic type of ore deposit is skarn type. Based on the pervious researchers and detail field investigation, we selected the Nanyangtian deposit to conduct the detail study. Focusing on the geological characteristics, fluid inclusions, stable isotope, chronology and synthetically comparative study etc., in order to clarify the source and evolution of ore fluids, deposit genesis and geodynamic settings, and compare Nanyangtian with Xinzhai and Nanyangtian with Dulong, respectively. The main advance achievements from this study are as follo wings:
     1.The Laojunshan area occurred in Southeastern Yunnan-Western Guangxi tin-tungsten polymetallic ore belt. Its geotectonic position locates at Peri-Pacific tectonic domain, and the northern margin of North Vietnam in South China fold system. The host rocks are Cambrian metamorphic rocks, comprising of schist, two-mica monzonitic gneiss, plagioclase gneiss, leptynite. The major types of magmatic rocks are the felsic-basic volcanic rocks and felsic intrusive rocks. The main regional structure are the NW-trending, NS-trending and EW-trending faults.
     2. In this paper we report zircon U-Pb ages, geochemical and petrological characteristics for the Laojunshan granites located in the western part of Nanyangtian tungsten deposit. Three samples from three phases of the granitic rocks in Laojunshan intrusion have been analyzed by the LA-ICPMS zircon U-Pb techniques, yielding ages of 87.2±0.6Ma, 86.8±0.4Ma and 85.9±0.4Ma, respectively. Bulk analysis reveals that three phases are strongly-peraluminous, silicon-rich and alkali-rich granites and their ACNK values fall mainly into a small range of 1.10-1.38. Moreover, Harker diagrams show that these granitoids experienced strong fractional crystallization during magmatic evolution. All granites show enriched Rb, La and Zr and depleted Ba, Sr and Ti, as well as a uniformly flat REE-pattern with a marked negative Eu anomaly. The granites were possibly derived from partial melting of continental crust.
     3. The Nanyangtian tungsten deposit occurs in metamorphic rocks of the Lower Cambrian Chongzhuang Formation. Ore bodies, with the simple shape, are largely concordant with the bedding of the strata and the distribution of the ore bodies is spatially related to skarn. The main ore type is skarn-scheelite. The formation of tungsten deposit experienced a period composed of skarn stage, retrogressive alteration satge, quartz-sulfide stage and calcite-sulfide stage. Tungsten mineralization is probably in the retrogressive alteration satge.
     4. There are three dominant types of fluid inclusions, as evidenced by petrography characteristic of fluid inclusions of garnet, epidote, quartz, fluorite and calcite formed at different ore-forming stages in the Nanyangtian tungsten deposit; they are liquid-rich inclusions, gas-rich two-phase inclusions and daughter-minerals bearing polyphase inclusions. Systemic measurements of homogeneous and freezing temperatures, salinities and laser Raman spectroscopic analysis of fluid inclusions were conducted. The gas composition of ore-forming fluids in the Nanyangtian tungsten deposit mostly are H2O, CH4 and N2, with a small amount of CO2, whereas liquid composition primarily is H2O. Fluid inclusions in early stage show a range of homogenization temperatures and salinity from 200℃to 340℃and from 6.45% to 53.26 wt% NaCleqv respectively, with the densities ranging from 0.83 to 1.15g/cm3. Homogenization temperatures and salinity of fluid inclusions in late stage mainly vary from 160℃to 300℃and from 4% to 8 wt% NaCleqv respectively, and the density of the fluids is 0.67-0.96g/cm3, which are obviously lower than the fluid inclusions in early stage.
     5. Theδ18OSMOW values of garnet, quartz and calcite range from 3.78‰to 16.23‰, with the correspondingδ18OH2O values between 4.52‰and 10.28‰, and 8D values of fluid inclusions between-83‰and-59‰. The combined isotopic data imply that the ore-forming fluids in the Nanyangtian tungsten deposit were mainly derived from magmatic fluids, with a minor part from the metamorphic water. Theδ34S values of pyrite from the Nanyangtian tungsten deposit define a narrow range of 4.2%o-8.1‰, reflecting the characteristics of the sulfur from mantle source, with the affect of crustal contamination.
     6. We present Re-Os dating of three molybdenite samples separated from the Nanyangtian tungsten deposit and new 40Ar-39Ar phlogopite closely coexisting with cassiterite ages for the Xinzhai tin deposit to constrain timing and duration of mineralization. The Re-Os model ages were obtained ranging from 209.1±3.3Ma to 214.1±4.3Ma; Phlogopite from the Xinzhai tin deposit yielded a 40Ar-39Ar pleatu age of 209.5±1.1Ma and isochronal age of 209.0±2.2Ma. The ages above provided the mineralization information during the Indosinian in southeastern Yunnan.
     7. The mineralization in Nanyangtian tungsten deposit may be related to hydrothermal superposition. Laojunshan granite is the later formed part of the rock, there may be the earlier undetected "body in body". The Sn and W mineralization were formed in late post-orogenic or post-collisional stage during the Indosinian in Southern China and controlled by a geodynamic setting of the extension-cracking.
     8. There are some similarities between the Nanyangtian and Xinzhai in the following aspects:the formation in mining area, ore body characteristics, ore-forming fluid and metallogenic epoch. (1) The main exposed strata are the Cambrian metamorphic rocks; (2) The tungsten-tin ore bodies are basically concordant with the bedding of the strata, with the same shape of the rock; (3) Fluid inclusions generally have widely varying homogenization temperatures and low salinity; (4) The mineralization of the Nanyangtian and Xinzhai both occurred in the Late Triassic during the Indosinian; There are differences between Nanyangtian and Dulong in the following areas:the strata, ore-controlling rock, ore-controlling structure, mineralization age.
     9. The main ore-controlling structures in region are NW-trending faults, NS-EW-trending cross-type structure, Laojunshan fold, magmatic intrusive contact structure and interlayer detachment structure.
引文
● 《云南省马关县老君山成矿区构造与花岗岩作用研究》.2008.中国地质科学院矿产资源研究所.
    ● 《云南省马关县老君山成矿区构造与花岗岩作用研究》.2008.中国地质科学院矿产资源研究所.
    ● 《云南老君山成矿区成矿规律与找矿远景评价》.2008.昆明理工大学矿产地质研究所.
    安保华.1990.老君山岩体特征、成因及找矿意义探讨.西南矿产地质,4(1):30~35.
    柏道远,陈建超,马铁球,等.2005.湘东南骑田岭岩体A型花岗岩的地球化学特征及其构造环境.岩石矿物学杂志,24(4):255~272.
    柏道远,贾宝华,李金冬,王先辉,马铁球,张晓阳,陈必河.2007a.区域构造体制对湘东南印支期与燕山早期花岗岩成矿能力的重要意义—以千里山岩体和王仙岭岩体为例.矿床地质,26(5):487~500
    柏道远,周亮,马铁球,王先辉.2007b.湘东南印支期花岗岩成因及构造背景.岩石矿物学杂志,26(3): 197~212.
    包志伟,赵振华.2003.佛冈铝质A型花岗岩的地球化学及其形成环境初探.地质地球化学,31(1):52~61.
    蔡改贫,吴叶彬,陈少平.2009.世界钨矿资源浅析.世界有色金属,(4):62~65.
    蔡明海,陈开旭,屈文俊,刘国庆,付建明,印建平.2006.湘南荷花坪锡多金属矿床地质特征及辉钼矿Re-Os测年.矿床地质,25(3):263~268.
    蔡明海, 韩凤彬,何龙清,等.2008.湖南新田岭白钨矿床He, Ar同位素特征及Rb-Sr测年.地球学报,29(2): 167~173.
    蔡明海,梁婷,吴德成.2005.广西大厂锡多金属矿田亢马锡矿床地质特征及成矿时代.地质学报,79(2): 262~268.
    曹汉生.1982.曾家垅锡矿床地质特征及控矿因素.地质与勘探:1-6.
    常海亮,黄惠兰.2002.西华山钨矿床中熔融包裹体的初步研究与矿床成因讨论.岩石矿物学杂志,21(2):143~150.
    陈多福,马绍刚,董维权,等.1998.广东大降坪黄铁矿矿床的铅、钕同位素及金属成矿物质来源探讨.矿床地质,17(3):215~223.
    陈俊,陆建军,陈卫锋,等.2008.南岭地区钨锡铌钽花岗岩及其成矿作用.高校地质学报,14(4):459~473.
    陈懋弘,程彦博,章伟,杨宗喜,陆刚.2008.右江褶皱带燕山期岩浆作用与成矿作用初步研究.第九届全国矿床会议论文集.北京:地质出版社,241~242.
    陈培荣,章邦桐,孔兴功,等.1998b.赣南寨背A型花岗岩体的地球化学特征及其构造地质意义.岩石学报,14(3): 289~298.
    陈文,张彦,张岳桥,金贵善,王清利.2006.青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据.岩石学报,22(4):867~872.
    陈佑纬,毕献武,胡瑞忠,戚华文.2009.贵东复式岩体印支期产铀和非产铀花岗岩地球化学特征对比研究.矿物岩石,29(3):106~114.
    陈毓川,裴荣富,张宏良,等.1989.南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质(中 华人民共和国地质矿产部地质专报).北京:地质出版社,1-508.
    陈郑辉,王登红,屈文俊,等.2006.赣南崇义地区淘锡坑钨矿的地质特征与成矿时代.地质通报,25(4):496~501.
    程彦博,毛景文,陈懋弘,等.2008a.云南个旧锡矿田碱性岩和煌斑岩LA-ICP-MS锆石U-Pb测年及其地质意义.中国地质,35(6):1082~1093.
    程彦博,毛景文,陈小林,李伟.2010.滇东南薄竹山花岗岩的LA-ICP-MS锆石U-Pb定年及地质意义.吉林大学学报(地球科学版),40(4):869~878.
    程彦博,毛景文,谢桂青,等.2008b.云南个旧老厂-卡房花岗岩体成因初探:锆石U-Pb年代学和岩石地球化学约束.地质学报,82(11): 1478~1493.
    程彦博,毛景文,谢桂青,等.2009.与云南个旧超大型锡矿床有关的花岗岩锆石U-Pb定年及意义.矿床地质,28(3):297~312.
    戴福盛.1996.个旧矿区壳源重熔岩浆岩石系列特征,演化及成岩成矿作用.云南地质,15(4):330~344.
    邓希光,陈志刚,李献华,刘敦一.2004.桂东南地区大容山十万大山花岗岩带SHRIMP锆石U-Pb定年.地质论评,50(4):426~432.
    邓玉书.1951.云南个旧锡矿和构造的关系.地质论评,16(2): 57~66.
    范春方,陈培荣.2000.赣南陂头A型花岗岩的地质地球化学特征及其形成的构造环境.地球化学,29(4): 358~366.
    丰成友,丰耀东,许建祥,等.2007a.赣南张天堂地区岩体型钨矿晚侏罗世成岩成矿的同位素年代学证据.中国地质,34(4): 642~650.
    丰成友,许建祥,曾载淋,等.2007b.赣南天门山-红桃岭钨锡矿田成岩成矿时代精细测定及其地质意义.地质学报,81(7):952~963.
    冯佳睿,毛景文,裴荣富,周振华,杨宗喜.2010.云南瓦渣钨矿区老君山花岗岩体的SHRIMP锆石U-Pb定年、地球化学特征及成因探讨.岩石学报,26(3):845~857.
    冯建忠,邹世才,汪东坡,王学明,马治国.2002.陕西八卦庙金矿脆-韧性剪切带控矿特征及成矿构造的动力学机制.中国地质,29(1):58~66.
    冯贤仁.1982.个旧含锡花岗岩副矿物类型、成因及与矿化关系.云南地质,(1):129~133.
    付建明,李华芹,屈文俊,等.2007.湘南九嶷山大坳钨锡矿的Re-Os同位素定年研究.中国地质,34(4): 651~656.
    付建明,李华芹,屈文俊,等.2008.粤北始兴地区石英脉性钨矿成矿时代的确定及其地质意义.大地构造与成矿学,32(1): 57~62.
    付建明,马昌前,谢才富,等.2004a.湘南西山铝质A型花岗质火山侵入杂岩的地球化学及其形成环境.地球科学与环境学报,26(4):15~23.
    付建明,马昌前,谢才富,等.2004b.湖南九嶷山复式花岗岩体SHRIMP锆石定年及其地质意义.大 地构造与成矿学,370~378.
    付建明,马昌前,谢才富,等.2005.湘南金鸡岭铝质A型花岗岩的厘定及构造环境分析.地球化学,2005,34(3):215~226.
    甘晓春,沈渭洲,朱金初.1991.广西栗木水溪庙矿床同位素地质研究.南京大学学报(地球科学),(1):48~55.
    高剑峰,陆建军,赖鸣远,林雨萍,濮巍.2003.岩石样品中微量元素的高分辨等离子质谱分析.南京大学学报,39(6):844~850.
    高子英.1997.云南主要铅锌矿床的铅同位素特征.云南地质,16(4):359~367.
    龚庆杰,於崇文,张荣华.2004.柿竹园钨多金属矿床形成机制的物理化学分析.地学前缘,11(4):617~625.
    顾晟彦,华仁民,戚华文.2006.广西姑婆山花岗岩单颗粒锆石LA-ICP-MS U-Pb定年及其全岩Sr-Nd同位素研究.地质学报,80(4): 543~553.
    官容生.1991.滇东南构造岩浆带花岗岩体的含矿性讨论.矿物岩石,11(1):92~101.
    郭春丽,王登红,陈毓川,等.2007.赣南中生代淘锡坑钨矿区花岗岩锆石SHRIMP年龄及石英脉Rb-Sr年龄测定.矿床地质,26(4):432~442.
    郭春丽.2010.赣南崇义-上犹地区与成矿有关中生代花岗岩类的研究及对南岭地区中生代成矿花岗岩的探讨.中国地质科学院博士学位论文,1-22.
    韩发,赵汝松,沈建忠等.1997.大厂锡多金属矿床地质及成因.北京:地质出版社,108~157.
    侯可军,李延河,田有荣.2009LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质,28(4):481~492.
    胡祥昭.1989.银岩含锡花岗斑岩的岩石学特征及成因研究.地球化学,18(3): 251~259.
    胡正国,钱壮志.1994.小秦岭地质构造新认识.地质论评,40(4):289~295.
    华仁民,陈培荣,张文兰,等.2003.华南中、新生代与花岗岩类有关的成矿系统.中国科学(D辑),33(4):335~343.
    华仁民,李光来,张文兰,胡东泉,陈培荣,陈卫锋,王旭东.2010.华南钨和锡大规模成矿作用的差异及其原因初探.矿床地质,29(1):9-23.
    华仁民,毛景文.1999.试论中国东部中生代成矿大爆发.矿床地质,18(4):300~308.
    华仁民,张文兰,姚军明,等.2006.华南两种类型花岗岩成岩-成矿作用的差异.矿床地质,25(增刊):127~130.
    华仁民,张文兰,顾晟彦,陈培荣.2007.南岭稀土花岗岩、钨锡花岗岩及其成矿作用的对比.岩石学报,23(10):2321~2328.
    黄常立,唐维新,桂永平,等.1997.会昌岩背斑岩锡矿.武汉:中国地质大学出版社,1~132.
    黄典豪,吴澄宇,何红蓼.1994.东秦岭地区铝矿床的铼-锇同位素年龄及其意义.矿床地质,13(3):221~230.
    蒋国豪,胡瑞忠,谢桂青,等.2004.江西大吉山钨矿成矿年代学研究.矿物学报,24(3):253~256.
    康永孚和李崇佑.1991.中国钨矿床地质特征、类型及其分布.矿床地质,10(1):19~26.
    李昌年,钟称生,王方正,等.2001.桂北-湘南中生代玄武质岩石及其深源包体的地球化学性质和岩石成因探讨.岩石矿物学杂志,20(2):112~122.
    李东旭,许顺山.2000.变质核杂岩的旋扭成因-滇东南老君山变质核杂岩的构造解析.地质论评,46(2):113~120.
    李福东,张汉文,宋治杰,等.1993.鄂拉山地区热水成矿模式(以Cu为主多金属).西安:西安交通大学出版社,1~312.
    李红艳,毛景文,孙亚利,等.1996.柿竹园钨多金属矿床的Re-Os同位素等时线年龄研究.地质论评,42(3):261~267.
    李华芹,刘家齐,魏林.1993.热液矿床流体包裹体年代学研究及其地质应用.北京:地质出版社:28~75.
    李华芹,路远发,王登红,等.2006.湖南骑田岭芙蓉矿田成岩成矿时代的厘定及其地质意义.地质论评,52(1):113~121.
    李家和.1985.个旧花岗岩特征及成因研究.云南地质,4:327~352.
    李金东,柏道远,伍光英,等.2005.湖南郴州地区骑田岭花岗岩锆石的SHRIMP定年及其地质意义.中国地质,24(5):411~414.
    李水如,魏俊浩,邓军,谭俊.2007.广西大明山矿集区钨多金属矿床类型及控矿因素与找矿标志.中国钨业,22(6): 19~24.
    李水如,王登红,梁婷,等.2008.广西大明山钨矿床成矿时代及其找矿前景分析.地质学报,82(7):873~879.
    李献华.1990.万洋山-诸广山花岗岩复式岩基的岩浆活动时代与地壳运动.中国科学(B辑),(7):747~755.
    李亿斗,盛继福,Nel L L, Giuliani G.1986西华山花岗岩下地壳起源证据,地质学报,60(3):256~273.
    李兆丽,胡瑞忠,彭建堂,等.2006.湖南芙蓉锡矿流体包裹体的He同位素组成及成矿流体来源示踪.地球科学-中国地质大学学报,31(1):129~135.
    梁祥济,乔莉.1988.沉积变质中交代岩和有关铁矿形成机理的实验研究.中国地质科学院院报,(18):159~194.
    梁祥济,乔莉.1991.火山岩中交代岩和铁矿的实验研究.岩石矿物学杂志,10(4):300~314.
    蔺志永,王登红,李水如.2008.广西王社铜钨矿床的Re-Os同位素年龄及其地质意义.地质学报,82(11):1565~1571.
    刘昌实,朱金初,沈渭洲,徐士进,杨心宜.1990.华南花岗岩物源成因特征与陆壳演化.大地构造与成矿学,14(2):125~138.
    刘家齐,汪雄武,曾贻善,王晓地.2002.西华山花岗岩及钨锡铍矿田成矿流体演化.华南地质与矿 产, (3): 91~96.
    刘家远.2005.西华山钨矿的花岗岩组成及与成矿的关系.地质找矿论丛,20(1):1~7.
    刘珺,毛景文,叶会寿,等.2008a.江西武功山地区浒坑花岗岩的锆石U-Pb定年及元素地球化学特征.岩石学报,24(8): 1813~1822.
    刘珺,毛景文,叶会寿,等.2008b.江西武功山地区浒坑钨矿床辉钼矿的Re-Os年龄及其地质意义.地质学报,82(11): 1576~1584.
    刘善宝,王登红,陈毓川,李建康,应立娟,许建祥,曾载淋.2008.赣南崇-余-犹矿集区不同类型含矿石英中白云母Ar/Ar年龄及其地质意义.地质学报,82(7):932~940.
    刘义茂,戴橦谟,卢焕章,等.1997.千里山花岗岩成矿成矿的40Ar-39Ar和Sm-Nd同位素年龄.中国科学(D辑),27(5):425~430.
    刘义茂,王昌烈,胥友志,卢焕章.1995.柿竹园超大型钨矿床的成矿作用与成矿条件.湖南地质,14(4):211~219.
    刘义茂,王昌烈,胥友志,卢焕章,等.1998.柿竹园超大型钨多金属矿床的成矿条件与成矿模式.中国科学(D辑),28(S2):49~56.
    刘引霞.2008.世界钨矿床资源研究.甘肃科技,24(21):112~113.
    刘英俊.1984.华南花岗岩类中微量元素的地球化学特征.南京:江苏科学技术出版社,511~525.
    刘玉平,李朝阳,谷团,王金良.2000a.滇东南老君山中-深变质岩系铅同位素特征及时代归属.矿物学报,20(3):228~232.
    刘玉平,李朝阳,刘家军.2000b.都龙矿床含矿层状夕卡岩成因的地质地球化学证据.矿物学报,20(4):378~384.
    刘玉平,李正祥,李惠民,郭利果,徐伟,叶霖,李朝阳,皮道会.2007.都龙锡锌矿床锡石和锆石U-Pb年代学:滇东南白垩纪大规模花岗岩成岩-成矿事件.岩石学报,23(5):967~976.
    卢焕章.1986.华南钨矿的成因.重庆:重庆出版社.1~231.
    卢欣祥,李明立,王卫,于在平,时永志.2008.秦岭造山带的印支运动及印支期成矿作用.矿床地质,27(6):762~773.
    路远发,陈开旭,战明国.羊拉地区含矿夕卡岩成因的地球化学证据.地球科学,1999,24(3):298~303.
    罗君烈.1995.滇东南锡、钨、铅锌、银矿床的成矿模式.云南地质,14(4):319~332.
    吕伟,冯明刚,胡长寿.2001.滇东南南温河地区猛洞岩群变质作用特征.云南地质,20(1):25~33.
    马丽艳,路远发,屈文俊,等.2007.湖南黄沙坪铅锌矿床的Re-Os同位素等时线年龄及其地质意义.矿床地质,26(4):425~431.
    马铁球,柏道远,邝军,等.2005.湘东南茶陵地区锡田岩体锆石SHRIMP定年及其地质意义.地质通报,24:415~419.
    毛景文,程彦博,郭春丽,杨宗喜,冯佳睿.2008.云南个旧锡矿田:矿床模型及若干问题讨论.地质学 报,82(11):1455~1467.
    毛景文,华仁民.1999.浅议大规模成矿作用与大型矿集区.矿床地质,18(4):291~299.
    毛景文,李红艳,B Guy.1996湖南柿竹园矽卡岩-云英岩型W-Sn-M-Bi矿床地质和成矿作用.矿床地质,15(1):1~15.
    毛景文,李红艳,裴荣富.1995.千里山花岗岩体地质地球化学及与成矿关系.矿床地质,14(1):12~25
    毛景文,李红艳,王登红,彭聪.1998.华南地区中生代多金属矿床形成与地幔柱关系.矿物岩石地球化学通报,17(2):130~132
    毛景文,李晓峰,Bernd Lehmann,等.2004a.湖南芙蓉锡矿床锡矿石和有关花岗岩40Ar-39Ar年龄及其地球动力学意义.矿床地质,23(2): 164~175.
    毛景文,邵拥军,谢桂青,张建东,陈毓川.2009.长江中下游成矿带铜陵矿集区铜多金属矿床模型.矿床地质,28(2):109~119.
    毛景文,宋叔和.1988.桂北地区火成岩系列和锡多金属矿床成矿系列.北京:科学技术出版社,2~40.
    毛景文,王登红.1997.花岗岩有关稀有金属矿床研究新进展.矿床地质,16(2):189~192.
    毛景文,谢桂青,李晓峰,等.2004b.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘,11 (1):45~55.
    毛景文,谢桂青,郭春丽,陈毓川.2007.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景.岩石学报,23(10):2329~2338.
    梅玉萍,李华芹,王登红,等.2007.江西岩背斑岩锡矿的成岩成矿时代及其地质意义.地球学报,28(5):456~461.
    裴荣富,李进文,王浩琳.2008.云南省马关县老君山成矿区构造与花岗岩作用研究.云南华联锌铟股份有限公司科研项目报告.1-46.
    裴荣富,王永磊,李莉,王浩琳.2008.华南大花岗岩省及其与钨锡多金属区域成矿系列.中国钨业,23(1):10~13.
    裴荣富,王永磊,王浩琳.2009.南岭钨锡多金属矿床成矿系列与构造岩浆侵位接触构造动力成矿专属.中国地质,36(3):483~489.
    裴荣富,熊群尧.1999.中国特大型金属矿床成矿偏在性与成矿构造聚敛(场).矿床地质,18(1):37~46.
    彭程电.1985.试论个旧锡矿成矿条件及矿床类型、模式.云南地质,4(1):154~163.
    彭建堂,胡瑞忠,毕献武,等.2007.湖南芙蓉锡矿床40Ar/39Ar同位素年龄及地质意义.矿床地质,26(3):237~248.
    邱华宁,彭良.1997.40Ar-39Ar年代学与流体包裹体定年.合肥:中国科学技术大学出版社,54~65.
    全国矿产储量委员会.1984.钨矿地质勘探规范,1~23.
    任纪舜,牛宝贵,刘志刚.1999.软碰撞、叠覆造山和多旋回缝合作用.地学前缘,6(3):85~93.
    芮宗瑶,李荫清,王龙生,等.2003.从流体包裹体研究探讨金属矿床成矿条件.矿床地质,22(1):13-23.
    沈渭洲,王德滋,刘昌实.1995.华南含锡斑岩的同位素地球化学特征与物质来源.地质学报,69(4):349~359.
    沈渭洲,徐士进,王银喜,等.1994.西华山花岗岩的Nd-Sr同位素研究.科学通报,39(2):154~156.
    宋史刚,丁振举,姚书振,周宗桂,张世新,杜安道.2008.甘肃武山温泉辉钼矿Re-Os同位素定年及其成矿意义.西北地质,44(1):67~73.
    孙涛.2006.新编华南花岗岩分布图及其说明.地质通报,25(3):332~335.
    孙涛,周新民,陈培荣,李惠民,周红英,王志成,沈渭洲.2003.南岭东段中生代强过铝花岗岩成因及其大地构造意义.中国科学(D辑),33(12):1209~1218.
    谭洪波.2009.甘肃中川金铀矿床地质特征及成因讨论.东华理工大学学报(自然科学版),32(3):219~225.
    谭俊,魏俊浩,李艳军,等.2007.南岭中生代陆壳重熔型花岗岩类成岩成矿的有关问题.地质论评,53(3): 349~362.
    万天丰.2004.侏罗纪地壳转动与中国东部岩石圈转型.地质通报,23(9-10):966~972.
    汪志芬.1983.关于个旧锡矿成矿作用的几个问题.地质学报,(2):154~163.
    王德滋,刘昌实,沈渭洲,等.1993.江西岩背斑岩锡矿区火山-侵入杂岩.南京大学学报,29(4):625~650.
    王登红,陈毓川,陈文,等.2004.广西南丹大厂超大型锡多金属矿床的成矿时代.地质学报,78(1):132~138.
    王鸿桢,主编.1985.中国古地理图集.北京:地图出版社,53~58.
    王平安,陈毓川,裴荣富.1998.秦岭造山带区域矿床成矿系列,构造-成矿旋回与演化.北京:地质出版社,81~83.
    王强,赵振华,简平,等.2004.德兴花岗闪长斑岩SHRIMP锆石U-Pb年代学和Nd-Sr同位素地球化学.岩石学报,20(2):315~324.
    王松山.1983.我国K-Ar法标准样(40)Ar-(40)K和(40)Ar-(39)Ar年龄测定及放射成因(40)Ar的析出特征.地质科学, (4):315~323.
    王新光,朱金初.1992.个旧花岗岩的成因、演化及其找矿意义.大地构造与成矿学,16(4):379~387.
    王雄军.2008.云南老君山矿集区多因复成成矿模式及空间信息找矿预测模型研究.中南大学博士学位论文,30~62.
    王学煜.1994.麻栗坡新寨锡矿床地质地球化学特征.云南地质,13(1):1~16.
    王永磊.2008.湖南钨锡多金属矿集区构造-岩浆-成矿作用研究.中国地质科学院博士学位论文,25~53.
    王永磊,裴荣富,李进文,武俊德,李莉,王浩琳.2007.个旧老厂矿田花岗岩地球化学特征及其形 成构造背景.地质学报,81(7):979~985.
    王岳军,范蔚茗,梁新权,彭头平,石玉若.2005.湖南印支期花岗岩SHRIMP锆石U-Pb年龄及其成因启示.科学通报,50(12):1259~1266.
    王志成,周新民,郑大瑜,王敢,藤润球.2002.华南中生代不整合型铀矿成因模式.地质论评,48(4): 365~371.
    吴福元,江博明,林强.1997.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义.科学通报,42(20):2188~2192.
    伍光英,马铁球,柏道远,等.2005a.湖南宝山花岗闪长质隐爆角砾岩的岩石学、地球化学特征及锆石SHRIMP定年.现代地质,19(2):198~204.
    伍光英,潘仲芳,李金冬,等.2005b.湖南大义山花岗岩地质地球化学特征及其与成矿的关系.中国地质,32(3):434~442.
    伍勤生,刘青莲.1986.个旧含锡花岗岩浆杂岩体的成因演化及成矿.桂林冶金地质学院学报,6(3):229~238.
    伍勤生,许俊珍,杨志.1984.个旧含Sn花岗岩的Sr同位素特征及找矿标志的研究.地球化学,(4):293~302.
    伍式崇,洪庆辉,龙伟平,罗郧.2009.湖南锡田钨锡多金属矿床成矿地质特征及成矿模式.华南地质与矿产, (2):1~6.
    西南地质勘探局306队.1988.云南省麻栗坡县新寨锡矿床详查地质报告,4~65.
    肖庆辉,邓晋福,马大铨.2002.花岗岩研究思维与方法.北京:地质出版社,30~45.
    忻建刚,袁奎荣.1993.云南都龙隐伏花岗岩的特征及其成矿作用.桂林冶金地质学院学报,13(2):121~129.
    熊小林,朱金初,刘昌实,等.1994.江西岩背斑岩锡矿蚀变分带及其主要蚀变岩的地球化学特征.矿床地质,13(1): 1~10.
    徐克勤,丁毅.1938.中国钨鑛成因及分类之我见.地质论评, (3):305~325.
    徐克勤,刘英俊,俞受鋆.1959.中国钨鑛的类型及其分布规律.南京大学学报(自然科学版),(2):31-49.
    徐夕生,邓平,O' Reilly SY, Griffin WL,周新民,谭正中.2003.华南贵东杂岩体单颗粒锆石激光探针ICPMS U-Pb定年及其成岩意义.科学通报,48(12):1328~1334.
    阎国翰,蔡剑辉,任康绪,牟保磊,李凤棠,储著银.2008.郯庐断裂带晚中生代富碱侵入岩Nd、Sr、Pb同位素特征及源区特征探讨.岩石学报,24(6):1223~1236.
    杨峰,李晓峰,冯佐海,白艳萍.2009.栗木锡矿云英岩化花岗岩白云母39Ar/40Ar年龄及其地质意义.桂林工学院学报,29(1):21~24.
    杨世瑜,颜以彬.1994.云南的锡矿床与花岗岩类在时空分布上的关系.云南地质,13(2):149~157.
    杨宗喜.2008.云南个旧卡房铜矿地质地球化学与矿床成因探讨.中国地质大学(北京)硕士学位论文,11~20.
    杨宗喜,毛景文,陈懋弘,童祥,武俊德,程彦博,赵海杰.2008.云南个旧卡房夕卡岩型铜(锡)矿Re-Os年龄及其地质意义.岩石学报,24(8):1937~1944
    杨宗喜,毛景文,陈懋弘,童祥,武俊德,程彦博,赵海杰.2009.云南个旧老厂细脉带型锡矿白云母40Ar-39Ar年龄及其地质意义.岩石学报,28(3):336~344.
    姚军明,华仁民,林锦富.2005.湘东南黄沙坪花岗岩LA-ICPMS锆石U-Pb定年及岩石地球化学特征.岩石学报,21(3): 688~696.
    姚军明,华仁民,屈文俊,等.2007.湘南黄沙坪铅锌钨钼多金属矿床辉钼矿的Re-Os同位素定年及其意义.中国科学(D辑),471-477.
    姚鹏,顾雪祥,李金高,范文玉.2006.甲马铜多金属矿床层控矽卡岩流体包裹体特征及其成因意义.成都理工大学学报(自然科学版),33(3):285~293.
    冶金工业部西南冶金地质勘探公司(308队).1984.个旧锡矿地质.北京:冶金工业出版社,26~29.
    冶金部南岭钨矿专题组.1985.华南钨矿.北京:冶金工业出版社,123~130.
    殷俐娟.2003.我国钨资源可供性分析.中国钨业,18(5):16~19.
    云南省地质矿产局.1982.云南省区域地质志.北京:地质出版社,20~408.
    云南省317地质分队.1984.云南省麻栗坡县南秧田钨矿深部评价报告,16~77.
    曾庆涛,毛建仁,张传林,等.2007.赣南天门山岩体锆石SHRIMP定年和冷却史及其矿床学意义.矿物岩石地球化学通报,26(增刊):348~349.
    曾志刚,李朝阳,刘玉平,涂光炽.1998.滇东南南秧田两种不同成因类型白钨矿的稀土元素地球化学特征.地质地球化学,26(2):34~38.
    曾志刚,李朝阳,刘玉平,涂光炽.1999.老君山成矿区变质成因夕卡岩的地质地球化学特征.矿物学报,19(1):95~99.
    章邦桐,陈培荣,孔兴功.2002.赣南临江盆地余田群双峰式火山岩的Rb-Sr年代学研究.中国地质,29(4):351~354.
    张成江.1996.华南几个杂岩体中产铀与非产铀花岗岩的成因及其与铀成矿关系.成都理工学院学报,23(4):31~38.
    张宏飞,肖龙,张利,袁洪林,靳兰兰.2007.扬子陆块西北缘碧口块体印支期花岗岩类地球化学和Pb-Sr-Nd同位素组成:限制岩石成因及其动力学背景.中国科学D辑(地球科学),37(4):460~470.
    张洪培,刘继顺,李晓波,章霞林.2006.滇东南花岗岩与锡、银、铜、铅、锌多金属矿床的成因关系.地质找矿论丛,21(2):87~90.
    张家菁,陈郑辉,王登红,等.2008.福建行洛坑大型钨矿的地质特征、成矿时代及其找矿意义.大地构造与成矿,32(1):92~97.
    章锦统.1989.广西栗木铌、钽、钨、锡矿床.见:南岭地区与中生代花岗岩有关的有色及稀有金属矿床地质.北京:地质出版社,130~140.
    张世涛,陈国昌.1997.滇东南薄竹山复式岩体的地质特征及其演化规律.云南地质,16(3):222~232.
    张世涛,冯明刚,吕伟.1998.滇东南南温河变质核杂岩解析.中国区域地质,17(4):390~397.
    张文兰,华仁民,王汝成,等.2007.赣南漂塘钨矿区花岗岩成岩与成矿年龄的研究.矿物学报,27(增刊):324~325.
    张文兰,华仁民,王汝成,等.2006.赣南大吉山花岗岩成岩与钨矿成矿年龄的研究.地质学报,80(7):956~962.
    张文兰,华仁民,王汝成,等.2009.赣南漂塘钨矿花岗岩成岩年龄与成矿年龄的精确测定.地质学报,83(5):659~670.
    张彦,陈文,陈克龙,刘新宇.2006.成岩混层(I/S) Ar-Ar年龄谱型及39Ar核反冲丢失机理研究-以浙江长兴地区P-T界线粘土岩为例.地质论评,52(4):556~561.
    张岳桥,徐先兵,贾东,舒良树.2009.华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录.地学前缘,16(1):244~247.
    赵葵东,蒋少涌,姜耀辉,等.2006.湘南骑田岭岩体芙蓉超单元的锆石SHRIMP U-Pb年龄及其地质意义.岩石学报,22(8):2611~2616.
    赵蕾,于津海,王丽娟,谢磊,孙涛,邱检生.2006.红山含黄玉花岗岩的形成时代及其成矿能力分析.矿床地质,25(6):672~682.
    赵一鸣,林文蔚,毕承思,李大新,蒋崇俊.1990.中国矽卡岩矿床.北京:地质出版社,232~256.
    中国有色金属工业总公司地质勘查总局.1997.云南老君山锡锌多金属矿床地质,14~90.
    周新民,陈培荣,徐夕生.2007.南岭地区晚中生代花岗岩成因与岩石圈动力学演化.北京:科学出版社,1~691.
    朱炳泉,李献华.1998.地球科学中同位素体系理论与应用-兼论中国大陆壳幔演化.北京: 科学出版社,216~235.
    朱金初,谢才富,张佩华,等.2005.桂东北牛庙闪长岩和同安石英二长岩:岩石学、锆石SHRIMP U-Pb年代学和地球化学.岩石学报,21(3): 665~676.
    朱金初,殷成玉.1991.个旧锡矿区不同岩石中锡的富集特征及成矿模式.地质找矿论丛,6(2):11~17.
    朱金初,张佩华,谢才富,等.2006.南岭西段花山-姑婆山A型花岗质杂岩带:岩石学、地球化学和岩石成因.地质学报,80(4):529~542.
    庄永秋,王任重,杨树培.1996.云南个旧锡铜多金属矿床.地震出版社,1~183.
    Barbarin B.1999. A review of the relationship between granitoid types, their origins and their geodynamic environments. Lithos,46:605-626.
    Barth M G, McDonough W F, Rudnick R L.2000. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology,165(3-4):197-213.
    Beard JS, Lofgren GE.1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1.3 and 6.9 kbar. Journal of Petrology,32:365-402.
    Boynton W V.1984. Cosmochemistry of the rare earth elements:meteorite studies. In:Henderson P (eds). Rare Earth Element Geochemistry. Amsterdam-Oxford-New York-Tokyo:Elsevier,63-114.
    Carter A, Roques D, Bristow C, Kinny P.2001. Understanding Mesozoic accretion in Southeast Asia Significance of Triassic thermotectonism (Indosinian Orogeny) in Vietnam. Geol.,29:211-214.
    Castro A, Patino-Douce AE, Correge LG, de la Rosa JD, El-Biad M, El-Hmidi H.1999. Origin of peraluminous granites and granodiorites, Liberian massif, Spain:An experimental test of granite petrogenesis. Contribution to Mineralogy and Petrology,135(2-3):255-276.
    Cavarretta G, Gianelli G, Puxeddu M.1982. Formation of authigenic mineral and use as indiccators of the physicochemical parameters of the fluid in the Larderoll Trauals their geothermal field. Econ Geol,77: 1071-1084.
    Chappell BW, White AJR.1974. Two contrasting granite types. Pacific Geology,8:173-174.
    Clayton RN, Mayeda TK.1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta,27:43-52.
    Clayton RN, O'Neil JR, Mayeda TK.1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research,77:3057-3067.
    Dalrymple GB, Lamphere MA.1971.40Ar/39Ar technique of K-Ar dating:A comparison with the conventional technique. Earth Planet Sci. Let.,12:300-308.
    Darnley AG, Bjorklund A, Bolviken B, Gustavsson N, Koval PV, Plant JA, Steenfelt A, Tauchid M and Xie XJ.1995. A Global Geochemical Database for Environmental and Resource Management. Paris: United Nations Educational, Scientific and Cultural Organization,37-53.
    Dostal J, Chatterjee AK.2000. Contrasting behavior of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton(Nova Scotia, Canada). Chem. Geol.,163:207-218.
    Du A D, Wu S Q, Sun D Z, Wang S X, Qu W J, Stein HJ, Morgan J and Malinovskiy D.2004. Preparation and certification of Re-Os dating reference materials:Molybdenite HLP and JDC. Geostandard and Geoanalytical Research,28 (1):41-52(in Chinese with English abstract).
    Durmus Boztug, Yehudit Harlavan, Arehart GB, Muharrem S, Necmettin A.2007. K-Ar age, whole-rock and isotope geochemistry of A-type granitoids in the Divrii-Sivas Region, eastern-central Anatolia, Turkey. Lithos,97(1-2):193-218.
    Ferrara G, Lombardo B, Tonarini S, Turi B.1991. Sr, Nd and O isotopic characterization of the Gophu La and Gumburanjun leucogranites (High Himalaya). Schweizerische. Mineral. Petrogr. Mitteilungen,71: 35-51.
    Foster M D.1960. Interpretation of the composition of trioctahedral micas. Geol Surv Prof Paper,354-B: 11-49.
    Gilder SA, Gill J, Coe RS, Zhao X-X, Liu Z-W, Wang G-X, Yuan K-R, Liu W-L, Kuang G-D, Wu H-R. 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of South China. J. Geophys. Res.,101:16137-16154.
    Green T H.1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology,120(3-4):347-359.
    Green T H, Pearson N J.1987. An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochimica et Cosmochimica Acta,51(1): 55-62.
    Harris NBW, Inger S.1992. Trace element modelling of pelite-derived granites. Contribution to Mineralogy and Petrology,110(1):46-56.
    Jing Wen Mao, Franco Pirajno, Zuo Heng Zhang, et al.2008. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China):Principal characteristics and ore-forming processes. Journal of Asian Earth Sciences,32(2-4):184-203.
    Johannes W, Holtz F.1996. Petrogenesis and experiment petrology of granitic rocks. Berlin: Springer-Verlag,221-276.
    John BM, Wu F, Lo C-H, Sai C-H.1999. Crust-mantle interaction induced by deep subduction of the continental crust:Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie Complex, central China. Chemical Geology,157:119-146.
    Lepvriera C, Maluski H, Nguyen Van Vuong, Roques D, Axente V, Rangin C.1997. Indosinian NW-trending shear zones within the Truong Son belt (Vietnam) 40Ar-39Ar Triassic ages and Cretaceous to Cenozoic overprints. Tectonophysics, (283):105-127.
    Lepvriera C, Maluski H, Vu Van Tich, Leyreloup A, Phan Truong Thi, Nguyen Van Vuong.2004. The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif); implications for the geodynamic evolution of Indochina. Tectonophysics, (393):87-118.
    Li X H, Chang S L, Zhou H W, et al.2004. Jurassic intraplate magmatism in southern Hunan-eastern Guangxi:40Ar/39Ar dating, geochemistry, Sr-Nd isotopes and implications for tectonic evolution of SE China. In:Malpas J, Fletcher C J, Aitchison J C, Ali J (ed), Aspects of the Tectonic Evolution of China. Geological Society, London:Special Publications,226:193-216.
    Liu Y-S, Gao S, Hu Z-C, Gao C-G, Zong K-Q, Wang D-B.2009. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology doi:10.1093/petrology/egp082
    Ludwig KR.2001. ISOPLOT/EX Version 2.49:A geochronological Toolkit for Microsoft Excel. Berkley Geochronological Centre Special Publication, No.la.
    Maniar PD, Piccoli PM.1989. Tectonic discrimination of granitoids. Geological Society of America,101(5): 635-643.
    Mao J W, Xie G Q, Guo C L, Yuan S D, Cheng Y B and Chen Y C.2008. Spatial-Temporal Distribution of Mesozoic Ore Deposits in South China and Their Metallogenic Settings. Geological Journal of China Universities,14(4):510-526(in Chinese with English abstract).
    Mao J W, Xie G Q, Pirajno F, Ye H S, Wang Y B, Li J F, Xiang J F and Zhao H J.2010. Late Jurassic-Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China:SHRIMP zircon U-Pb ages and tectonic implications. Australian Journal of Earth Sciences,57:51-78.
    Maruyama S, Send T.1986. Orogeny and relative plate motions:Example of the Japanese Islands. Tectonophysics,127(3-4):305-329.
    Meinert L D.1992. Skarns and skarn deposits. Geoscience Canada,19:145-162.
    Montel JM, Vielzeuf D.1997. Partial melting of metagreywackes. Part II:Compositions of minerals and melts. Contribution to Mineralogy and Petrology,128:176-196.
    Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ.2008. Plesovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology,249:1-35.
    O'Neil JR, Clayton RN, Mayada TK.1969. Oxygen isotope fractionation in divalent metal carbonates. Chemistry Geophysics,51:5547-5558.
    Ohmoto H, Goldhaber M B.1997. Sulfur and carbon isotopes. In:Barnes, H L ed. Geochemistry of hydrothermal Ore deposits.3rd ed. New York:John Wiley and Sons,517-611.
    Patino-Douce AE.1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas. Castro A, Fernandez C, Vigneresse J. Understanding Granites: Integrating New and Classical Techniques. Geological Society of london, Special Publications,168: 55-75.
    Patino-Douce A E, Beard J S.1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Journal of Petrology,36(3):707-738.
    Patino-Douce AE, Harris N.1998. Experimental constraints on Himalayan anatexis. Journal of Petrology, 39 (4):689-710.
    Patino-Douce A E, Johnston A.D.1991. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology,107(2):202-218.
    Patino-Douce A E, McCarty T C.1998. Melting of crustal rocks during continental collision and subduction. Hacker B R, Liu J G. When Continents Collide:Geodynamics of Ultra-high Pressure Rocks. Netherlands:Kluwer Academic Publisher,27-55.
    Pearce JA.1996. Sources and settings of granitic rocks. Episodes,19:120-125.
    Pearce JA.1982. Trace element characteristics of lavas from destructive plate boundaries. Thorpe R S. Andesites New York:John Wiley and Sons,525-548.
    Peng J T, Zhou M F, Hu R Z, et al.2006. Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China. Miner Deposita,41: 661-669.
    Raith J G. 1991. Stratabound tungsten mineralization in regional metamorphic calc-silicate rocks from the Austroalpine Crystalline Complex. Austria. Mineral Deposita,26:72-80.
    Rickwood P C.1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos,22(4):247-263.
    Roedder E.1984. Fluid inclusions. Reviews in Mineralogy. Mineralogical Society of America,12:1-644.
    Selby D and Creaser RA.2001. Re-Os geochronology and systematicsin molybdenite from the Endako Porphyry Molybdenum Deposit, British Columbia, Canada. Economic Geology,96:197-204.
    Sheppard SMF.1986. Characterization and isotopic variations in natural waters. Reviews in Mineralogy,16: 165-183.
    Shirey SB and Walker RJ.1995. Carius tube digestion for low-blank rhenium-osmium analysis. Analytical Chemistry,67:2136-2141.
    Sisson TW, Ratajeski K, Hankins WB, Glazner AF.2005. Voluminous granitic magmas from common basaltic sources. Contribution to Mineralogy and Petrology,148(6):635-661.
    Skaarup P.1974. Stratabound scheelite mineralizations in skarn and gneisses from the Bindal area, Northern Norway. Mineral Deposita,9:299-308.
    Slama J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ.2008.Plesovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology,249:1-35.
    Smoliar MI, Walker RJ and Morgan JW.1996. Re-Os ages of group ⅡA,ⅢA,ⅣA and ⅥB iron meteorites. Science,271:1099-1102.
    Stanton R L.1983. Stratiform ores and metamorphic processes-Some thoughts arising from Broken Hill. Broken Hill conference,11-28.
    Stanton R L.1987. Constritution features and some exploration implications of three zinc-bearing stratiform skarn of eastern Australia.Trans. Instn. Metall.,96:B37-B57.
    Stein HJ, Scherst NA, Hannah J and Markey R.2003. Subgrain-scale decoupling of Re and 187Os and assessment of laser ablation ICP-MS spot dating in molybdenite. Geochimica et Cosmochimica Acta, 67:3673-3686.
    Sun SS, McDonough WF.1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In:Saunders A D, Norry M J. Magmatism in the Ocean Basin. Geol Soc Special Publ,42:313-345.
    Sylvester PJ.1998. Post-collision strongly peraluminous granites. Lithos,45:29-44.
    Taylor BE.1976. Origin and significance of C-O-H fluids in the formation of Ca-Fe-Si skarn, Osgood Mountains, Humboldt County, Nevada. Unpublished PhD thesis, Stanford University.306p.
    Taylor SR, McLennan SM.1985. The Continental Crust:Its Composition and Evolution. Oxford: Blackwell Scientific,312.
    Vernon RH.1984. Microgranitoid enclaves in granites-globulen of hybrid magma quenched in a plutonic environment. Nature,309:438-439.
    Wolf MB, Wyllie PJ.1989. The formation of tonalitic liquids during the vapor-absent partial melting of amphibolite at 10 kbar. Eos,70:506-518.
    Yuan S D, Peng J T, Shen N P, et al.2007.40Ar-39Ar isotopic dating of the Xianghualing Sn-polymetallic orefield in Southern Hunan, China and its geological implications,81(2):278-286.
    Zartman R E, Doe B R.1981. Lead-isotope evolution. U.S. Geological Survery Professional Paper, 169-170.
    Zhou X M, Sun T, Shen W Z, et al.2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution. Episodes,29(1):26-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700