用户名: 密码: 验证码:
西昆仑构造地貌与阿什库勒地区活动构造研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西昆仑山脉位于青藏高原西北部,它是在印度大陆与欧亚板块持续碰撞所造成的强烈挤压环境下形成,该区的构造变形强度、地震活动性和火山作用是其它任何地区都无法相比的。其中西昆仑山东段尤为突出,它不仅是青藏高原北部边界方向改变、巨型阿尔金走滑断裂与逆冲断裂和正断裂转换的地区,构造特性极其复杂,而且也是深部作用在地表响应最为直接的地区。现今西昆仑地区构造地貌与活动构造的研究程度相对较低,对此进行深入的研究有助于认识和理解研究区的构造转换及青藏高原的形成演化过程。
     本论文以西昆仑山东段为主要研究区,以构造地貌为手段,通过DEM数据处理,遥感卫星影像解译,野外地质、地貌调查和测量,以及宇宙成因核素10Be定年,对以下4方面的内容进行了研究:(1)西昆仑区域地貌特征及其与构造活动的耦合关系;(2)西昆仑东段阿什库勒盆地火山地貌与活动断裂;(3)阿尔金断裂带西段的阿什库勒段晚更新世以来的滑移速率与青藏高原北部的隆升作用;(4)2008年阿什库勒地震地表破裂特征及发震机制和构造意义。
     通过以上研究,论文取得如下主要成果和认识:
     (1)通过西昆仑区域地貌特征的研究表明,新生代构造活动在西昆仑地区形成了两级夷平面:山顶面和主夷平面,其中在西昆仑山东部现存的山顶面和主夷平面的海拔高度都较西昆仑山西部地区要大。造成这种东西向差异的原因可能是由于在喜马拉雅西构造结形成过程中,帕米尔与西南天山对接挤压使得西昆仑西部物质向东运动,并且在西昆仑西部及帕米尔地区喀喇昆仑断裂和更北部的塔拉斯-费尔干纳断裂的右旋走滑作用吸收了高原西北部的部分构造缩短量。
     (2)在西昆仑山东端高海拔无人区阿什库勒盆地内,通过详细的活动构造填图,精确厘定了阿什库勒盆地内第四纪火山的分布和不同火山的卫星影像特征、野外特征,结合对盆地内活动断裂的考察和测量,认为火山主要沿阿什库勒断裂的次级正断裂分布,火山的形成与活动阿尔金断裂带的走滑活动密切相关。
     (3)对阿什库勒盆地的形成机制和发育过程进行了讨论,认为该盆地是在印度板块与欧亚大陆碰撞汇聚和持续的挤压环境下,帕米尔向北挤压推进过程中,造成高原西部和阿尔金断裂西段发生顺时针旋转弯曲并产生近东西向伸展作用,在拉张区域形成断陷盆地,并据此提出一种新的走滑盆地类型:走滑断陷盆地。
     (4)阿什库勒东部阿克苏河地区发育七级河流阶地,各级阶地陡坎均被阿什库勒断裂左旋错位,通过全站仪和高精度卫星影像测量,获得阿什库勒断裂错断阿克苏河不同级河流阶地的水平位移量分别为T2/T0陡坎(及T2阶地面上冲沟):-11m;T3/T2陡坎:-33m;T4/T3陡坎:~105m;T5/T4陡坎:-220m;T6/T5陡坎:-660m。结合T1到T6各级阶地面上获得的宇宙成因核素10Be暴露年龄为:7.7±0.7 ka,32.7±3.1 ka,53.6±2.5 ka,115.7±23.2 ka,166.8±10.4 ka,和195.1±8.5 ka,限定了阿什库勒断裂在不同时段的滑移速率分别为0.34-1.43 mm/yr、~1 mm/yr、0.91-1.96 mm/yr、~1.9 mm/yr、3.38-3.96 mm/yr,总体上阿尔金断裂阿什库勒段晚更新世以来的滑移速率为0.34~1.9 mm/yr,最大可达3.96mm/yr。该速率明显小于阿尔金断裂其他段的速率,由于该区域位于阿尔金断裂转向康西瓦断裂的弧形转弯处,不仅局部处于拉张环境,并且其分枝断裂较多,因此,一系列断裂,尤其是正断层活动吸收了部分水平走滑量。
     (5)阿什库勒东部阿克苏河地区发育的七级河流阶地,说明该地区存在多次构造隆升作用。利用野外测量的阿克苏河阶地剖面中各级阶地的拔河高度,结合阶地面石英样品宇宙成因核素10Be暴露年龄确定的阶地面形成时代,估算得出该地区晚更新世以来的河流下切速率为0.2-0.35mm/yr。它可能代表了青藏高原西北部的隆升速率。
     (6)通过野外考察,查明了2008年3月21日阿什库勒(于田)地震的同震地表破裂带的位置和分布特征,确定了同震地表破裂带的性质和不同地段的同震位移以及最大同震位移量。结合上世纪以来沿阿尔金断裂发生的一系列地震和火山活动事件,推测下一次大地震可能向西南方向迁移。
The West Kunlun Mountains, which are located in the northwestern part of the Qinghai-Tibet Plateau, have experienced much more intensive tectonic deformation, earthquake and volcanic activities than any other place, due to the collision between the Indian Plate and the Eurasian continent, and to the continuous convergence. The eastern end of the West Kunlun Mountains is an important area where the northern boundary of the Qinghai-Tibet Plateau changes its direction, and the Altyn Tagh strike-slip fault transforms to thrust fand normal faults. Surface activities are directly linked to deep processes, and structural characteristics are complex and not well-understood. Therefore, our study on active tectonics in this region will help us better understand the formation processes of the Qinghai-Tibet Plateau and the structure transformation here.
     Our approach is based on DEM analysis, interpretation of satellite images, field geological and geomorphic investigation and surveying, and cosmogenic nuclide 10Be dating. We studied:(1) Regional geomorphic characteristics in the West Kunlun area and their coupling relationship with tectonic activities; (2) Volcanic geomorphology and active faulting in the Ashikule Basin, located at the eastern end of the West Kunlun Mountains; (3) Slip-rates along the Ashikule segment of the Altyn Tagh fault and uplift of the northwestern Qinghai-Tibet Plateau; (4) Surface rupture characteristics and rupture mechanics of the 2008 Ashikule earthquake (Ms7.3), and its tectonic implications.
     The main results of this thesis are listed as below.
     (1) The regional geomorphic investigation of the West Kunlun Mountains indicates that Cenozoic tectonic activities produced two planation surfaces in our study area:the summit planation and the main planation surface, which were both higher in the eastern part of the West Kunlun Mountains than in its western part. We suggest that during the formation of the Western Himalayan Syntaxis, the convergence and squeezing that occurred between the Pamir and the southwestern Tienshan caused eastwards migration of materials, yielding height differences of the planation surfaces. The right-lateral strike-slip Karakorum fault located in the western end of the West Kunlun Mountains and Talas-Fergana fault, which is more to the north, may absorb part of the shortening in the northwestern Qinghai-Tibet Plateau, and contribute to the discrepancy in height of planation surfaces.
     (2) Through detailed active tectonic mapping on the satellite images and in the field, we precisely determined the distribution of the Quaternary volcanoes and their characteristics, in the Ashikule Basin, the high altitude uninhabited area in the eastern part of the West Kunlun Mountains. Combined with surveying of the active faults in the Ashikule Basin, we confirm that all the volcanoes were distributed along the normal fault strand of the main Ashikule fault. The formation and eruptions of these volcanoes were triggered by strike-slip movement of the Altyn Tagh fault.
     (3) Formation and development of the Ashikule Basin. The Ashikule Basin was formed in the local transtensional environment caused by arcuate and clockwise rotation of the Altyn Tagh fault and the northwestern Qinghai-Tibet Plateau, during the progressive northwards extrusion of the Pamir, caused by the India/Eurasian collision. A new type of strike-slip basin such as the Ashikule Basin is suggested here.
     (4) At least 7 terraces developed along the Akesu River, east of the Ashikule Basin. All of these terraces were offset by the Ashikule fault. Horizontal displacements of different terraces were measured by retro-deformation on satellite images and total station surveying, and are~11m,~33m,~105m,~220m, and~660m, for the T2/T0 riser, T3/T2 riser, T4/T3 riser, T5/T4 riser, and T6/T5 riser, respectively. Combined the displacements with cosmogenic nuclide 10Be exposure ages, which are 7.7±0.7 ka,32.7±3.1 ka,53.6±2.5 ka,115.7±23.2 ka,166.8±10.4 ka, and 195.1±8.5 ka, for T1, T2, T3, T4, T5, and T6 surface, respectively, slip-rates along the Ashikule fault range from 0.34 to~1.9 mm/yr, possibly up to 3.96 mm/yr. This slip rate is lower than that on other segments of the Altyn Tagh fault. We consider that the Ashikule fault is located in the local transtension environment where the Altyn Tagh fault changes direction and becomes the Karakax fault, with a series of strands splitting from the main fault. The normal faulting activities here absorb part of the horizontal slip, therefore producing a slower strike-slip rate.
     (5) The 7 terraces at Akesu River site attest of the tectonic uplift in this region. Combined with the cosmogenic ages on different terraces, and the height of each terrace surface compared to the modern river measured in the field with a total station, incision rates of 0.2-0.35 mm/yr were determined for the Akesu River. This may represent a Late Pleistocene uplift rate of the northwestern Qinghai-Tibet Plateau.
     (6) Based on detailed field investigation and surveying, we mapped the co-seismic surface rupture zone of the 2008 Ashikule earthquake, and determined characteristics of the surface rupture and co-seismic displacement. Considering a series of earthquakes and volcanic eruptions events along the Altyn Tagh fault since the beginning of the last century, we suggest that the next earthquake may migrate to the southwest.
引文
Abdrakhmatov K Ye, Aldazhanov S A, Hager B H, et al. Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates [J]. Nature, 1996,384:450-453.
    Arnaud N O. Apports de la thermochronologie 40Ar/39Ar sur feldspath potassique a la connaissance de la tectonique cenozoique d'Asie. Etudedes mecanismes d'accommodation de la collision continentale, Ph.D. thesis, Univ.Blaise Pascal, Clermont-Ferrand,1992,263.
    Arnaud N O, Brunel M, Cantagrel J M, et al. High Cooling and denudation rates at Kongur Shan, Eastern Pamir (Xinjiang, China) revealed by 40Ar/39Ar alkali feldspar thermochronology [J]. Tectonics,1993,12(6):1335-1346.
    Arnaud N, Delville N, Montel J M, et al. Paleozoic to Cenozoic deformation along the Altyn Tagh fault in the Altyn Shan massif area, Eastern Qilian Shan, NE Tibet, China:American Geophysical Union Annual Meeting Abstracts.1999. F1018
    Arnaud N, Tapponnier P, Roger F, et al. Evidence for Mesozoic shear along the western Kunlun and Altyn-Tagh fault, northern Tibet (China). J. Geophys. Res.,2003,108, B1, ETG 12-1-12-27.
    Avouac J P, and Peltzer G. Active Tectonics in Southern Xinjiang, China:Analysisi of Terrace Riser and Normal Fault Scarp Degradation Along the Hotan-Qira Fault Ststem [J]. Journal of Geophysical Research,1993,98(B12):21773-21807.
    Balco G., Stone J O, Lifton N A, Dunai T J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat. Geochro, 2008, doi:10.1016/j.quageo.2007.12.001.
    Bendick R, Bilham R, Freymueller J, et al. Geodetic evidence for a low slip rate in the Altyn Tagh fault system [J]. Nature,2000,404:69-72.
    Blonford W T. Scientific results of the second Yar kand mission, Geology, Based upon the collections and notes of stoliczka, F. Calcuta.1878.
    Bull W B. Tectonic Geomorphology [J]. J. Geol. Ed,1984,32:310-324.
    Bull William B. Tectonic Geomorphology of Mountains:A New Approach to Paleoseismology [M]. Blackwell Publishing, Malden, MA,2007.
    Burbank Douglas W, Anderson Robert S. Tectonic Geomorphology [M]. Malden:Blackwell Science Ltd,2001.
    Burchfiel B C, Deng Q, Molnar P, Royden L H, Wang Y, Zhang P, Zhang W. Intracrustal detachment with zones of continental deformation [J]. Geology,1989,17:748-752.
    Burtman V. S and Molnar P. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir [A]. Geological Society of America Special Paper [C], 1993,281:1-76.
    Burtman V. S. Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir-Tien Shan transition zone for the Cretaceous and Palaeogene [J]. Tectonophysics, 2000,319(2):69-92.
    Chen Zhenle, Zhang Yueqiao, Chen Xuanhua, et al. Late Cenozoic sedimentary process and its response to the slip history of the central Altyn Tagh fault, NW China [J]. Science in China (Series D),2001,44:103-111.
    Coleman M, Hodges K. Evidence for Tibet plateau uplift before 14 Myr ago from a new minimum age for east-west extension [J]. Nature,1995,374(2):49-52.
    Cowgill E S. Tectonic evolution of the Altyn Tagh-western Kunlun fault system, northwestern China. University of California at Los Angeles, Los Angeles, CA, United States, Doctoral thesis,2001,311.
    Cowgill E. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting:Revisiting the Cherchen River site along the Altyn Tagh fault, NW China [J]. Earth and Planetary Science Letters,2007,254(3-4):239-255.
    Cowgill Eric. Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China [J]. GSA Bulletin,2010,122(1/2):145-161.
    Depolo C M, Clark D G, Slemmons D B, et al. Historical Basin and Range Province faulting and fault segmentation [R]. U S Geological Survey, Open-File Report,1989, (89-315):131-162.
    Fielding E, Isacks, Barazangi B, et al. How flat is Tibet? [J]. Geology,1994,22:163-167.
    Desilets D, Zreda M. Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in-situ cosmogenic dating [J]. Earth. Planet. Sci. Lett.,2003, 206:21-42.
    Desilets D, Zreda M, Prabu T.2006. Extended scaling factors for in situ cosmogenic nuclides:new measurements at low latitude [J]. Earth. Planet. Sci. Lett.,2006,246:265-276.
    Ding G Y, Chen J, Tian Q J et al. Active faults and magnitudes of left-lateral displacement along the northern margin of the Tibetan Plateau [J]. Tectonophysics,2004,380 (3-4):243-260.
    Dunai T. Scaling factors for production rates of in situ produced cosmogenic nuclides:a critical reevaluation [J]. Earth. Planet. Sci. Lett.,2000,176:157-169.
    Dunai T. Influence of secular variation of the magnetic field on production rates of in situ produced cosmogenic nuclides [J]. Earth. Planet. Sci. Lett.,1993,2001,197-212..
    Fu Bihong, Ninomiya Yoshiki, Guo Jianming. Slip partitioning in the northeast Pamir-Tian Shan convergence zone [J]. Tectonophysics,2010,483(3-4):344-364.
    Gosse J, Phillips F. Terrestrial in situ cosmogenic nuclides:theory and application [J]. Quat. Sci. Rev.2001,20:1475-1560.
    Guillot Stephane, Le Fort Patrick, Pecher Arnaud, et al. Contact metamorphism and depth of emplacement of the Manaslu granite (central Nepal). Implications for Himalayan orogenesis [J]. Tectonophysics,1995(a),241(1-2):99-119.
    Guillot S, Le Fort P. Geochemical constraints on the bimodal origin of High Himalayan leucogranites [J]. Lithos,1995(b),35(3-4):221-234.
    Guillot Stephane. An overview of the metamorphic evolution in Central Nepal [J]. Journal of Asian Earth Sciences,1999,17(5-6):713-725.
    Harding T P, Viebuchen R C, Christie-Blick N. Structural style, plate tectonic setting and hydrocarbon traps of divergent wrench faults. In:Biddle K.T., Christer-Bucks N. Strike-slip deformation, basin formation, and sedimentation [J]. Society of Economic Paleotonologist and Mineralogists Special Publication,1985,37:51-57.
    Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet [J]. Science,1992,255:1663-1670.
    Hendrix M S, Dumitru T A, and Graham S A. Late Oligocene-early Miocene unroofing in the Chinese Tian Shan:an early effect of the India-Asia collision [J]. Geology,1994,22: 487-490.
    Jin X C, Wang J, Chen B W, et al. Cenozoic depositional sequences in the piedmont of the west Kunlun and their paleogeographic and tectonic implications [J]. Journal of Asian Earth Sciences,2003,21(7):755-765.
    Keller Edward, Pinter Nicholas. Active Tectonics:earthquakes, uplift, and landscape [M]. New Jersey:Prentice Hall,1996.
    Keller E A, Zepeda R L, Rockwell T K, et al. Active tectonics at Wheeler Ridge, Southern San Joaquin Valley, CA [J]. Geol. Soc. Am. Bull,1998,110:298-310.
    Lal D. Cosmic ray labeling of erosion surfaces:in situ nuclide production rates and erosion models [J]. Earth. Planet. Sci. Lett.,1991,104:424-439.
    Lawson A C. The California earthquake of April 18,1906. [R]. Report of the State Earthquake Investigation Commission, Parts 1 and 2. Carnegie Institution of Washington Publication, 1908.
    Le Fort Patrick, Guillot Stephane, Pecher Arnaud. HP metamorphic belt along the Indus suture zone of NW Himalaya:new discoveries and significance [J]. Earth and Planetary Science, 1997,325(10):773-778.
    Li Haibing, Yang Jingsui, Zeng Lingsen, et al. Evidence for Cretaceous uplift of the northern Tibetan plateau. Eos, Trans. AGU,85(47), Fall Meet.2004, Suppl., Abstract.
    Li Haibing, Yang Jingsui, Shi Rendeng, et al. Determination of the Altyn Tagh strike-slip fault basin and its relationship with mountains [J]. Chinese Science Bulletin,2002,47(7):572-577.
    Li Haibing, Yang Jingsui, Wu Cailai, et al. Evidence for Triassic sinistral shear along the Altyn Tagh fault, northern Tibet (China). Eos, Trans. AGU,86(47), Fall Meet.2005, Suppl., Abstract.
    Li Q S, Gao R, Lu D Y, et al. Tarim underthrust beneath western Kunlun:evidence from wide-angle seismic sounding [J]. Journal of Asian Earth Sciences,2002,20(3):247-253.
    Lifton N, Bieber J, Clem J, et al. Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications [J]. Earth and Planetary Science Letters,2005,239:140-161.
    Liu Yongjiang, Ge Xiaohong, Genser J. et al.40Ar/39Ar chronological evidence for movement of the Altyn Tagh fault system. Chinese Science Bulletin,2003,48(12):1335-1341.
    Liu Yongjiang, Ye Huiwen, Ge Xiaohong, et al. Laser probe 40Ar/39Ar dating of mica on the deformed rocks from Altyn Fault and its tectonic implications, western China. Chinese Science Bulletin,2001,46(4):322-325.
    Lyon Caen H, Molnar P. Gravity anomalies and the structure of western Tibet and the southern Tarim Basin [J]. Geophysical Research Letter,1984,11:1251-1254.
    Mann P, Hempton M R, Brandley D C, Burke N. Development of pull-apart basins[J]. Journal of Geology,1983,91:529-554.
    Matsuda T. Estimation of future destructive earthquakes from active faults on land in Japan [J]. J Phys Earth,1977,25(Supp 1):251-260.
    Mattern F, Schneider W. Suturing of the Proto-and Paleo-Tethys oceans in the western Kunlun (Xinjiang, China) [J]. Journal of Asian Earth Sciences,2000,18(6):637-650.
    Matte Ph, Tapponnier P, Arnaud N, et al. Tectonics of Western Tibet, between the Tarim and the Indus [J]. Earth and Planetary Science Letters,1996,142:311-330.
    Meriaux A S, Ryerson F J, Tapponnier P et al. Rapid slip along the central Altyn Tagh fault: Morphochronologic evidence from Cherchen He and Sulamu Tagh [J]. Journal of Geophysical Research,2004,109:B06401, doi:10.1029/2003JB002558
    Meriaux A S, Tapponnier P, Ryerson F J et al. The Aksay segment of the northern Altyn Tagh fault: tectonic geomorphology, landscape evolution, and Holocene slip rate [J]. J. Geophys. Res. 2005,110, B04404 doi:04410.01029/02004JB003210
    Merritts D J, Vincent K R, Wohl E E. Long river profiles, tectonism, and eustasy:a guide to interpreting fluvial terraces [J]. Journal of Geophysical Research,1994,99:14031-14050.
    Meyer B, Tapponnier P, Bourjot L et al. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibetan Plateau [J]. Geophysical Journal International,1998,135:1-47.
    Molnar P, and Tapponnier P. Cenozoic tectonics of Asia:effects of a continental collision [J]. Science,1975,189:418-426.
    Molnar P, and Tapponnier P. Active Tectonics of Tibet [J]. Journal of Geophysical Research,1978, 83(B11):5361-5375.
    Molnar P B, Burchfiel C, Zhao Z Y, et al. Geological evolution of northern Tibet:results of an expedition to Ulugh Muztagh [J]. Science,1987,235:299-305.
    Molnar P, Burchfiel B C, Liang K et al. Geomorphic evidence for active faulting in the Altyn Tagh and Northern Tibet and qualitative estimates of its contribution to the convergence of India and Eurasia [J]. Geology,1987,15:249-253.
    Molnar P, England P. Late Cenozoic uplift of mountain ranges and global climate change:chicken or egg? [J]. Nature,1990,346:29-34.
    Molnar P, England P, and Martinod J. Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon [J]. Reviews of Geophysics,1993,31(4):357-396.
    Morisawa M, Hack J T. Tectonic Geomorphology [M]. Allen & Unwin, Boston, MA,1985.
    Negredo A M, Replumaz A, Villasenor A, et al. Modeling the evolution of continental subduction processes in the Pamir-Hindu Kush region [J]. Earth and Planetary Science Letters,2007, 259(1-2):212-225.
    Nilsen T H, Sylvester A G. Strike-slip basins, In:Busby C J, Ingersoll R V. Tectonics of Sedimentary Basins [M]. Blackwell Science,1995.
    Nishenko S P, Buland R. A generic recurrence interval distribution for earthquake forecasting [J]. Bull Seism Soc Am,1987,77:1382-1399.
    Peltzer G, Tapponnier P, Armijo R. Magnitude of Late Quaternary left-lateral displacement along the north edge of Tibet [J]. Science,1989,246:1285-1289.
    Pognante U, Spencer D A. First report of eclogites from the Himalayan belt, Kaghan Valley (northern Pakistan) [J]. European Journal of Mineralogy,1991,3(3):613-618.
    Rea D K. Delivery of Himalayan sediment to the Northern Indian Ocean and its relation to global climate, sea level, uplift, and sea water strontium [J]. Geophysical Monograph Series,1992, 70:387-402.
    Reid H F. The mechanism of the earthquake [A]. In:The California Earthquake of April 18,1906, Report of State Earthquake Investigation Commission, Part 2:Carnegie Institution, Washington, D C,1910.
    Reigber Ch., Michel G W, Galas R, et al. New space geodetic constraints on the distribution of deformation in Central Asia [J]. Earth and Planetary Science Letters,2001,191(1-2): 157-165.
    Robinson Alexander C, Yin An, Manning Craig E, et al. Tectonic evolution of the northeastern Pamir:Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China [J]. GSA Bulletin,2004,116(7/8):953-973.
    Robinson Alexander C, Yin An, Manning Craig E, et al. Cenozoic evolution of the eastern Pamir: Implication s for strain-accommodation mechanisms at the western end of the Himalayan-Tibetan orogen [J]. GSA Bulletin,2007,119(7/8):882-896.
    Ryerson F J, Peltzer G, Tapponnier P et al. Active slip-rates on the Altyn Tagh fault Karakax valley segment:Constraints from surface exposure dating. EOS,1999,80 (47):1008.
    Schumm S A, Dumont J F, Holbrook J M. Active Tectonics and Alluvial Rivers [M]. Cambridge: Cambridge University Press,2000.
    Schwartz D P, Coppersmith K J. Fault behavior and characteristic earthquakes:Examples from the Wasatch and San Andreas Fault zones [J]. J Geophys Res,1984, B89:5681-5698.
    Seong Yeong Bae, Owen Lewis A, Yi Chaolu, et al. Geomorphology of anomalously high glaciated mountains at the northwestern end of Tibet:Muztag Ata and Kongur Shan [J]. Geomorphology,2009,103:227-250.
    Shackleton N J, Berger A, Peltier W R. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677 [J]. Trans.R.Soc.Edinburgh:Earth Science, 1990,81:25-261.
    Guangfu Shao, Chen Ji. Preliminary Result of the Mar 20,2008 Mw 7.14 Xinjiang Earthquake. 2008, http://www.geol.ucsb.edu/faculty/ji/big earthquakes/2008/03/20/Xinjiang 206.html
    Shen Z, Wang M, Li Y, et al. Crustal deformation along the Altyn Tagh fault system, western China, from GPS [J]. J. Geophys. Res.,2001,106:30607-30621.
    Sieh K E. Pre-historic large earthquake produced by slip on the San Andreas Fault at Pallett Creek, California [J]. J Geophy Res,1978,83:3907-3939.
    Sieh K E. Lateral offsets and revised dates of large earthquakes at Pallett Creek, California [J]. J Geophy Res,1980,89:7641-7670.
    Sieh K E, Jahns R H. Holocene activity of the San Andreas Fault at Wallace Creek, California [J]. Geol Soc Am Bull,1984,95(8):883-896.
    Slemmons D B. Fault and earthquake magnitude [A]. In:State-of-the-art for assessing earthquake hazards in the United States, Report 6,1977.
    Sobel E R, Dumitru T A.. Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision [J]. Journal of Geophysical Research,1997,102: 5043-5063.
    Stone J O. Air pressure and cosmogenic isotope production [J]. J. Geophys. Res.,2000,105: 23753-23760.
    Szekely B. On the surface of the Eastern Alps-a DEM study [M]. Germany:Universiat Tubingen Press,2001,1-157.
    Tapponnier P, and Molnar P. Slip line field Theory and large-scale continental tectonics [J]. Nature, 1976,264:319-324.
    Tapponnier P, and Molnar P. Active Faulting and Tectonics in China [J]. Journal of Geophysical Research,1977,82(20):2905-2930.
    Tapponnier P, Molnar P. Active faulting and Cenozoic tectonics of Tien Shan, Mongolia, and Baikal regions [J]. J. Geophys. Res.,1979,84:3425-3459.
    Tapponnier P, Peltzer G, and Armijo R. On the mechanics of the collision between India and Asia[M]. Coward M P and Ries A C. Collision Tectonics. London:Geological Society of London Special Publish,1986:115-157
    Tapponnier P, Xu Zhiqin, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau [J]. Science,2001,294(23):1671-1677.
    USGS.2008. http://earthquake.usgs.gov/earthquakes/eqinthenews/2008/us2008pvcl/
    Van der Woerd J, Xu X, Li H, et al. Rapid active thrusting along the northwestern range front of the Tanghe Nan Shan (western Gansu, China) [J]. J. Geophys. Res.,2001,106,30475-30504.
    Van der Woerd J, Tapponnier P, Ryerson F J et al. Uniform postglacial slip-rate along the central 600km of the Kunlun fault (Tibet), from 26Al,10Be and 14C dating of riser offsets, and climatic origin of the regional morphology [J]. Geophysical Journal International,2002,148 (3); 356-388.
    Wallace R E. Earthquake recurrence intervals on the San Andreas Fault [J]. Geol Soc Am Bull, 1970,5:190-205.
    Wallace R E. Active Tectonics-Impact on society, overview and recommendations [M]. National Academy of Science, Washington, D.C,2000.
    Wang Erchie, Wan Jinglin, Liu Jiaqi. Late Cenozoic geological evolution of the foreland basin bordering the West Kunlun range in Pulu area:Constraints on timing of uplift of northern margin of the Tibetan Plateau [J]. Journal of Geophysical Research,2003,108(B8):2401.
    Wang Qi, Zhang Peizhen, Freymueller J. T, et al. Present day crustal deformation in China constrained by global positioning system measurements [J]. Science,2001,294:574-577.
    Wang Yu, Zhang Xuemin, Wang Erchie, et al.40Ar/39Ar thermochronological evidence for formation and Mesozoic evolution of the northern-central segment of the Altyn Tagh fault system in the northern Tibetan Plateau [J]. GSA Bulletin,2005,117:1336-1346.
    Wang Zhihong. Tectonic evolution of the western Kunlun orogenic belt, western China [J]. Journal of Asian Earth Science,2004,24:153-161.
    Weldon R J, Sieh K E. Holocene rate of slip and tentative recurrence interval for large earthquakes on the San Andreas Fault, Cajon Pass, Southern California [J]. Geol Soc Amer Bull,1985,96: 197-812.
    Willett S D and Beaumont C. Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision [J]. Nature,1994,369:642-645.
    Willis B. A fault map of California [J]. Seism Soc Am Bull,1923,13:1-12.
    Wittlinger G, Tapponnier P, Poupinet G, et al. Tomographic evidence for localized lithospheric shear along the Altyn Tagh fault [J]. Science,1998,282:74-76.
    Wittlinger G, Vergne J, Tapponnier P, et al. Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet[J]. Earth and Planetary Science Letters,2004,221: 117-130.
    Wood H O. The earthquake problem in the western United State [J]. Seism Soc Am Bull,1916,6: 181-217.
    Working Group on California Earthquake Probabilities. Probabilities of large earthquakes occurring in California on the San Andreas Fault [R]. U S Geological Survey, Open-File Report,1988, (88-398):66.
    Working Group on California Earthquake Probabilities. Probabilities of large earthquakes in the San Francisco Bay Region, California [R]. U S Geological Survey, Open-File Report,1990, (1053):51.
    Wright T J, ParsonsB, England P C et al. InSAR observations of low slip rates on the major faults of Western Tibet [J]. Science,2004,305:236-239.
    Yang Jingsui, Meng Fancong, Zhang Jianxin, et al. The shoshonitic volcanic rocks at Hongliuxia: Pulses of the Altyn Tagh fault in Cretaceous? [J]. Science in China (Series D),2001,44: 94-102.
    Yeats R, Sieh K, Allen C. The geology of earthquake [M]:New York, Oxford University Press, 1997,568P.
    Yin A, Rumelhart P E, Butler R, et al. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation [J]. Geol. Soc. Am. Bull.,2002,114:1257-1295.
    Zeitler P K, and Chamberlain C P. Petrogenetic and tectonic significance of young leucogranites from the northwestern Himalaya, Pakistan [J]. Tectonics,1991,10(4):729-741.
    Zhang Peizhen, Molnar P, Xu Xiwei. Late Quaternary and presentday rates of slip along the Altyn Tagh fault, northern margin of the Tibetan Plateau [J]. Tectonics,2007,26(5):TC5010, doi: 1011029/2006TC002014.
    Zheng Hongbo, Powell C M, An Zhisheng, et al. Pliocene uplift of the northern Tibetan Plateau [J]. Geology,2000,28:715-718.
    Zheng Hongbo, Powell Chris McA, Katherine Butcher, et al. Late Neogene loess deposition in southern Tarim Basin, tectonic and palaeoenvironmental implications [J]. Tectonophysics, 2003,375(1):49-59.
    Zheng Hongbo, Huang Xiangtong, Butcher Katherine. Lithostratigraphy, petrography and facies analysis of the Late Cenozoic sediments in the foreland basin of the West Kunlun [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,241:61-78.
    曹伯勋.地貌学及第四纪地质学[M].武汉:中国地质大学出版社,1995.
    曹凯,王国灿,刘超,孟艳宁.西昆仑及邻区新生代差异隆升的热年代学证据[J].地球科学—中国地质大学学报,2009,34(6):895-906.
    陈杰,曲国胜,胡军,冯先岳.帕米尔北缘弧形推覆构造带东段的基本特征与现代地震活动[J].地震地质,1997,19(4):301-311.
    陈杰,卢演俦,丁国瑜.塔里木西缘晚新生代造山过程的记录—磨拉石建造及生长地层和生长不整合[J].第四纪研究,2001,21(6):528-539.
    陈敬培等.1971年在新疆于田县以南昆仑山进行地质矿产调查报告[R].新疆地质局区测大队,1972.
    陈新安,张兴林,屈秋平等.塔西南山前构造特征及含油气前景[J].新疆石油地质,1999,20(6):468-472.
    陈正位,申旭辉,曹忠权.基于数字高程模型对亚东—谷露构造带第四纪活动习性的研究[J].地震,2004,24(增刊):40-46.
    程三友,刘少峰,张会平等.大别山构造地貌的DEM初步分析[J].地质力学学报,2005,11(4):333-340.
    崔建堂,边小卫,王根宝.西昆仑地质组成与演化[J].陕西地质,2006,24(1):1-11.
    崔军文,张晓卫,李朋武.阿尔金断裂:几何学、性质和生长方式[J].地球学报,2002,23(6):509-516.
    崔之久,高全洲,刘耕年等.青藏高原夷平面与岩溶时代及其起始高度[J].科学通报,1996,41(15):1402-1406.
    邓起东.断层性状、盆地类型及其形成机制[J].地震科学研究,1984,(6):51-59.
    邓起东.中国活动构造研究[J].地质论评,1996,42(4):295-299.
    邓起东,张培震,冉勇康等.中国活动构造基本特征[J].中国科学(D辑),2002,32(12):1020-1030.
    邓起东.中国活动构造研究的进展与展望[J].地质论评,2002,18(2):168-177.
    邓起东,陈立春,冉勇康.活动构造定量研究与应用[J].地学前缘,2004,11(4):383-392.
    邓起东,闻学泽.活动构造研究——历史、进展与建议[J].地震地质,2008,30(1):1-30.
    邓万明.新疆乌鲁克库勒火山群地质考察—“1951年1号火山喷发”质疑[J].自然资源学报,1989,4(4):349-354.
    邓万明.青藏高原新生代岩浆岩活动的大地构造位置.青藏高原与全球变化研讨会论文集[M].北京:气象出版社,1995:222-228.
    邓万明.青藏高原北部新生代板内火山岩[M].北京:地质出版社,1998,180pp.
    邓万明.中国西部新生代火山活动及其大地构造背景——青藏及邻区火山岩的形成机制[J].地学前缘,2003,10(2):471-478.
    丁道桂,王道轩,刘伟新,孙世群.西昆仑造山带及盆地[M].北京:地质出版社,1996.
    段荣耀,王俊杰.新疆维吾尔自治区地质局和田大队二分队1960年在于田县乌鲁格湖阿其克湖进行普查检查工作的报告[R].新疆地质局和田地质大队,1962,1-34.
    冯先岳.新疆古地震[M].乌鲁木齐:新疆科技卫生出版社,1997.
    付碧宏,林爱明,狩野谦一,等.中国西北帕米尔东北缘的活动断裂研究[J].新疆地质,2003,21(1):1-8.
    付碧宏,张松林,谢小平等.阿尔金断裂系西段—康西瓦断裂的晚第四纪构造地貌特征研究[J].第四纪研究,2006,26(2):228-235.
    高锐,黄定东,卢德源等.横过西昆仑造山带与塔里木盆地结合带的深地震反射剖面[J].科学通报,2000,45(17):1874-1879.
    高锐,李朋武,李秋生等.青藏高原北缘碰撞变形的深部过程-深地震探测成果之启示[J].中国科学(D辑),2001,31(增刊):66-71.
    高锐,肖序常,高弘等.西昆仑—塔里木—天山岩石圈深地震探测综述[J].地质通报,2002,21(1):11-20.
    顾延生,张旺生,朱云海等.祁连山东南缘基于RGMAP的数字化地貌研究[J].地球科学,2003,28(4):395-400.
    宫鹏.数字表面模型与地形变化测量[J].第四纪研究,2000,.
    国家地震局,阿尔金活动断裂带课题组.阿尔金活动断裂带[M].北京:地震出版社,1992.1-319.
    韩芳林等.伯力克幅1:250000区调报告[R].陕西地质调查院,2004.
    韩慕康.构造地貌学[J].地球科学进展,1992,7(5):61-62.
    胡建中,谭应佳,张平,张艳秋.塔里木盆地西南缘山前带逆冲推覆构造特征[J].地学前缘,2008,15(2):222-231.
    贾承造.中国塔里木盆地构造特征与油气[M].北京:石油工业出版社,1997.
    姜春发,杨经绥,冯秉贵等.昆仑开合构造[M].北京:地质出版社,1992.
    姜春发,王宗起,李锦轶,等.中央造山带开合构造[M].北京:地质出版社,2000.
    金小赤,王军,陈蛹蔚等.新生代西昆仑隆升的地层学和沉积学记录[J].地质学报,2001,75(4):459-467.
    黎敦朋,赵越,胡健民等.青藏高原西北缘高原面与陡坡地貌形成过程的裂变径迹热年代学约束[J].岩石学报,2007,23(5):900-910.
    李海兵,杨经绥,许志琴等.阿尔金断裂带印支期走滑活动的地质及年代学证据[J].科学通报,2001,46(16):1333-1338.
    李海兵,杨经绥,史仁灯等.阿尔金走滑断陷盆地的确定及其与山脉的关系[J].科学通报,2002,47(1):63-67.
    李海兵,杨经绥.青藏高原北部白垩纪隆升的证据[J].地学前缘,2004,11(4):345-359.
    李海兵,杨经绥,许志琴,等.阿尔金断裂带对青藏高原北部生长、隆升的制约[J].地学前缘,2006,13(4):59-79.
    李海兵,Van derWoerd J,孙知明等.阿尔金断裂带康西瓦段晚第四纪以来的左旋滑移速率及其大地震复发周期的探讨[J].第四纪研究,2008,28(2):198-213.
    李吉均,文世宣,张青松等.青藏高原隆起的时代幅度和形式的探讨[J].中国科学,1979,(6):608-616.
    李吉均.青藏高原隆起的三个阶段及夷平面的高度与年龄[A].见:地貌环境发展[M].北京:中国环境科学出版社,1995.
    李吉均,方小敏.青藏高原隆起与环境变化研究[J].科学通报,1998,43(15):1569-1574.
    李秋生,卢德源,高锐等.横跨西昆仑-塔里木接触带的爆炸地震探测[J].中国科学(D辑),2000,30(增刊):16-21.
    李秋生,卢德源,高锐等.新疆地学断面(泉水沟-独山子)深地震测深成果综合研究[J].地球学报,2001,22(6):534-540.
    李栓科.中昆仑山阿什库勒盆地地貌与第四纪环境问题[J].地理学报,1991,46(2):224-232.
    李涛,王宗秀.塔里木盆地及邻区岩石圈拆离解耦与盆山格局关系的天然地震分析[J].地学前缘,2005,12(3):125-136.
    李喜臣,王永,丁孝忠.西昆仑山前晚新生代磨拉石时代及意义[J].地质力学学报,2005,11(2):181-186.
    李永安,李强,张慧等.塔里木及其周边古地磁研究与盆地形成演化[J].新疆地质,1995, 13(4):358-366.
    刘和甫.盆地—山岭耦合体系与地球动力学机制[J].地球科学—中国地质大学学报,2001,26:581-596.
    刘嘉麒,买买提依明.西昆仑山第四纪火山的分布与K-Ar年龄[J].中国科学(B辑),1990,(2):180-187.
    刘静,丁林,曾令森等.青藏高原典烈地区的地貌量化分析—兼对高原“夷平面”的讨论[J].地学前缘,2006,23(5):255-299.
    刘静,曾令森,丁林等.青藏高原东南缘构造地貌、活动构造和下地壳流动假说[J].地质科学,2009,44(4):1227-1255.
    刘少峰,王陶,张会平等.数字高程模型在地表过程研究中的应用[J].地学前缘,2005,12(1):303-309.
    刘胜,汪新,伍秀芳等.塔西南山前晚新生代构造生长地层与变形时代[J].石油学报,2004,25(5):24-28.
    刘胜,邱斌,尹宏等.西昆仑山前乌泊尔逆冲推覆带构造特征[J].石油学报,2005,26(6):17-19.
    刘万祥.和田断裂带的特征及找油前景[J].石油与天然气地质,1985,6(3):326-334.
    刘训,吴绍祖,付德荣等.塔里木板块周缘的沉积—构造演化[M].乌鲁木齐:新疆科技卫生出版社,1997.
    刘训.天山-西昆仑地区沉积-构造演化史[J].古地理学报,2001,3(3):21-31.
    刘训,王军,张招崇等.第四纪磨拉石组分与青藏高原隆升的关系—对新疆叶城柯克亚剖面第四系砾石成分测量结果的认识[J].地质通报,2002,21(11):759-763.
    刘勇,王义祥,潘保田.夷平面的三维显示与定量分析方法初探[J].地理研究,1999,18(4):391-399.
    罗金海,何登发.西昆仑北缘冲断带和田段的构造特征[J].石油与天然气地质,1999,20(3):237-241.
    买买提依明,刘嘉麒,赵兴有,骆君.阿什库勒盆地的形成与演化初探[J].干旱区地理,1992,15(1):61-69.
    潘凤英,陈丙威.普通地貌学[M].北京:高等教育出版社,1989.
    潘家伟,李海兵,Van Der Woerd Jerome等.西昆仑山前冲断带晚新生代构造地貌特征[J].地质通报,2007,26(10):1368-1379.
    潘家伟,李海兵,Van Der Woerd等.青藏高原西北部帕米尔东北缘构造地貌与活动构造研究[J].第四纪研究,2009,29(3):586-598.
    潘保田,李吉均,施雅风等.第三纪青藏地区隆升、夷平与环境特征[J].见:青藏高原晚新生代隆起与环境变化[M].广州:广东科技出版社,1998.
    潘裕生.昆仑山区构造区划初探[J].自然资源学报,1989,4(3):196-202.
    潘裕生.西昆仑山构造特征与演化[J].地质科学,1990,(3):224-232.
    潘裕生,王毅,Ph. Matte等.青藏高原叶城—狮泉河路线地质特征及区域构造演化[J].地质学报,1994,68(4):295-307.
    潘裕生.青藏高原第五逢合带的发现与论证.地球物理学报,1994,37(2):184-192.
    钱辉,许志琴,姜枚等.西昆仑接收函数反演与构造解析[J].中国地质,2006,33(2):309-316.
    乔学军,杜瑞林,华晓伟,等.新疆帕米尔东北侧地区现今地壳运动GPS监测研究[J].中国地震,2000,16(4):342-351.
    曲国胜,陈杰,陈新安等.西昆仑—帕米尔造山带及其北缘前陆盆地板内变形构造[J].地质论评,1998,44(4):419-429.
    曲国胜,李亦纲,张宁等.塔里木西南缘(齐姆根弧)前陆构造及形成机理[J].地质评论,2004,50(6):568-577.
    曲国胜,李亦纲,李岩峰等.塔里木盆地西南前陆构造分段及其成因[J].中国科学(D辑),2005,35(3):193-202.
    陕西省地质调查院,2005.1:25万阿克萨依湖幅(144C001002),1:25万恰哈幅(J44C004002)区域地质调查报告.
    沈军,汪一鹏,赵瑞斌等.帕米尔东北缘及塔里木盆地西北部弧形构造的扩展特征[J].地震地质,2001,23(3):381-389.
    施雅风,李吉均,李炳元等.晚新生代青藏高原的隆升与东亚环境变化[J].地理学报,1999,54(1):10-20.
    司家亮,李海兵,Laurie BARRIER等.青藏高原西北缘晚新生代的隆升特征-来自西昆仑山前盆地的沉积学证据[J].地质通报,2007,26(10):1356-1367.
    万景林,王二七.西昆仑北部山前普鲁地区山体抬升的裂变径迹研究[J].核技术,2002,25(7):565-567.
    王峰,徐锡伟,郑荣章,等.阿尔金断裂带西段车尔臣河以西晚第四纪以来的滑动速率研究[J].地震地质,2004a,26(2):200-208.
    王峰,徐锡伟,郑荣章.用阶地测量方法探讨阿尔金断裂中段全新世滑动速率[J].地震地质,2004b,26(1):61-70.
    王军.西昆仑卡日巴生岩体和苦子干岩体的隆升—来自磷灰石裂变径迹分析的证据[J].地质评论,1998,44(4):435-442.
    王军,金小赤,任留东等.西昆仑北坡克里阳剖面新生代沉积的磷灰石裂变径迹研究[J].地球学报,1999,24(增刊):159-164.
    王琪,丁国瑜,乔学军等.天山现今地壳快速缩短与南北地块的相对运动[J].科学通报,2000,45(14):1543-1547.
    王世虎,徐希坤,宋国奇.塔西南坳陷和田凹陷前陆冲断带构造特征[J].石油实验地质,2001,23(4):378-383.
    王晓强,王琪,程瑞忠等.新疆伽师及邻近地区现今地壳形变的GPS监测与研究[J].西北地震学报,2002,24(3):199-207.
    王彦斌,王永,刘训等.天山、西昆仑山中、新生代幕式活动的磷灰石裂变径迹记录[J].中国区域地质,2001,20(1):94-99.
    王永,王彦斌,刘训等.柯克亚剖面新生代晚期沉积物中磷灰石裂变径迹年龄及意义[J].新疆地质,2002,20:4346.
    王永,李德贵,王军等.西昆仑山前晚新生代沉积岩磁组构及构造意义[J].新疆地质,2003,21(1):74-77.
    王永,王军,迟振卿等.克里雅河阶地的形成与西昆仑隆升[J].宁夏工程技术,2004,3(3):207-209.
    王永,李德贵,肖序常等.西昆仑山前晚新生代构造活动与青藏高原西北缘的隆升[J].中国地质,2006,33(1):41-47.
    王永,王军,肖序常等.西昆仑山前河流阶地的形成及其构造意义[J].地质通报,2009,28(12):1779-1785.
    王元龙,李向东,黄智龙.新疆西昆仑康西瓦构造带地质特征及演化[J].地质地球化学,1996,(2):48-54.
    吴世敏,马瑞士,卢华复等.西昆仑地震展布与塔西南“A”型俯冲[J].石油实验地质,1997,19(1):1-4.
    吴世敏,马瑞士,卢华复等.西昆仑早古生代构造演化及其对塔西南盆地的影响[J].南京大学学报(自然科学版),1996,32(4):650-657.
    伍秀芳,刘胜,汪新等.帕米尔-西昆仑北麓新生代前路褶皱冲断带构造剖面分析[J].地质科学,2004,39(2):260-271.
    向宏发,虢顺民,张晚霞,等.阿尔金断裂带东段第四纪以来的水系位错与滑动速率[J].地震地质,2000,22(2):129-138.
    向奎.塔里木盆地西南边缘压扭构造体系及其石油地质意义[J].古地理学报,2006,8(2):233-240.
    肖安成.塔里木盆地西南缘西昆仑前陆逆冲—褶皱带主滑脱面深度[J].江汉石油学院学报,1996,18(1):19-23.
    肖安成,杨树锋,陈汉林等.西昆仑山前冲断系的结构特征[J].地学前缘,2000,7(增刊):128-135.
    肖文交,侯泉林,李继亮,等.西昆仑大地构造相解剖及其多岛增生过程[J].中国科学(D辑),2000,30(增刊):22-28.
    肖序常,刘训,高锐等.西昆仑及邻区岩石圈结构构造演化—塔里木南—西昆仑多学科地学断面简要报道[J].地质通报,2002,21(2):63-68.
    肖序常,王军.西昆仑—喀喇昆仑及其邻区岩石圈结构、演化中几个问题的探讨[J].地质评 论,2004,50(3):285-294.
    肖序常.开拓、创新,再创辉煌—浅议揭解青藏高原之秘[J].地质通报,2006,25(1-2):15-19.
    徐仁.大陆飘移与喜马拉雅山上升的古植物学证据[A].见:青藏高原隆升的时代、幅度和形式问题[M].北京:科学出版社,1981,8-18.
    徐叔鹰,张林源.应用地貌分析法探讨唐古拉山地区隆升的时代与幅度[A].见:青藏高原隆起时代、幅度与形式问题[M].北京:科学出版社,1981,64-77.
    徐锡伟,Tapponnier P, Van der Woerd J等.阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论[J].中国科学(D辑),2003,33(10):967-974.
    许志琴,李海兵,杨经绥.造山的高原—青藏高原巨型造山拼贴体和造山类型.地学前缘,2006,13(4):1-17.
    许志琴,杨经绥,李海兵等.造山的高原[M].北京:地质出版社,2007.
    杨纪林,胡军,南凌.新疆策勒西南古地震形变带研究[J].内陆地震,2001,15(2):154-159.
    杨克明.论西昆仑大陆边缘构造演化及塔里木西南盆地类型[J].地质论评,1994,40(1):9-18.
    杨逸畴,李炳元,尹泽生.西藏地貌[M].北京:科学出版社,1983:1-238.
    张传林,陆松年,于海锋,叶海敏.青藏高原北缘西昆仑造山带构造演化:来自锆石SHRIMP及LA-ICP-MS测年的证据[J].中国科学(D辑),2007,37(2):145-154.
    张达景,胡健民,蒙义峰等.塔里木盆地西南部齐姆根逆冲推覆构造的特征及其与油气的关系[J].地质通报,2007,26(3):266-274.
    张会平,杨农,张岳桥等.基于DEM的岷山构造带构造地貌初步研究[J].国土资源遥感,2004,4:54-58.
    张会平,刘少峰.利用DEM进行地形高程剖面分析的新方法[J].地学前缘,2004,11(3):226-226.
    张会平,刘少峰,孙亚平等.基于SRTM-DEM区域地形起伏的获取及应用[J].国土资源遥感,2006,(1):31-36
    张会平,杨农,张岳桥,孟晖.岷江水系流域地貌特征及其构造指示意义[J].第四纪研究,2006,26(1):126-135.
    张会平,杨农,刘少峰等.数字高程模型(DEM)在构造地貌研究中的应用新进展[J].地质通报,2006,25(6):660-669.
    张或丹.铁克里克山前逆冲带及其找油前景[J].江汉石油学院学报,1988,10(1):1-10.
    张培震,王琪,马宗晋.青藏高原现今构造变形特征与GPS速度场[J].地学前缘,2002,9(2):442-450.
    张培震,李传友,毛凤英.河流阶地演化与走滑断裂滑动速率[J].地震地质,2008,30(1):44-57.
    张青松,李炳元.喀喇昆仑山—西昆仑山地区晚新生代隆起过程及自然环境变化初探[J].自然资源学报,1989,4(3):234-240.
    张青松,李炳元.喀喇昆仑山—昆仑山地区晚新生代环境变化[M].北京:中国环境科学出版社,1999.
    赵铭钰.卡尔达西火山群考察[J].新疆地质,1976,1:27-36.
    赵兴有,骆君,买买提依明,刘嘉麒.昆仑山阿什库勒盆地15000年以来古环境演化的初步研究[J].干旱区地理,1993,16(3):59-63.
    赵振明,李荣社,孟勇等.西昆仑提孜那甫河与喀拉喀什河山前河谷地貌对比及构造-气候意义[J].新疆地质,2006,24(2):115-119.
    郑洪波.从新疆叶城剖面砂岩和砾岩组分看西昆仑山的剥蚀历史[J].地质力学学报,2002,8(4):297-305.
    郑洪波,Kutherine Butcher, Chris Powell新疆叶城晚新生代山前盆地演化与青藏高原北缘的隆升-Ⅰ.地层学与岩石学证据[J].沉积学报,2002,20(2):274-281.
    郑洪波,Kutherine Butcher, Chris Powell新疆叶城晚新生代山前盆地演化与青藏高原北缘的隆升-Ⅱ.沉积相与沉积盆地演化[J].沉积学报,2003,21(1):46-51.
    中国科学院青藏高原综合科学考察队.喀喇昆仑山-昆仑山地区地质演化[M].北京:科学出版社,2000.
    周新源,罗金海,王清华.塔里木盆地南缘冲断带构造特征及其油气地质特征[J].中国科学(D辑),2004,34(S1):56-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700