用户名: 密码: 验证码:
内蒙古黄岗锡铁矿床地质与地球化学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄岗锡铁矿床是大兴安岭南段多金属成矿带内的一个重要的大型多金属矿床,为我国长江以北最大的锡多金属矿床,也是内蒙古自治区第二大铁矿。本论文在充分收集并总结前人研究成果的基础上,选择黄岗锡铁矿床作为典型矿床剖析。通过野外地质调查、电子探针分析、主微量成分分析、Sr-Nd-Pb-Hf同位素示踪、流体包裹体、稳定同位素、放射性同位素年代学等方法和手段,主要研究了成矿岩体特征、夕卡岩岩体特征、成矿物质来源、成矿流体来源、矿床成因、成矿作用及成矿动力学背景等方面的内容,建立了矿床成矿模型,探讨了区域成矿规律,取得的主要成果如下:
     (1)详细的野外地质调查发现,下二叠统大石寨组及黄岗梁组中是矿床的主体含矿层位,矿体总体顺层分布,空间上与夕卡岩密切相关。矿石主要类型以层纹状、团块状夕卡岩矿石为主,其次为产在大理岩中的条带状、团块状矿石,围岩与矿体的接触界线清楚。矿石矿物种类繁多,围岩蚀变普遍发育,夕卡岩分带明显。矿床的形成经历了夕卡岩阶段、退化蚀变阶段、石英硫化物阶段和碳酸岩阶段,其中第2、3阶段为主成矿期。
     (2)成矿岩体为燕山晚期花岗岩体,岩体的Si02含量较高(66.81~77.93%),A1203含量低(11.07~14.54%),显著贫镁,ALK较高(5.65~10.67%),K20/Na2O值在0.32~10.53,平均为2.26。稀土配分曲线呈右倾轻稀土富集型,铕强烈亏损,δEu值为0.03-0.24。富集高场强元素Zr.Hf和大离子亲石元素Rb.U.Th,而元素P、Ti、Ba、Sr明显亏损,具有与洋岛玄武岩相似的Y/Nb等元素比值(>1.2),具有典型的A1型板内非造山花岗岩特征。
     (3)同位素组成特征表明,黄岗岩体的(87Sr/86Sr)i值在0,70211~0.70729,εNd(t)值在-0.8~0.9,Nd模式年龄TDM介于855~993Ma;全岩Pb同位素206Pb/204Pb.207Pb/204Pb和208Pb/204Pb值介于18.974~26.107、15.554~15.914和38.894~39.890,铅具有混合来源特征;176Hf/177Hf比值介于0.282744~0.282922,εHf(t)值为1.9~18.3,两阶段Hf模式年龄(TDM2)变化范围为561-888Ma,年轻的Nd、Hf同位素模式年龄暗示本区晚元古代时期曾发生一次重要的地壳增生事件。岩浆源区来自起源于亏损地幔的初生下地壳物质的部分熔融,可能存在少量古老陆壳物质的混染。岩体的形成机制为:从俯冲洋壳析出流体交代的地幔楔或亏损地幔减压部分熔融作用形成的基性岩浆分离后,诱发岩石圈拆沉、幔源岩浆上涌和底侵,促使镁铁质的初生地壳物质重熔并不断分异演化,从而产生了大量花岗岩浆,其成因构造背景与区域盆岭构造格局相吻合。
     (4)电子探针分析结果显示,与成矿密切相关的夕卡岩体中石榴子石和辉石的矿物组分分别为Adr28.69-96.44GrS2.00~67.38(Prp+Sps)0.67~5.69和Di11.8~94.12Hd4.08~81.28Jo1.79~20.02,其较大的成分变化特征反映出了夕卡岩不是在一个完全封闭的平衡条件下形成的。角闪石大多为镁铁钙角闪石,个别属于铁角闪石,成分变化较大的原因可能是由于氧化还原条件的改变从而导致不同程度的AlⅥSi←→(Na, K)的置换作用,属于一种固相线下的转变趋势。角闪石中的四次配位的Si、Al,六次配位的Al、Ti和A位置的阳离子数变化范围很大,可能是由于接触交代作用过程中的岩浆的成分差异或结晶时的物理化学条件的改变所引起的。富锰的辉石夕卡岩是岩浆流体顺层间破碎带渗滤交代形成的,富锰辉石可作为本区寻找Sn、Cu、Zn等多金属的找矿标志,在外接触带夕卡岩和其附近的大理岩中是多金属成矿的有利部位。
     (5)流体包裹体研究表明,本区包裹体类型复杂,主要有硅酸盐熔融包裹体、富气相水溶液包裹体、富液相水溶液包裹体、含子矿物多相包裹体,富CO2包裹体,含C02多相包裹体,其中以富液相水溶液包裹体为主。成矿早阶段以硅酸盐熔融包裹体和H20-NaCl型包裹体为主,晚阶段出现少量CO2-H2O±CH4型包裹体和CO2-H2O-NaCl型包裹体。从早到晚的四个阶段均一温度分别为(257~432℃、>550℃)、322~403℃、202~304℃、153~221℃;盐度w(NaCleq)为(12.13~19.88%、>66.8%)、16.43~22.34%、1.74~14.77%、1.74~11.9%。流体包裹体的均一温度和盐度w(NaCleq)主要集中于220~432℃和1.74~22.34%,总体上属于高-中温、中-低盐度类型矿床。包裹体气相成分以C02及H20为主,其次为N2、O2和CH4,少量C2H2、C2H4和C2H6;液相成分中阳离子以Na+、K+为主,其次为Ca2+、Mg2+,阴离子以Cl-、SO42-为主,其次为F-,还含有少量Br-、NO3-,成矿流体体系属CO2-H2O-NaCl±CaCl2(KCl)体系。初始成矿流体由岩浆“初始沸腾”作用形成,流体减压沸腾、开放和相的分离和多次不混溶作用可能是成矿的主要原因。
     (6)H-O同位素示踪表明,不同成矿阶段脉石矿物σDV-SMOW变化很大,主要-116--73%o,平均-98%o,个别样品在-187~-182‰;Ⅰ-Ⅳ阶段δ18OH2O分别为7.4~9.8‰、-3.3~8.6‰、-6.0~4.9‰和-10.9~-1.6‰,说明成矿流体主要为岩浆水,后期存在大气降水混合和岩浆期后热液叠加成矿作用。矿石σ34SV-CDT值变化区间在-9.0~4.5‰,平均值-1.87‰,相对于地幔平均的δ34S变化范围更宽,表现出经过改造的混合硫的特征;辉钼矿Re同位素含量较高,变化范围209.7~300.6×10-6,平均260.5×10-6,远高于绝大多数辉钼矿Re的含量,表明黄岗矿床的成矿物质主要来源于地幔,存在部分地壳物质的加入;
     (7)采用LA-ICP-MS锆石U-Pb定年法获得成矿岩体中的钾长花岗岩和花岗斑岩分别形成于136.7±1.1Ma和136.8±0.57Ma,与磁铁矿共生的辉钼矿Re-Os等时线年龄135.3±0.70Ma,成岩成矿时代吻合,均发生在早白垩世,表明了两者具有密切的成因联系。成岩成矿年代学数据统计分析发现,大兴安岭地区成矿作用以中生代燕山期成矿为主,存在140-130Ma左右、180-160Ma左右的两次成矿爆发期,其中140-130Ma左右主要出现在岩石圈伸展减薄背景下,与燕山晚期侵入的小岩体有关的锡铅锌铜银多金属矿床;180-160Ma左右主要出现与燕山早期西伯利亚与华北板块后碰撞造山有关的钼铅锌铜金多金属矿床。黄岗锡铁矿床是在古太平洋板块俯冲大陆边缘弧后伸展环境下,发生的大规模成矿作用的产物。
     (8)综合上述详细的研究,对比了国内外较有代表性的以锡铁共生为主的矿床,建立了黄岗锡铁矿床的成矿模型,初步探讨了区域成矿规律。
The Huanggang Sn-Fe deposit in Inner Mongolia is one of the important large polymetallic deposits in the polymetallic belt of south Daxinganling, the largest tin-based multi-metal deposit in the north of the Yangtze River, and also it is the second largest iron deposit in Inner Mongolia Autonomous Region. In this paper, we choose Huanggang Sn-Fe deposit as a typical deposit to study, which were based on the full collection and summary of the previous studies. Through the methods and means as field investigation, electron microprobe analysis, major and trace elements component analysis, Sr-Nd-Pb-Hf isotopic tracer, fluid inclusion, stable isotope, etc., we mainly studied the aspects of the host rocks characterics, skarn bodies characterics, source of ore-forming material, source of ore-forming fluid, genesis of the deposit, mineralization process and metallogenic geodynamics background, etc, established the mineralization model of Huanggang deposit, preliminary discussed the regional metallogenic rule in the study area, the main achievements obtained were as follows:
     (1) Detailed field geological survey indicates that lower Permian Dashizhai Formation and Huanggangliang Formation are the main ore-hosting layers. Ore bodies are largely concordant with the bedding of the strata, and the distribution of the ore bodies is spatially related to skarn. Main types of ore minerals are major of laminated, massive skarn ores, followed by the banded, agglomerate ore produced in the marble, with clear contact lines between wall rocks and ore bodies. There are various types of ore minerals, commonly developed rock alteration, and skarns with obvious zoning. The formation of Huanggang deposit experienced a period composed of skarn phase, retrograde eroding phase, quartz sulfide phase and carbonate phase, among which the second and third phase are the main mineralization stages.
     (2) The deposit was temporally and specially related to the late Yanshanian granites, the Huanggang granites are characterized by SiO2 content (66.81~77.93%), Al2O3 content (11.07~14.54%), and significant depletion of magnesium, high ALK (5.65~10.67%), the K2O/Na2O values format a range of 0.32 to 10.53, averaging 2.26. The chondrite-nomalised REE pattern shows LREE enrichment, strong negative Eu anomalies, and 8Eu at 0.03 to 0.24. The high field strength elements such as Zr, Hf and lithophile elements such as Rb, U and Th are enriched, whereas the elements P, Ti, Ba and Sr are significantly depleted and their have similar Y/Nb values(>1.2) to those of oceanic island basalts. These features are coincident with the typical A1 within-plate anorogenic granite.
     (3) The isotopic composition characteristics show that (87Sr/86Sr)i values of the Huanggang granites range from 0.70211 to 0.70729, theεNd(t) values and Nd model ages(TDM) vary from-0.8 to 0.9 and 855 to 993 Ma respectively; The whole rock Pb isotope values are relatively high, the 206Pb/204Pb values range from18.974 to 26.107, with 207Pb/204Pb values between 15.554 and 15.914, and 208Pb/204Pb values between 38.894 and 39.890, which suggested the lead with a mixed source; The 176Hf/177Hf values range from 0.282744 to 0.282922, with the correspondingεHf(t) values ranging from 1.9 to 18.3, and Hf model ages (TDM2) from two-stage between 561 and 888Ma, young Nd, Hf isotope model ages imply that this area took place an important crustal growth event during the late Proterozoic. The Huanggang granites derived from the partial melting of newborn lower crust originated from depleted mantle, and maybe with the contamination of a small amount ancient continental crust. We conclude that the formation mechanism of Huanggang granites as following:the separation of mafic magma, produced from the partial melting of mantle wedge metasomatized by the precipitated fuilds from subducted oceanic crust or the decompressed depleted mantle, could induce lithospheric delamination, mantle upwelling and magma underplating, which promoted the remelting, differentiation and continued evolution of mafic primary crust, resulting in a large number of granitic magma, and its geodynamic setting was consistent with the regional Basin and Range tectonic setting.
     (4) Electron microprobe analyses showing that the components of garnet and pyroxene are Adr28.69~96.44Grs2.00~67.38(Prp+Sps)0.67~5.69 and Di11.8~94.12Hd4.08~81.28JO1.79~20.02, respectively, their large range of composition character reflects that skarns were not formed under the totally enclosed equilibrium condition. The amphibole mostly belong to magnesium-ferric-calcium amphibole, only some individuals are ferric-hornblende, larger change of composition is probably due to the change of redox conditions resulting in different degrees of AlⅥSi←→(Na, K) displacement, which belongs to the transforming tendency under solidus. Tetrahedral Si, Al, octahedral Al, Ti and cations in A site of amphibole change greatly, which may be caused by the composition difference of the magma in contact metasomatic process or the change of physicochemical condition during crystallizing. Mn-enriched pyroxene skarns were formed by infiltration metasomatism of magmatic fluid along fracture zones between layers, Mn-rich pyroxene could be the indications for looking for Sn, Cu, Zn and many other metal ores in this area, and the outer contact zone of skarn and its vicinal marble is the favorable position for polymetallic mineralization.
     (5) Fluid inclusion studies show that the inclusion types of Huanggang deposit were complex, mainly of silicate melt inclusions, vapor-rich liquid inclusions, liquid-rich liquid inclusions, daughter mineral-bearing inclusions, CO2-rich inclusions and CO2-bearing mutiphase inclusions, in which the liquid-rich inclusions as the main. Inclusions in early mineralization phase mostly contain silicate melt inclusions and H2O-NaCl type inclusions, a small amount of CO2-H2O±H4 type inclusions and CO2-H2O-NaCl type inclusions occurs in late mineralization phase. Homogenization temperatures of four phases from early till late are (257~432℃,>550℃),322~403℃,202~304℃,153~221℃respectively; salinities are (12.13~19.88%,>66.8%),16.43~22.34%,1.74~14.77%,1.74~11.9% respectively. Homogeneous temperature and salinity of ore-forming fluid concentrated in 220~432℃and 1.74~22.34%, which belong to the deposit type of medium-high temperature and medium-low salinity. Gas composition of fluid inclusions mostly contain CO2 and H2O, followed by the N2, O2, and CH4, a small amount of C2H2, C2H4 and C2H6; cation of liquid composition mostly contain Na+, K+, followed by Ca2+, Mg2+, while anions with Cl-, SO42- as major, followed by the F-, and also contain a small amount of Br-, NO3-. Buck boiling and phase separation of fluid as well as fluid mixing may be the main reasons of mineralization.
     (6) H-O isotopic tracing show that 8Dv-smow values of gangue minerals in different mineralization stages vary greatly, mainly of -116~-73‰, averaging -98‰, the individual samples range from-182‰to -187‰.δ18OH2O values ofⅠtoⅣstage were 7.4~9.8‰、-3.3~8.6%‰、-6.0~4.9‰and -10.9~-1.6‰, respectively, which indicate that the ore-forming fluids were mainly of magmatic water, there also being meteoric water mixing and post-magmatic hydrothermal superimposed mineralization.δ34SV-CDT values of ore minerals range from -9.0~4.5‰, averaging -1.87‰, which have wider range relative to the averageδ34S values of mantle, showing a mixture character of sulfur through transformation effect; Re isotopic content of molybdenites were high, change range of 209.7~300.6×10-6, an average of 260.5×10-6, which were far higher than the Re contents of most molybdenites, indicating that the ore-forming minerals of Huanggang deposit were mainly came from the mantle and having a part of the crustal material added.
     (7) LA-ICP-MS zircon U-Pb dating results show that the K-feldspar granite and granite-porphyry in the Huanggang rocks were formed at 136.7±1.1Ma and 136.8±0.57Ma, respectively. Re-Os isotopic dating of the molybdenites symbiosis with magnetites obtained isochron age of 135.3±0.70Ma. The host rock and mineralization ages of Huanggang deposit were consistently, both occurred in early Cretaceous, suggesting that their have a close genetic relationship. Ore-forming ages data statistical analysis show that the mineralization of the Da Hinggan Mts. area were mainly in Mesozoic Yanshanian, there are two ore-forming eruptive periods, i.e., c.140-130 Ma and 180~160 Ma, while the tin-lead-zinc-copper-silver polymetallic deposits related with the small intrusion in Yanshanian under lithospheric extensional and thinning environment mainly occurred in c.140~130 Ma; the molybdenum-lead-zinc-copper-aurum polymetallic deposits related with the post-collision orogeny of Siberia plate and North China plate in early Yanshanian mainly occurred in c.180~160Ma. Huanggang tin-iron deposit is the product of large-scale mineralization under the paleo-Pacific plate subduction environment.
     (8) Based on the detailed study described above, we compared the typical deposits coexisting with tin and iron at home and abroad, established the metallogenic mode of the Huanggang tin-iron deposit, and preliminary discussed the regional metallogenic rule in the study area.
引文
Ahmed Z and Hariri MM.2006. Formation and mineral chemistry of a calcic skarn from Al-Madhiq, SW Saudi Arabia. Chemie der Erde Geochemistry,66:187-201
    Aksyuk AM.1991. Physic-chemical conditions of the formation of skarns of the magmatic stage. Skarns-their genesis and metalogeny. Athens:Theophrascus Publications S. A.,593-617
    Amelin Y, Lee DC, Halliday AN and Pidgeon RT.1999. Nature of the earth's earliest crust from hafnium isotopes in single detrial zircon. Nature,399:252-255
    Amelin Y, Lee DC and Halliday AN.2000. Early-Middle Archean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta,64:4205-4225
    Atkinson WW and Einaudi MT.1978. Skarn formation and mineralization in the contact Aureole at Carr Fork, Bingham, Utah. Economic Geology,73:1326-1365
    Baker ET, McDuff RE and Massoth GJ.1990. Hydrothermal venting from the summit of a ridge axis seamount:Axial voleano, Juan de Fuca Ridge. J. GeoPhys. Res,95(12):843-854
    Baker T and Lang JR.2003. Reconciling fluid inclusions, fluids process and fluid source in skarns:An exaample from the Bismark skarn deposit, Mexico. Mineralium Deposita,38:474-495
    Baker T, Achterberg EV, Ryan CG and Lang JR.2004. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology,32:117-120
    Barnes HL.1979. Solubilities of ore minerals. In:Geochemistry of Hydrothermal Ore Deposits.2nd edition. Barnes HL ed., J. Wiley and Sons, New York,404-460
    Berg R.1991. Tungsten skarn mineralization in a regional metamorphic terrain in northern Norway:a possible metamorphic ore deposit. Mineral Deposits,26:281-289
    Blichert-Toft J and Albarede F.1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett.,148:243-258
    Bodnar RJ.1983. A method of calculating fluid inclusion volumes based on vapor bubble diameters and PVTX properties of inclusion fluids. Econ Geol,78:535-542
    Bonin B.2007. A-type granites and related rocks:Evolution of a concept, problems and prospects. Lithos, 97:1-29
    Bottinga Y and Javoy M.1975. Oxygen isotope partitioning among the minerals in igneous and metamorphic rocks. Reviews of Geophysics and Space Physics,23:401-418
    Bozzo AT, Chen JR and Barduhn.1973. The propeties of hydrates of chlorine and carbon dioxide. In: Delyannis A, Delyannis E (eds). Fourth International Symposium on Fresh Water from the Sea,3: 437-451
    Briqueu L, Bougault H and Joron JL.1984. Quantification of Nb, Ta, Ti and V anomalies in magmas associate with subduction zones:Petrogenetic implications. Earth and Planetary Science Letters,68(2): 297-308
    Buicka IS and Cartwright I.2000. Stable isotope constraints on the mechanism of fluid flow during contact metamorphism around the Marulan Batholith, NSW, Australia. Journal of Geochemical Exploration, 69-70:291-295
    Calagari AA.2004. Fluid inclusion studies in quartz veinlets in the porphry copper deposit at Sungun, East-Azarbaidjan, Iran. Journal of Asian Earth Sciences,23:179-189
    Canals A and Cardellach E.1997. Ore lead and sulphur isotope pattern from the low-temperature veins of the Catalonian Coastal Ranges (NE Spain). Mineralium Deposita,32:2343-2349
    Choi SG, Kimb ST, Lee JG.2003. Stable isotope systematics of Ulsan Fe-W skarn deposit, Korea. Journal of Geochemical Exploration,78-79:601-606
    Choi SG, Kwon ST, Ree JH, So CS and Pak SJ.2005. Origin of Mesozoic gold mineralization in South Korea. The Island Arc,14:102-114
    Clayton RN and Mayeda TK.1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta,27:43-52
    Cline JS.2003. How to concentrate copper. Science,302(5653):2075-2076
    Coleman ML, Sheppard TJ, Durham JJ, Rouse JE and Moore GR.1982. Reduction of water with zinc for hydrogen isotope analysis. Analytical Chemistry,54:993-995
    Collins WJ, Beams SD, White AJR and Chappell BW.1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol.,80:189-200
    Costa S and Rey P.1995. Lower crystal rejuvenation and growth during post-thickening collapse:Insights from a crustal cross section through a Variscan metamorphic core complex. Geology,23:905-908
    Creaser RA, Price RC and Wormald RJ.1991. A-type granites revisited:Assessment of a residual-source model. Geology,19:163-166
    Davis GA, Xu B, Zheng YD and Zhang WJ.2004. Indosinian extension in the Solonker suture zone:The Sonid Zuoqi metamorphic core complex, Inner Mongolia, China. Earth Science Frontiers,11:135-144
    Deer WA, Howie RA and Zussman J.1993. Rock-forming Minerals, vol.4A. Framework Silicates: Feldspars. Geological Society. London,972
    Defant MJ and Drummond MS.1990. Derivation of some modern are magmas by melting of young subducted lithosphere. Nature,347:662-665
    Delay EE and DePaolo DJ.1992. Isotopic evidence for lithospheric thinning during extension: Southeastern Great Basin. Geology,20:104-108
    Desborough GA and Sainsbury CL.1970. Cassiterite as an exsolution product in magnetite, Lost River mine, Alaska. Econ. Geol.,65 (8):1004-1006
    Dobretsov NL, Berzin NA and Buslov M.1995. Opening and tectonic evolution of Palco-Asian Ocean. Inter. Geol. Rew.,37:335-360
    Du AD, Wu SQ, Sun DZ, Wang SX, Qu WJ, Stein HJ, Morgan J and Malinovskiy D.2004. Preparation and certification of Re-Os dating reference materials:Molybdenite HLP and JDC. Geostandard and Geoanalytical Research,28 (1):41-52
    Du YS, Lee H and Qin XL.2004. Underplating of Mesozoic mantle-derived magmas in Tongling, Anhui Province:Evidence from megacrysts and xenoliths. Acta Geologica Sinica,78(1):131-136
    Eby GN.1990. The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos,26:115-134
    Eby GN.1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology,20:641-644
    Einaudi MT.1975. Graphical analysis of some skarn assemblages in the system Ca-Fe-Mg-Si-H2O-CO2-O2. Ecos(Am. GeoPhys. Union Trans.),56:1081
    Einaudi MT, Meinert LD and Newberry RJ.1981. Skarn deposits. Economic Geology,75th Anniv. Vol: 317-391
    Einaudi MT and Burt DM.1982. Introduction, terminology, classification and composition of skarn deposits. Economic Geology 77:745-754
    Elhlou S, Belousova E, Griffin WL, Pearson NJ and O'Reilly SY.2006. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim. Cosmochim. Acta, (Suppl.), A158
    Ellam RM.1992. Lithospheric thickness as a control on basalt geochemistry. Geology,20:153-156
    Fan WM, Guo F, Wang YJ and Lin G.2003. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China. Journal of Volcanology and Geothermal Research,121:115-135
    Fleet AJ.1983. Hydrothermal and hydrogenous ferro-manganess deposits:do they form a continent?. Rona PA. The Rare Earth Element Evidence in Hydrothermal Processes at Seafloor Spreading Center. New York:Plenum Press,535-555
    Friedman I and O'Neil JR.1977. Complication of stable isotope fractionation factors of geochemical interest in data of geochemistry. In:Fleicher M, ed. Geological professional paper. U. S. Geological Survey.6th ed.440p
    Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ and Frost CD.2001. A geochemical classification for granitic rocks. J. Petrology,42:2033-2048
    Gaeta M, Rocco TD and Freda C.2009. Carbonate assimilation in open magmatic systems:the role of melt-bearing skarns and cumulate-forming processes. Journal of Petrology,50(2):361-385
    Galal H and El Habaak.2004. Pan-African skarn deposits related to banded iron formation, U m Nar area, central Eastern Desert, Egypt. Journal of African Earth Sciences,38:199-221
    Gamo T, Ishibashi JI, Hitoshi SK and Tilbrook B.1987. Methane anomalies in seawater above the Loihi submarine summit area, Hawaii. Geochimica et Cosmochimica Acta,51(10):2857-2864
    Gaspar LM and Inverno CMC.2000. Mineralogy and metasomatic evolution of distal strata-bound scheelite skarns in the Riba de Alva Mine, Northeastern Portugal. Econ. Geol.95:1259-1275
    Gaspar M, Knaack C, Meinert LD and Moretti R.2008. REE in skarn systems:A LA-ICP-MS study of garnets from the Crown Jewel gold deposit:Geochimica et Cosmochimica Acta,77:185-205
    Ge WC, Wu FY, Zhou CY and Rahman AA.2005. Emplacement age of the Tahe granite and its constraints on the tectonic nature of the Ergun block in the northern part of the Da Hinggan Range. Chinese Science Bulletin,50(18):2097-2105
    Geijer P and Magnusson NH.1952. The iron ores of Sweden:19th International Geolgoical Congress, Algiers,2:477-499
    Gilg HA, Lima A, Somma, et al.2001. Isotope geochemistry and fluid inclusion study of skarns from Vesuvius. Mineralogy and Petrology,73:145-176
    Goldschmidt VM.1922. On the metasomatic processes in silicate rocks. Econ. Geol.,17:105-123
    Graham SA, Hendrix MS, Johnson CL, et al.2001. Sedimentary record and tectonic implications of Mesozoic rifting in southeast Mongolia. Geol Soc Am Bull,113:1560-1579
    Green TH.1980. Island arc and continent-building magamatism:A review of petrogenetic models based on experimental petrology and geochemistry. Tectonophysics,63:367-385
    Green TH.1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology,120:347-359
    Grigoryev NA, Sazonov, Murzin VV and Gladkovskiy.1990. Sulfides as gold carriers in skarn magnetite deposit skarns and ores. Geochemical International,27:142-146
    Guy B.1988. Contribution a l'etude des skarrts de Costabonne (Pyrenees Orintales, France) et a la theorie de la zonation metasomatique. These de Doct. Et Sciences, Universite P. and M. Curie, Paris:982
    Hall DL, Sterner SM and Bodnar RJ.1988. Freezing point depression of NaCl-KCl-H2O solutions. Economic Geology,83:197-202
    Han BF, Wang SG, Jahn BM, Hong DW, Kagami H and Sun YL.1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China:Geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chem Geol,138:135-159
    Hassanen MA.1997. Post-collision, A-type granites of Hormrit Waggal Complex, Egypt:petrological and geochemical constraints on its origin. Precambrian Research,82:211-236
    Heinrich CA.2007. Fluid-fluid interactions in magmatic-hydrothermal ore formation. Reviews in Mineralogy and Geochemistry,65(1):363-387
    Hezarkhani A.2006. Hydrothermal evolution of the Sar-Cheshmeh porphry Cu-Mo deposit, Iran:Evidence from fluid inclusions. Journal of Asian Earth Seiences,28:409-422
    Hoefs J.1997. Stable isotope geochemistry.4rd ed. Berlin:Spring Verlag,1-250
    Hofmann AW.1988. Chemical differentiation of the Earth:The relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett.,90:297-314
    Horibe Y, Kim KR and Craig H.1986. Hydrothermal methane plumes in the Mariana back-arc spreading centre. Nature,324(6093):131-133
    Hoskin PWO and Black LP.2000. Metamorphic zircon formation by solidstate recrystallization of protolith igneous zircon. J. Metamorph Geol,18:423-439
    Huchinson RW.1979. Exhalative genetic evidences on Tasmania tin deposit. CIM Bulletin, vol.72
    Ishiyama D, Sato R, Mizuta T, Ishikawa Y and Wang JB.2001. Characteristic features of tin-iron-copper mineralization in the Anle-Huanggangliang mining area, Inner Mongolia, China. Resource Geology, 51(4):377-392
    Ishihara D, Mizuta T, Ishikawa Y, Wang JB, Wang YW and Wang LJ.2001. Geochemical characteristics of igneous rocks and tin-copper mineralization. Project Final Report of Chinese Research Center for Mineral Resources Exploration,4:115-138
    Jahn BM, Wu FY, Lo CH and Tsai CH.1999. Crust-mantle interaction induced by deep subduction of the continental crust:geochemical and Sr-Nd isotropic evidence from post-colloisional mafic-ultramafic intrusion of the northern Dabie complex, central China. Chem. Geol.157:119-146
    Jahn BM, Wu FY and Chen B.2000. Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes,23:82-92
    Jahn BM, Wu FY, Capdevila R, Fourcade S, Wang YX and Zhao ZH.2001. Highly evolved juvenile granites with tetrad REE patterns:the Woduhe and Baerzhe granites from the Great Xing'an (Khingan) Mountains in NE China. Lithos,59:171-198
    Jamtveit B, Wogelius RA and Fraser DG.1993. Zonation patterns of skarn garnets:records of hydrothermal system evolution:Geology,21:113-116
    Johnson AW, Shelton KL, Gregg JM, Somerville ID, Wright WR and Nagy ZR.2009. Regional studies of dolomites and their included fluids:Recognizing multiple chemically distinct fluids during the complex diagenetic history of lower Carboniferous (Mississippian) rocks of the Irish Zn-Pb ore field: Mineralogy and Petrology, DOI 10.1007/s00710-008-0038-x
    Kamvong T and Zaw K.2008. The origin and evolution of skarn-forming fluids from the Phu Lon deposit, northern Loei Fold Belt, Thailand:Evidence from fluid inclusion and sulfur isotope studies. Journal of Asian Earth Sciences,34:624-633
    Karimazadeh SA and Moayyed M.2002. Granite and gabbrodiorite-associated skarn deposits of NW Iran. Ore Geology Reviews,20:127-138
    Kemp AIS and Hawkesworth CJ.2003. Granitic perspectives on the generation and secular evolution of the continental crust. Treatise Geochem,3:349-410
    King PL, White AJR, Chappell BW, et al.1997. Characterization and origin of alumious A-type from the lachlan fold belt, southeastern Australia. Journal of Petrology,38(3):371-391
    Kovalenko VI, Yarmolyuk VV, Kovach VP, Kotov AB, Kozakov IK and Sal'nikova EB.1996. Sources of Phanerozoic granitoids in Central Asia:Sm-Nd isotope data. Geochem Inter,34:628-640
    Kuscu I, Gencalioglu-Kuscu G, Sarac C, et al.2004. An approach to geochemical characterization of productive versus barren granitoids in terms of iron in Central Turkey. Journal of Asian Earth Sciences, 24:311-325
    Kuzmin ML, Abramovich GYA, Dril SL and Kravchisky VYA.1996. The Mongolian-Okhotsk suture as the evidence of late Paleozoic-Mesozoic collisional processes in Central Asia. Abstract of 30th IGC, Vol.1, pp261
    Kwak TAP.1987. W-Sn skarn deposits and related metamorphic skarns and granitoids. Elesvier, Amsterdam
    Kwon ST, Tilton GR, Coleman RG and Feng Y.1989. Isotopic studies bearing on the tectonics of the west Junggar region, Xinjiang, China. Tectonics,8:719-727
    Kyser KT.1986. Stable isotope variations in the mantle. In:Valley JW, Taylor HP, O'Neil JR (eds.). Stable isotopes in high temperature geological processes, Reviews in Mineralogy 16. Washington:Mineral. Soc. Am.,141-164
    Landenberger B and Collins WJ.1996. Deribation of A-type granites from a dehydrated charnockitic lower crust:Evidence from the Chaelundi Complex, Eastern Austalia. J. Petrol.,37:145-170
    Lanfranchini ME, Barrio RE and Etcheverry.2007. Geology and chemistry of the El Abuelo calcic Fe-skarn and related Cu-(Ag)-bearing hydrothermal veins, Chubut province, Southern Argentina. Exploration and Mining Geology,16(3~4):145-158
    Le Maitre RW.1976. Some problems of the projection of chemical data into mineralogical classifications. Contrib. Mineral. Petrol.,56:181-189
    Leake BE, Wolley AR and Arps CES.1997. Nomenclature of amphiboles:report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Mineral and Mineral Names. American Mineralogist,82:1019-1037
    Leake BE, Woolley AR, Birch WD, et al.2004. Nomenclature of amphiboles:additions and revisions to the International mineralogical association's amphibole nomenclature. Mineralogical Magazine,68(1): 209-215
    Lindgren W.1933. Mineral Deposits.4th eds.,930
    Li JW, Zhao XF, Zhou MF, et al.2008. Origin of the Tongshankou porphyry-skarn Cu-Mo deposit, eastern Yangtze craton, Eastern China:geochronological, geochemical and Sr-Nd-Hf isotopic constraints. Mineral Deposita,43:315-336
    Li JY.2006. Permian geodynamic setting of Northeast China and adjacent regions. Closure of the Paleo-Asian Earth Sciences,26(3~4):207-224
    Lilley MD, de Anglis MA and Gordon LI.1982. CH4, H2, CO and N2O in submarine hydrothermal vent waters. Nature,300(5887):48-50
    Liu JM, Ye J, Zhang AL, et al.2001a. A new exhalite type—Siderite-sericite chert formed in fault-controlled lacustrine basin, Science in China (Series D),44:408-415
    Liu JM, Ye J, Li Y, et al.2001b. A preliminary study on exhalative mineralization in Permian basins, the southern segment of the Da Hinggan Mountains, China—Case studies of Huanggang and Dajing deposits. Resource Geology,51:345-358
    Liu W, Siebel W, Li XJ and Pan XF.2005. Petrogenesis of the Linxi granitoids, northern Inner Mongolia of China:constraints on basaltic underplating. Chem Geol,219:5-35
    Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB.2009. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, doi:10.1093/petrology/egp082
    Loiselle MC and Wones DR.1979. Characteristics and origin of anorogenic granites. Soc. Am. Abstr. Prog., 11:468
    Lu HZ, Liu YM, Wang CL, et al.2003. Mineralization and fulid inclusion study of the Shizuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China. Econ. Geol.98:955-974
    Magnusson NH.1960. Iron and sulfide ores of central Sweden.21th IGC, Copenhagen, Excursion Guides A26 and C21,1-48
    Mao JW, Li Hongyan, Shinazaki H, Raibault L and Guy B.1996. Geology and metallogeny of the Shizhuyuan skarn-greisen deposit, Hunan Province, China. International Geology Review,38: 1020-1039
    Mao JW, Zhang Z, Zhang Z and Du AD.1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W(Mo) deposit in the northern Qulian Mountains and its geological significance. Geochim. Cosmochim. Acta,63:1815-1818
    Mao JW, Wang YT, Ding TP, et al.2002. Dashuiguo tellurium deposit in Sichuan province, China:S, C, O and H isotope data and their implications on hydrothermal mineralization. Resource Geology,52: 15-23
    Mao JW, Wang YT, Lehmann B, Yu JJ, Du AD, Mei YX, Li YF, Zang WS, Stein HJ and Zhou TF.2006. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications. Ore Geology Review,29:307-324
    Mao JW, Xie GQ, Bierlein F, Qu WJ, Du AD, Ye HS, Pirajno F, Li HM, Guo BJ, Li YF and Yang ZQ. 2008a. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochim. Cosmochim. Acta,72(18):4607-4626
    Mao JW, Wang Y T, Li HM, Pirajno F, Zhang CQ and Wang RT.2008b. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula:evidence from D-O-C-S isotope systematics. Ore Geology Reviews,33:361-381
    Mao JW, Xie GQ, Pirajno F, Ye HS, Wang YB, Li YF, Xiang JF and Zhao HJ.2010. Late Jurassic-early cretaceous granitoid magmatism in Eastern Qinling, central-eastern China:SHRIMP zircn U-Pb ages and tectonic implications. Australian Journal of Earth Sciences,57:51-78
    Marchig V, Gundlach H, Moller P, et al.1982. Some geochemical indicators of discrimination between diagenetic and hydrothermal met alliferous sediments. Marine Geology,50:241-256
    Martin H.1999. Adakitic magmas:Modern analogues of Archaean granitoids. Lithos,46:411-429
    McCrea M.1950. The isotopic chemistry of carbonates and a paleotem-perature scale. J. Chem. Phys.,18: 849-857
    McKenzie DP and Bickle MJ.1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology,32:625-679
    Mehmet Ahunbey and Ahmet Sagiroglu.2003. Skarn-type ilmenite mineralization of the Tuzbas, i-Tunceli region, eastern Turkey. Journal of Asian Earth Sciences,21:481-488
    Meinert LD.1984. Mineralogy and petrology of iron skarns in western British Columbia, Canada. Economic Geology,79:869-882
    Meinert LD.1992. Skarns and skarn deposits. Geoscience Canada,19 (4):145-162
    Meinert LD.1993. Igneous petrogenesis and skarn deposits. Geol. Assoc. Canada Spec. Pap.,40:569-583
    Meinert LD, Hefton KK, Mayes D, et al.1997. Geology, zonation and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg District, Irian Jaya. Economic Geology,92:509-534
    Meinert LD.1998. A review of skarn that contain gold. In:Lentz DR. eds. Mineralized intrusion-related skarn systems. Quebec. Short Course Series,26:359-414
    Meinert LD, Lentz DR, Newberry RJ.2000. Special issue devoted to skarn deposits. Economic Geology, 95(6):1183-1184
    Meinert LD, Dipple GM and Nicolescu S.2005. World skarn deposits. Economic Geology,100th Anniversary Volume,299-236
    Meng E, Xu WL, Pei FP, et al.2010. Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China:Implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt. Tectonophysics,485(1/4):42-51
    Meng QR.2003. What drove late Mesozoic extension of the northern China-Mongolia tract? Tectonophysics,369:155-174
    Miao LC, Fan WM, Liu DY, et al.2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex:Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences,32:348-370
    Misra KC.2000. Understanding mineral deposits. Kluwer Academic Publishers, Dordrecht, The Netherlands
    Mozley PS and Wersin P.1992. Isotopic composition of siderite as an indicator of depositional environment. Geology,20 (9):817-820
    Nakano T, Yoshino T, Shimazaki H, et al.1994. Pyroxene composition as an indicator in the classification of skarn deposits. Econ. Geol.,89 (7):1567-1580
    Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ.2008. Zircon M257:A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research,32:247-265
    Ngounouno I, Deruelle B and Demaiffe D.2000. Petrology of the bimodal Cenozoic volcanism of the Kapsiki plateau (northernmost Cameroon, Central Africa). J Volcano Geother Res,102(1-2):21-44
    Nojiri YJ, Ishibashi JI, Kawai TY, Otsuki A and Sakai H.1989. Hydrothermal plumes along the North Fiji Basin spreading axis. Nature,342(6250):667-670
    O'Neil JR, Clayton RN and Mayeda TK.1969. Oxygen isotope fractionation in divalent metal carbonates. J. Chem.Phys.,51:5547-5558
    Oen IS, De Maesschalck AA and Lustenhouwer WJ.1986. Mid Proterozoic exhalative sedimentary Mn skarns containing possible microbial fossil, Grythyttan, Bergslangen, Sweden. Econ. Geol.,81: 1533-1543
    Ohmoto H and Rye RO.1979. Isotopes of sulfur and carbon. In:Geochemistry of Hydrothermal Ore Deposit.2nd edition. Barnes HL ed., J. Wiley and Sons, New York,509-567
    Ozturk YY, Helvaci C and Satir Muharrem.2008. The influence of meteoric water on skarn formation and late-stage hydrothermal alteration at the Evciler skarn occurrences, Kazda?, NW Turkey. Ore Geology Reviews,34(3):1-14
    Patino Douce AE.1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology,25:743-746
    Pearce JA, Harria NBW and Tindle AG.1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petro.,25:956-983
    Petro WL, Vogel TA and Wilband JT.1979. Major-element chemistry of plutonic rock suites from compressional and extensional plate boundaries. Chemical Geology,26:217-235
    Poli GE and Tommasini S.1991. Model for the origin and significance of microgranular enclaves in calc-alkaline granitoids. J Petrol,32(3):657-666
    Purtov VK, Kholodnov VV, Anfilogov VN, et al.1989. The role of chlorine in the formation of magnetite skarns:International Geology Reviews,31:63-71
    Ray GE and Webster ICL.1997. Skarns in British Columbia. British Columbia Geological Survey Branch Bull,101:1-260
    Rickwood PC.1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos,22(4):247-263
    Ringwood AE.1990. Slab-mantle interactions:3. Petro-genesis of intraplate magmas and structure of the upper mantle. Chemical Geology,82:187-207
    Roedder E.1984. The fluids in salt. American Mineralogist,69:413-439.
    Rollinson HR.1993. Using geochemical data:Evaluation, presentation, interpretation. New York:Longman Scientific and Technical Limited,1-343
    Sakai H, Des Maeais DJ, Ueda A and Moore JG.1984. Concentrations and isotope ratios of carbon, nitrogen, and sulfur in ocean-floor basalts. Geochim. Cosmochim. Acta,48:2433-2442
    Selby D and Creaser RA.2001. Re-Os geochronology and systematicsin molybdenite from the Endako Porphyry Molybdenum Deposit, British Columbia, Canada. Economic Geology,96:197-204
    Sengor AMC, Natal'in BA and Burtman VS.1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature,364(6435):299-307
    Sengor AMC and Natalm BA.1996. Paleotectexues of Asia:Fragments of a synthesis. In the tectonic evolution of Asia, ed A Yin. TM Harrison. Cambridge University Press New York,486-640
    Shao JA, Mu BL, He GQ, et al.1997. Geological effects in tectonic superposition of Paleo-Pacific domain and Paleo-Asian domain in northern part of north China. Science in China (Series D),40(6):634-640
    Shao JA, Mu BL and Zhang L.2000. Deep geological process and its shallow response during Mesozoic transfer of tectonic framework in eastern North China. Geol. Rev.46:32-40
    Shao JA, Liu F, Chen H, et al.2001. Relationship between Mesozoic magmatism and subduction in Dahingganling and Yanshan areas. Acta Geol. Sin.75:56-64
    Shepherd SMF, Rakin AH and Alderton DHM.1985. A practical guide to fluid inclusion studies. Blackie & Son Limited,1-154
    Sheppard SMF.1986. Characterization and isotopic variations in natural waters. Reviews in Mineralogy,16: 165-183
    Shimizu M and Masuda A.1977. Cerium in cherts as an indication of marine environment of its formation. Nature,266:346-348
    Shimizu M and Iiyama JT.1992. Zinc-Lead skarn deposits of the Nakatatasu mine, Central Japan. Economic Geology,77(4):1000-1012
    Shirey SB and Walker RJ.1995. Carius tube digestion for low-blank rhenium-osmium analysis. Analytical Chemistry,67:2136-2141
    Skinner BJ.1979. The many origins of hydrothermal mineral deposits. Geochemistry of hydrothermal ore deposits. New York:John Wiley & Sons,1-12
    Skjerlie KP and Johnston AD.1993a. Fluid-absent melting behavior of an F-rich tonalitic geneiss at mid-crustal pressures:Implications for the generation of anorogenic granites. J. Petrol.,34:785-815
    Skjerlie KP and Johnston AD.1993b. Vapor-absent melting at lOkbar of a biotite-and amphibole-bearing tonalitic genesis:Implications for the generation of A-type granites. Geology,20:263-266
    Slama J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar J M, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ.2008. Plesovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology,249:1-35
    Slaughter J, Kerrick DM and Wall WJ.1975. Experimental and thermodynamic study of equilibriain the system CaO-MgO-SiO2-O-CO2. Am.Jour. Sei.275:143-162
    Smoliar MI, Walker RJ and Morgan JW.1996. Re-Os ages of group IIA, IIIA, IVA and VIB iron meteorites. Science,271:1099-1102
    Soderlund U, Patchett PJ, Vervoort JD and Isachsen EC.2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Plant. Sci. Lett.,219: 311-324
    Souza Neto JA, Legrand JM, Volfinger M, et al.2008. W-Au skarns in the Neo-Proterozoic serido mobile belt, Borborema province in northeastern Brazil:An overview with emphasis on the Bonfim deposit. Miner Deposita,43:185-205
    Stanton RL.1987. Constitutional features and some exploration implications of three zinc-bearing stratiform skarns of eastern Australia. Trans. Instn. Min. Metall. (Sect. B:Appl. Earth Sci.),96:37-57
    Stein HJ, Markey RJ, Morgan JW, Hannah JL and Schersten A.2001. The remarkable Re-Os chronometer in molybdenite:How and why it works. Terra Nova,13:479-486
    Stein HJ, Scherst NA, Hannah J and Markey R.2003. Subgrain-scale decoupling of Re and 187Os and assessment of laser ablation ICP-MS spot dating in molybdenite. Geochimica et Cosmochimica Acta, 67:3673-3686
    Sun SS and McDonough F.1989. Chemical and isotopic systematics of oceanic basalt:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Spec. Publ. Geol. Soc. Lond.,42:528-548
    Suzuki K, Kagi H, Nara M, Takano B and Nozaki Y.1996. Experimental alteration of molybdenite: Evaluation of the Re-Os system, infrared spectroscopic profile and polytype. Geochimi. Cosmochimi. Acta,64:223-232
    Sylvester PJ.1989. Post-collisional alkaline granites. Journal of Geology,97:261-280
    Taylor HP.1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposit. Econ. Geol.,69:843-883
    Taylor RG.1983. Geology of tin deposit. Geological Publishing House,4-12
    Tepley FJ, Davidson JP, Tilling RI, Arth JG.2000. Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichon Volcano, Mexico. J Petrol,41(9):1397-1411
    Vallance J, Fontbote L, Chiaradia M, Markowski A, Schmidt S and Vennemann.2009. Magmatic-dominated fluid evolution in the Jerassic Nambijia gold skarn deposits(southeastern Ecuador). Miner Deposita,44:389-413
    Vervoort JD, Pachelt PJ, Gehrels GE and Nutman AP.1996. Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature,379:624-627
    Vervoort JD, Patchett PJ, Blichert-Tofl J and Albarede F.1999. Relationships between Lu-Hf and Sm-Nd isotope systems in the global sedimentary systems. Earth and Planetary Science Letters,168:79-99
    Vidal C, Injoque-Espinoza J, Sidder GB, et al.1990. Amphibolitic Cu-Fe skarn deposits in the central coast of Peru. Economic Geology,85:1447-1461
    Vinogradov AP.1962. Average content of chemical elements in the chief typrs of igneous rocks of the crust of the Earth. Geokhimia,7:555-571
    Wan B, Ernst H, Zhang LC, et al.2009. Rb-Sr geochronology of chalcopyrite from the Chehugou porphyry Mo-Cu deposit (Northeast China) and geochemical constraints on the origin of hosting granites. Economic Geology,104:351-363
    Wang F, Zhou XH, Zhang LC, et al.2006. Late Mesozoic volcanism in the Great Xing'an Range (NE China):Timing and implications for the dynamic setting of NE Asia. Earth and Planetary Science letters,251:179-198
    Wang F, Zhou XH, Zhang LC, et al.2006. Late Mesozoic volcanism in the Great Xing'an Range (NE China):Timing and implications for the dynamic setting of NE Asia. Earth and Planetary Science letters,251:179-198
    Wang JB, Wang YW, Wang LJ, et al.2001. Tin-polymetallic mineralization in the Southern part of the Da Hinggan Moutains, China. Resource Geology,51(4):283-291
    Wang LJ, Shimazaki H and Shiga Y.2001. Skarn genesis of the Huanggang Fe-Sn deposit, Inner Mogolia, China. Resource Geology,51(4):359-376
    Wang PJ, Liu ZJ, Wang SX and Song WH.2002.40Ar-39 Ar and K-Ar dating on the volcanic rocks in the Songliao basin, Ne China:constraints on stratigraphy and basin dynamics. Int. J. Earth Sci.,91: 331-340
    Wei CS, Zheng YF, Zhao ZF and Valley JW.2001. Oxygen isotope evidence for two-stage water-rock interactions of the Nianzishan A-type granite in NE China. Chinese Science Bulletin,46(9):727-731
    Whalen JB, Currie KL and Chappell BW.1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology,95:407-419
    Whalen JB, Jenner GA, Longstaffe FJ, Robert F and Gariepy C.1996. Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite:petrogenesis based on the Topsails igneous suite, Newfoundland Appalachians. J. Petrol,37:1463-1489
    Wilkinson.2010. A review of fluid inclusion constraints on mineralization in the Irish ore field and implications for the genesis of sediment-hosted Zn-Pb deposits. Economic Geology,105:417-422
    Wu FY, Jahn BM, Wilde S, et al.2000. Phanerozoic crust growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics,328:89-113
    Wu FY, Sun DY, Li HM, et al.2002. A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis. Chemical Geology,187:143-173
    Wu FY, Jahn BM, Wilde SA. Lo CH, Yui TF, Lin Q, Ge WC and Sun DY.2003. Highly fractionated I-type granites in NE China (Ⅱ):isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos,67:191-204
    Wu FY, Yang JH, Wilde A, et al.2005a. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chemical Geology,221:127-156
    Wu FY, Lin JQ, Wilde SA, Sun DY and Yang JH.2005b. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet. Sci. Lett.,233:103-119
    Xiao WJ, Windley BF, Hao J, et al.2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt. Tectonics,22(6):1-19
    Xie GQ, Mao JW, Li RL, Qu WJ, Pirajno F and Du AD.2007. Re-Os molybdenite and Ar-Ar phlogopite dating of Cu-Fe-Au-Mo(W) deposits in southeastern Hubei, China. Mineralogy and Petrology,90: 249-270
    Xu G and Lin X.2000. Geology and geochemistry of the Changlongshan skarn iron deposit, Anhui province, China. Ore Geolgoy Reviews,16:91-106
    Xue CJ, Zeng R, Liu SW, Chi GX, Qing HR, Chen YC, Yang JM and Wang DH.2007. Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn-Pb deposit, western Yunnan, South China:A review. Ore Geology Reviews,31:337-359
    Yarmolyuk VV and Kovalenko VI.2001. The Mesozoic-Cenozoic of Mongolia. In:Dergunov AB (ed.). Tectonics, Magmatism, and Metallogeny of Mongolia. London:Taylor and Francis Group,203-244
    Ying JF, Zhou XH and Zhang LC.2010a. Geochronological and geochemical investigation of the late Mesozoic vocalic rocks from the Northern Great Xing'an Range and their tectonic implications. Int J Earth Sci (Geol Rundsch),99:357-378
    Ying JF, Zhou XH, Zhang LC and Wang F.2010b. Geochronological framework of Mesozoic volcanic rocks in the Great Xing'an Range, NE China, and their geodynamic implications. Journal of Asian Earth Sciences,39:786-793
    Zanvilevich AN, Litvinovsk BA, Wickham SM and Bea F.1995. Genesis of alkaline and peralkaline syenite-granite series:The kharitonovo pluton (Transbaikalia Russia). J. Geol.,103:127-145
    Zartman RE and Doe BR.1981. Lead-isotope evolution. U.S. Geological Survery Professional Paper, 169-170
    Zaw K and Singoyi B.2000. Formation of magnetite-scheelite skarn mineralization at Kara, Northwestern Tasmania:evidence from mineral chemistry and stable isotopes. Econ. Geol.,95:1215-1230
    Zhai YS, Xiong YY, Yao SZ and Lin XD.1996. Metallogeny of copper and iron deposits in the eastern Yangtze Carton, east-central China. Ore Geology Review,11:229-248
    Zhang JH, Gao S, Ge WC, et al.2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Implications for subduction-induced delamination. Chemical Geology, 276:144-165
    Zhang LC, Zhou XH, Ying JF, et al.2008. Geochemistry and Sr-Nd-Pb-Hf isotopes of Early Cretaceous basalts from the Great Xinggan Range, NE China:Implications for their origin and mantle source characteristics. Chemical Geology,256:12-23
    Zhang LC, Wu HY, Wan B and Chen ZG.2009. Ages and geodynamic settings of Xilamulun Mo-Cu metallogenic belt in the northern part of the North China Craton. Gondwana Research,16:243-254
    Zhang SH, Zhao Y, Song B, Hu JM, Liu SW, Yang YH, Chen FK, Liu XM and Liu J.2009. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton:Geochronology, petrogenesis, and tectonic implications. Geological Society of America Bulletin,121:181-200
    Zhang YB, Wu FY, Wilde SA, et al.2004. Zircon U-Pb ages and tectonic implications of Early Paleozoic granitoids at Yanbian, Jilin province, northeast China. Island Arcs,13:485-505
    Zhang ZC, Mao JW, Wang YB, Pirajno F, Liu JL and Zhao ZD.2010. Geochemistry and geochronology of the volcanic rocks associated with the Dong'an adularia-sericite epithermal gold deposit, Lesser Hinggan Range, Heilongjiang province, NE China:Constraints on the metallogenesis. Ore Geology Reviews,37(3-4):158-174
    Zhao XX, Coe RS and Zhou YX.1990. New plaeomagnetic results from northern China:Collision and suturing with Siberia and Kazakshan. Tectonophysics,181:43-81
    Zhao XX and Coe RS.1996. Paleomagnetic constraints on the pale-geography of China:Implications for Gondwanaland. Abstract of 30th IGC, Vol.1,231
    Zhao XX, Coe RS, et al.1999. Clockwise rotations recorded in Early cretaceous rocks of South Korea: Implications for tectonic affinity between the Korean Peninsula and North China. Journal of Geophysics International,139(2):447-463
    Zheng YF.1993. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicate:Earth and Planetary Science Letters,120:247-263
    Zindler A and Hart S.1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences,14: 493-571
    Zorin YA.1999. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics,306:33-56
    艾永福,张晓辉.1996.内蒙大井矿床的脉岩与成矿//“八五”地质科技重要成果学术交流会论文集.北京:地震出版社.231-234
    白大明,刘光海.1996.黄岗梁-乌兰浩特铜多金属成矿带区域综合找矿模式.物探与化探,20(6):444-454
    蔡剑辉,阎国翰,肖成东,王关玉,牟保磊,张仁祜.2004.太行山-大兴安岭构造岩浆带中生代侵入岩Nd、Sr、Pb同位素特征及物质来源探讨.岩石学报,20(5):1225-1242
    陈宏威.2007.大兴安岭中南段铜多金属矿成矿特征与找矿方向.中国地质大学(北京)硕士论文,4-8
    陈婉君,杨智荣.2008.广东大顶铁矿田多金属矿床地质特征及成矿规律.科技创新导报,29:98-99
    陈毓川,黄民智,徐珏,等.1985.大厂锡石-硫化物多金属矿带地质特征及成矿系列.地质学报,59(3):228-240
    陈毓川,毛景文,等.1995.桂北地区矿床成矿系列和成矿历史演化轨迹.南宁:广西科学技术出版社,1-433
    陈毓川,裴荣富,王登红.2006.三论矿床的成矿系列问题.地质学报,80(10):1501-1508
    陈衍景,翟明国,蒋少涌.2009.华北大陆边缘造山过程与成矿研究的重要进展和问题.岩石学报,25(11):2695-2726
    陈义贤.1997.辽西及邻区中生代火山岩.北京:地震出版社,241-243
    陈志广,张连昌,吴华英,万博,曾庆栋.2008.内蒙古西拉木伦成矿带碾子沟铝矿区A型花岗岩地球化学和构造背景.岩石学报,24(4):879-889
    段明.2009.内蒙古贺根山地区蛇绿岩的类型及其成矿作用.吉林大学硕士学位论文,1-59
    程家龙,赵永鑫,柳丰华.2009.夕卡岩型矿床的成矿作用和地球化学研究综述.地质找矿论丛,24(4):329-334,358
    程培生,廖梦奇.2007.大兴安岭多金属成矿带北段成矿规律初探.华东六省—市地学科技论坛论文集,135-138
    程裕淇,陈毓川.1979.初论矿床的成矿系列问题.中国地质科学院文集,1:39-65
    程裕淇,陈毓川,赵一鸣.1983.再论矿床的成矿系列问题——兼论中生代某些矿床的成矿系列.地质论评,2:31-43
    邓晋福,赵海玲,莫宣学,吴宗絮,罗照华.1996.中国大陆根-柱构造——大陆动力学的钥匙.北京:地质版社,1-110
    邓晋福.1999.火成岩构造组合与壳-幔成矿系统.地学前缘,6(2):259-270
    邓小华,李文博,李诺,糜梅,张颖.2008.河南篙县纸房钥矿床流体包裹体研究及矿床成因.岩石学报,24(9):2133-2148
    狄永军,吴淦国,张达,等.2006.闽中地区铅锌矿床辉石成分特征及其成因意义.矿床地质,25(2):123-134
    杜光树,姚鹏,潘凤雏,等.1998.喷流成因夕卡岩与成矿—以西藏甲马铜多金属矿床为例.四川科学技术出版社.
    樊祺诚,隋建立,刘若新,周新民.2001.汉诺坝榴辉岩相石榴辉石岩—岩浆底侵作用新证据.岩石学报,17(1):1-6
    冯建忠.1992.内蒙黄岗梁-孟恩陶勒盖多金属矿床同位素地质特征.辽宁地质,2:117-126
    冯建忠,艾霞,吴俞斌.1993.内蒙古黄岗梁-孟恩陶勒盖矿带成矿地质特征及成矿模式.辽宁地质,3:244-253
    冯守忠.2008.吉林正岔铅锌矿床地质特征及成矿机理.地质找矿论丛,23(1):16-21
    高进路,肖成东,阎国翰.2002.东蒙地区燕山期三类成矿岩体地质地球化学特征.地质找矿论丛,17(3): 152-160
    高山,章军锋,许文良,刘勇胜.2009.拆沉作用与华北克拉通破坏.科学通报,54(14):1962-1973
    葛文春,林强,孙德有,等.1999.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据.岩石学报,15(3):397-407
    葛文春,吴福元,周长勇,等.2005a.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约.科学通报,50(12):1239-1247
    葛文春,吴福元,周长勇,等.2005b.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义.岩石学报,21(3):749-766
    葛文春,隋振民,吴福元,张吉衡,徐学纯,程瑞玉.2007a.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义.岩石学报,23(2):423-440
    葛文春,吴福元,周长勇,等.2007b.兴蒙造山带东段斑岩型Cu, Mo矿产成矿时代及其地球动力学意义.科学通报,52(20):2407-2417
    郭峰,范蔚茗,王岳军,林舸.2000.大兴安岭南段晚中生代双峰式火山作用.岩石学报,17(1):
    161-168
    黑龙江省地质矿产局.1993.黑龙江区域地质志.北京:地质出版社,1-734
    洪大卫,王式洗,谢锡林,张季生.2000.兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长.地学前缘,7(2):441-456
    洪大卫,王式洗,谢锡林,等.2003.试析地幔来源物质成矿域-以中亚造山带为例.矿床地质,22(1): 41-55
    郝立波,段国正,李殿超,吕志成,潘军.1999.大兴安岭锡多金属成矿带花岗岩地球地球化学特征.世界地质,18(2):66-72
    侯可军,李延河,田有荣.2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质,28(4):481-492
    侯明兰,丁昕,蒋少涌.2004.胶东蓬莱河西金矿床铅、硫同位素地球化学特征.地球学报,25:145-150
    胡受奚,周顺之,刘孝善.1982.矿床学.北京:地质出版社,1-254
    华仁民,毛景文.1999.试论中国东部中生代成矿大爆发.矿床地质,18(4):300-307
    华仁民,陈培荣,张文兰,等.2003.华南中、新生代与花岗岩类有关的成矿系统.中国科学(D辑),33(4):335-343
    黄华盛.1994.夕卡岩矿床的研究现状.地学前缘,1(3-4):105-111
    黄有德,李绥远.1983.中国东部地区夕卡岩型铁矿成矿控制和富集条件.冶金工业部地质研究所学报,3:126-139
    嵇少丞,王茜,许志琴.2008.华北克拉通破坏与岩石圈减薄.地质学报,82(2):174-193
    姜信顺.1981.黄岗铁锡矿床磁铁矿矿物学性质及其成因.中国地质科学院沈阳地质矿产研究所文 集.
    蒋国源,权恒.1988.大兴安岭根河、海拉尔盆地中生代火山岩.中国地质科学院沈阳地质矿产研究所所刊,3:23-100
    蒋少涌,杨涛,李亮,赵葵东,凌洪飞.2006.大西洋洋中脊TAG热液区硫化物铅和硫同位素研究.岩石学报,22(10):2597-2602
    冷成彪,张兴春,秦朝建,王守旭,任涛,王外全.2008.滇西北雪鸡坪斑岩铜矿流体包裹体初步研究.岩石学报,24(9):2017-2028
    李大新,赵一鸣.2004.江西焦里夕卡岩银铅锌钨矿床的矿化夕卡岩分带和流体演化.地质论评,50(1):16-24
    李鹤年,段国正.1988.黄岗式铁锡多金属矿床的成矿模式.世界地质,7(2):17-28
    李锦轶.1998.中国东北及邻区若干地质构造问题的新认识.地质论评,44(4):339-347
    李锦轶,莫申国,和政军,等.2004.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约.地学前缘,11(3):157-168
    李锦轶,高立明,孙桂华,等.2007.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束.岩石学报,23(3):565-582
    李进文,张德全,赵士宝,关继东,佘宏全,丰成友.2006.得尔布干成矿带西南段金属成矿规律及找矿方向.矿床地质,25(增刊):19-22
    李进文,李旭辉,裴荣富,梅燕雄,王永磊,屈文俊,黄修保,臧文栓.2007.江西武山铜矿南矿带辉钼矿Re-Os同位素年龄及其地质意义.地质学报,81(6):801-807
    李晶,陈衍景,李强之,赖勇,杨荣生,毛世东.2007.甘肃阳山金矿流体包裹体地球化学和矿床成因类型.岩石学报,23(9):2144-2154
    李莉,白云山,牛志军,姚华舟.2004.藏北羌塘中部劳日特错花岗斑岩体的特征及构造意义.地质通报,23(9-10):1040-1045
    李蒙文.2006.天山—兴蒙造山带中段内生金属矿床成矿系列及成矿预测.中国地质科学院博士学位论文,1-159
    李诺,孙亚莉,李晶,李文博.2007.内蒙古乌努格吐山斑岩铜钼矿床辉钼矿铼锇等时线年龄及其成矿地球动力学背景.岩石学报,24(8):2881-2888
    李诺,赖勇,鲁颖淮,郭东升.2008.河南祁雨沟金矿流体包裹体及矿床成因类型研究.中国地质,35(6):1230-1239
    李双林,欧阳自远.1998.兴蒙造山带及邻区的构造格局与构造演化.海洋地质与第四纪地质,18(3):45-54
    李文博,黄智龙,张冠.2006.云南会泽铅锌矿田成矿物质来源:Pb、S、C、H、O、Sr同位素制约.岩石学报,22(10):2567-2580
    李之彤,赵春荆.1992.东北北部三叠纪A型花岗岩的初步研究.中国地质科学院沈阳地质矿产研究 所所刊,北京:地震出版社,96-108
    李忠军.1995.闹牛山铜矿床次火山岩及与成矿的关系.矿产与地质,9(3):153-159
    梁祥济,李德兴,张仲明,等.1981.交代岩与其有关铁矿形成的铁质来源的模拟实验.矿床地质,6(2):63-74
    梁祥济.2000.中国夕卡岩和夕卡岩矿床形成机理的实验研究.北京:学苑出版社,278-321
    林强,葛文春,孙德有,等.1998.中国东北地区中生代火山岩的大地构造意义.地质科学,33(2):129-139
    林强,葛文春,孙德有,等.1999.东北亚中生代火山岩的地球动力学意义.地球物理学报,42(增刊):75-84
    林强,葛文春,曹林,等.2003.大兴安岭中生带双峰式火山岩的地球化学特征.地球化学,32(3):208-222
    林强,葛文春,吴福元,孙德有,曹林.2004.大兴安岭中生代花岗岩类的地球化学.岩石学报,20(3):403-412
    林文蔚.1990.夕卡岩矿床中共生单斜辉石-石榴石酸度计及夕卡岩矿床的酸度相.地质学报,1:53-61
    林新多,许国建.1989.岩浆成因夕卡岩的某些特征及形成机制初探.现代地质,3(3):351-358
    凌其聪,刘丛强.2002.冬瓜山层控夕卡岩型铜矿床成矿流体特征及其成因意义.吉林大学学报(地球科学版),32(3):319-324
    刘斌,沈昆.1999.流体包裹体热力学.北京:地质出版社,1-290
    刘成龙.1981.论内蒙黄岗矿区锡酸矿的赋存特点及某些分布规律.中国地质科学院沈阳地质矿产研究所文集.
    刘城先.2001.内蒙布敦化铜矿成矿系列和成矿模式.长春工程学院学报(自然科学版),2(4):30-32
    刘家军,何明勤,李志明,等.2004.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义.矿床地质,23(1):1-9
    刘家远,袁奎荣.1996.新疆乌伦富碱花岗岩带碱性花岗岩成因及其形成构造环境.高校地质学报,2(3):257-272
    刘建明,刘家军.1997.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式.矿物学报,17(4):448-456
    刘建明,张锐,张庆州.大兴安岭地区的区域成矿特征.地学前缘,2004,11(1):269-277
    刘敏,张作衡,王永强,郭旭吉,陈伟十.2009.新疆阿尔泰大东沟铅锌矿床流体包裹体特征及成矿作用.矿床地质,28(3):282-296
    刘伟,李新俊,谭骏.2002.内蒙古大井铜-锡-银-铅-锌矿床的流体混合作用—流体包裹体和稳定同位素证据.中国科学(D辑),32(5):405-414
    刘伟,杨进辉,李潮峰.2003.内蒙赤峰地区若干主干断裂带的构造热年代学.岩石学报,19(4):717-725
    刘伟,潘小菲,谢烈文,等.2007.大兴安岭南段林西地区花岗岩类的源岩:地壳生长的时代和方式. 岩石学报,23(2):441-46
    刘英俊.1984.华南花岗岩类中的微量元素的地球化学特征.南京:江苏科学技术出版社,511-525
    卢焕章.1997.成矿流体.北京:科学技术出版社,152-177
    卢焕章.2003.现代海底烟囱中流体包裹体的研究.岩石学报,19(2):235-241
    马芳,蒋少涌,姜耀辉,王汝成,凌洪飞,倪培.2006.宁芜地区玢岩铁矿Pb同位素研究.地质学报,80(2):279-286
    马家骏,方大赫.1991.黑龙江省中生代火山岩初步研究.黑龙江地质,2(2):1-16
    马星华,陈斌,赖勇,鲁颖淮.2009.内蒙古敖仑花斑岩钼矿床成岩成矿年代学及其地质意义.岩石学报,25(11):2939-2950
    毛景文,李红艳,王平安,等.1994.湖南柿竹园钨多金属矿床中的锰质矽卡岩.矿床地质,13(1):38-47
    毛景文,李红艳,Guy B,等.1996.湖南柿竹园矽卡岩-云英岩型W-Sn-Mo-Bi矿床地质和成矿作用.矿床地质,15(1):1-15
    毛景文,李红艳,宋学信,芮柏,胥友志,王登红,蓝晓明,张景凯.1998.湖南柿竹园钨锡钼铋多金属矿床地质与地球化学.北京:地质出版社,1-214
    毛景文,华仁民,李晓波.1999.浅议大规模成矿作用与大型矿集区.矿床地质,18(4):291-299
    毛景文,张作衡,余金杰,王义天,牛宝贵.2003a.华北及邻区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示.中国科学(D辑),33(4):289-299
    毛景文,张招崇、杨建明,等.2003b.北祁连山西段铜金铁钨多金属矿床成矿系列和找矿评价.北京:地质出版社,1-437
    毛景文,谢桂青,李晓峰,张长青,梅燕雄.2004.华南地区中生代大规模成矿作用于岩石圈多阶段伸展.地学前缘,11(1):45-55
    毛景文,谢桂青,张作衡,李晓峰,王义天,张长青,李永峰.2005.中国北方中生代大规模成矿作用的期次及其地球动力学背景.岩石学报,21(1):169-188
    毛景文,谢桂青,郭春丽,袁顺达,程彦博,陈毓川.2008.华南地区中生代主要金属矿床时空分布规律和成矿环境.高校地质学报,14:510-526
    毛骞.2002.内蒙古黄岗矿集区与锡矿化有关的花岗岩成因研究.中国科学院地质与地球物理研究所博士学位论文.
    苗来成,范蔚茗,张福勤,等.2003.小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义.科学通报,48(22):2315-2323
    苗来成,刘敦一,张福勤,范蔚茗,石玉若,颉颃强.2007.大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb年龄.科学通报,52(5):591-601
    内蒙古自治区地质矿产局.1991.内蒙古自治区区域地质志.北京:地质出版社,1-532
    内蒙古自冶区地质矿产局.1996.内蒙古自冶区岩石地层.武汉:中国地质出版社,15-51
    南京大学地质学系.1979.地球化学.北京:科学出版社,309-315
    倪培,饶冰,丁俊英,张林松.2003.人工合成包裹体的实验研究及其在激光拉曼探针测定方面的应用.岩石学报,19(2):319-326
    聂凤军,裴荣富,吴良士,张洪涛.1993.内蒙古白乃庙地区岩浆活动与金属成矿作用.北京:北京科学技术出版社,1-241
    聂凤军,江思宏,张义,白大明,胡朋,赵元艺,张万益,刘妍.2007a.中蒙边境中东段金属矿床成矿规律和找矿方向.北京:地质出版社,1-574
    聂凤军,张万益,杜安道,江思宏,刘妍.2007b.内蒙古朝不楞夕卡岩型铁多金属矿床辉钼矿铼-锇同位素年龄及地质意义.地球学报,28(4):315-323
    牛贺才,林传仙.1995.萤石中流体熔融包裹体的研究.地质论评,41(1):28-32
    牛贺才,单强,陈培荣.1997.岩浆-热液过渡阶段流体性质的研究—以四川冕宁矿床为例.南京大学学报(地质流体专辑),33(3):23-26
    牛贺才,单强,罗勇,杨武斌,于学元.2008.巴尔哲超大型稀有稀土矿床富晶体的流体包裹体初步研究.岩石学报,24(9):2149-2154
    牛利锋,张宏福.2005.南太行山地区中基性侵入岩中的角闪石的矿物学及其成因.大地构造与成矿学,29(2):269-277
    牛树银.1993.华北地台北侧的古板块构造演化.地质科技情报,12(1):17-21
    欧阳玉飞,郑昌能,田云,等.广东东源湖嶂锡铁矿床成因及找矿标志.南方金属,4:18-21
    欧阳自远.1958.中国的夕卡岩型矿床.地质科学,第2期.
    裴荣富,吕凤翔,范继璋,方如恒,等.1998.华北地块北缘及其北测金属矿床成矿系列与勘查.北京:地质出版社,1-150
    潘凤雏,邓军,姚鹏,王庆飞,刘玉祥.2002.西藏甲马铜多金属矿床夕卡岩的喷流成因.现代地质,16(4):359-364
    潘小菲,郭利军,王硕,薛怀民,侯增谦,童英,李志明.2009.内蒙古维拉斯托铜锌矿床的白云母Ar-Ar年龄探讨.岩石矿物学杂志,28(5):473-479
    祁进平,陈衍景,Franco Pirajno.2005.东北地区浅成低温热液矿床的地质特征和构造背景.矿物岩石,25(2):47-59
    秦克章.1998.额尔古纳南段中生带斑岩-次火山岩-浅成低温Cu、Mo、Pb、Ag成矿系统.矿床地质,17(增刊):201-206
    邱瑞照,周肃,谭永杰,等.2009.中国北方大陆及邻区岩石圈演化及与大规模成矿作用关系.中国地质,36(3):544-563
    曲晓明,侯增谦,周书贵.2001.川西连龙夕卡岩型锡、银多金属矿床成矿地质特征.地球学报,22(1):29-34
    Robinson TP,白吉文,杨经绥,等.1995.内蒙古贺根山蛇绿岩岩石成因和地壳增生的地球化学制约. 岩石学报,11:112-124
    任纪舜,陈廷愚,牛宝贵,等.1990.中国东部及邻区大陆岩石圈的构造演化与成矿.北京:科学出版社,1-205
    任耀武.1994.大兴安岭中南段铜多金属矿床的重要矿源层.华北地质矿产杂志,9(3):313-316
    任耀武.1995.大兴安岭东南缘锡铜多金属矿床区域控矿因素分析.矿物岩石地球化学通报,1:33-34
    任耀武.1998.大兴安岭东坡南段大型铜矿成矿条件分析.黑龙江地质,9(1):1-8
    芮宗瑶,施林道,方如恒,等.1994.华北陆块北缘及邻区有色金属矿床地质.北京:地质出版社,1-558
    邵济安.1991.中朝板块北缘中段地壳演化.北京:北京大学出版社,1-135
    邵济安,李晓波.1993.伸展构造与造山过程//肖庆辉等著.当代地质科学前缘.北京:中国地质大学出版社,154-160
    邵济安,唐克东.1995.吉林省延边开山屯地球蛇绿混杂岩.岩石学报,11:212-220
    邵济安,唐克东.1996.蛇绿岩与古蒙古洋的演化—蛇绿岩与地球动力学研究.北京:地质出版社,117-120
    邵济安,牟保磊,何国琦.1997.华北北部在古亚洲域与太平洋域构造叠加过程中的地质作用.中国科学,27:390-394
    邵济安,张履桥,牟保磊.1998.大兴安岭中南段中生代的构造热演化.中国科学(D辑),28(3):193-200
    邵济安,张履桥,牟保磊.1999a.大兴安岭中生代伸展造山过程中的岩浆作用.地学前缘,6(4):339-346
    邵济安,韩庆军,张履桥,牟保磊.1999b.内蒙古东部早中生代堆积杂岩捕虏体的发现.科学通报,44(5):478-485
    邵济安,刘福田,陈辉,韩庆军.2001.大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系.地质学报,75(1):56-63
    邵济安,张履桥,肖庆辉,李晓波.2005.中生代大兴安岭的隆起——种可能的陆内造山机制.岩石学报,21(3):789-794
    邵济安,张覆桥,牟保磊.2007.大兴安岭的隆起与地球动力学背景.北京:地质出版社,1-250
    邵济安,牟保磊,朱慧忠,张履桥.2010.大兴安岭中南段中生代成矿物质的深部来源与背景.岩石学报,26(3):649-656
    邵洁莲.1988.金矿找矿矿物学.武汉:中国地质大学出版社,7-45
    佘宏全,丰成友,张德全,李光明,刘波,李进文.2006.西藏冈底斯铜矿带甲马夕卡岩型铜多金属矿床与驱龙斑岩型铜矿流体包裹体特征对比研究.岩石学报,22(3):689-696
    佘宏全,李红红,李进文,赵士宝,谭刚,张德全,金俊,董英君,丰成友.2009.内蒙古大兴安岭中北段铜铅锌金银多金属矿床成矿规律与找矿方向.地质学报,83(10):1456-1472
    沈渭洲.1987.稳定同位素地质.北京:原子能出版社,194-199
    沈阳地质矿产研究所.2006.内蒙-兴安成矿带成矿规律和找矿方向综合研究.地质调查成果报告,1-255
    盛继福,张德全,李岩.1995.大兴安岭中南段金属矿床流体包裹体研究.地质学报,69(1):56-66
    盛继福,付先政,李鹤年.1999.大兴安岭中段成矿环境与铜多金属矿床地质特征.北京:地震出版社,139-169
    束学福.2004.安庆夕卡岩型铁铜矿床地质地球化学特征及铁质来源研究.矿物岩石地球化学通报,23(3):219-224
    隋振民,葛文春,吴福元,张吉衡,徐学纯,程瑞玉.2007.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因.岩石学报,23(2):461-480
    孙德有,吴福元,李惠民,等.2000.小兴安岭西北部后造山A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系.科学通报,45(20):2217-2222
    孙德有,吴福元,林强,等.2001.张广才岭燕山早期白石山岩体的成因与壳幔相互作用.岩石学报,17:213-218
    孙德有,吴福元,高山.2004.小兴安岭东部清水岩体的锆石激光探针U-Pb年龄测定.地球学报,25(2):213-218
    孙德有,铃木和博,吴福元,等.2005.吉林省南部荒沟山地区中生代花岗岩CHIME定年.地球化学,34(4):305-314
    覃锋,刘建明,曾庆栋,张瑞斌.2008.内蒙古小东沟斑岩型钼矿床的成矿时代及成矿物质来源.现代地质,22(2):173-180
    涂光炽.1984.中国层控矿床地球化学(第一卷).北京:科学出版社,1-69
    涂光炽.1997.矿床地球化学.北京:地质出版社,1-112
    汪润洁.1987.大兴安岭南段下二叠统大石寨组K-Ar法同位素年龄的讨论.岩石学报,2:80-91
    汪洋.2009.北京白查A型花岗岩的地球化学特征及其成因与构造指示意义.岩石学报,25(1):13-24
    王长明,张寿庭,邓军,等.2007.内蒙古黄岗梁锡铁多金属矿床层状夕卡岩的喷流沉积成因.岩石矿物学杂志,26(5):409-417
    王汉生,李欲晓.1995.岩组分析在大井构造研究中的应用.地质找矿论丛,10(1):16-24
    王京彬,王玉往,王莉娟.2000.大兴安岭中南段铜矿成矿背景及找矿潜力.地质与勘探,36(5):1-4
    王京彬,王玉往,王莉娟.2005.大兴安岭南段锡多金属成矿系列.地质与勘探,41(6):15-20
    王建新,张俊华,王超,付洋,孙振明,丁培超.2010.东北地区中生代火山岩成分空问变异及其成矿规律.吉林大学学报(地球科学版),40(4):752-763
    王可勇,王力,刘正宏,汪建宇.2008.辽宁高家堡子大型银矿床流体包裹体特征及矿床成因.岩石学报,24(9):2085-2093
    王莉娟,岛崎英彦,王京彬,王玉往.2001a.黄岗梁夕卡岩型铁锡矿床成矿流体及成矿作用.中国科 学(D辑),31(7):553-562
    王莉娟,王京彬,王玉往,等.2001b.黄岗梁夕卡岩型铁锡矿床萤石中流体-熔融包裹体及对矿床成因研究的意义.地质学报,75(2):287
    王莉娟,王京彬,王玉往,岛崎英彦.2002.内蒙黄岗梁夕卡岩型铁锡矿床稀土元素地球化学.岩石学报,18(4):575-584
    王淼,范继璋,王忠文,马艳英.2009.内蒙古黄岗-甘珠尔庙成矿带铅锌矿综合信息找矿模型.地学前缘,16(6):318-324
    王荃,刘雪压,李锦轶.1991.中国内蒙古中部的古板块构造.中国地质科学院院报,22:1-15
    王书凤.1980.大顶锡铁矿化的主要特征.中国地质科学院矿床地质研究所文集,1:78-88
    王书凤.1983.大顶锡铁矿的地球化学问题.中国地质科学院矿床地质研究所文集,9:
    王圣文,王建国,张达,祁小军,吴淦国,赵丕忠,杨宗锋,刘彦兵.2009.大兴安岭太平沟钼矿床成矿年代学研究.岩石学报,25(11):2913-2923
    王耀武,史裕先,王耀胜.1996.毛登锡铜矿区成矿火山—侵入杂岩的地质地球化学特征.内蒙古地质,1:26-35
    王一先,赵振华.1997.巴尔哲超大型稀土铌铍锆矿床地球化学和成因.地球化学,26(1):24-35
    王玉荣,卢家烂,樊文岭.1979.高温气热溶液中铁元素迁移形式的初步实验研究.成岩成矿实验研究.北京:科学出版社,135-136
    王之田,张树文.1997.大兴安岭东南缘成矿集中区成矿演化特征与找矿潜力.有色金属矿产与勘查,6(增刊):6-12
    王忠,安春杰,邵军,孟二根,张明.2005.大兴安岭莫尔道嘎地区新元古代巨斑状碱长花岗岩地球化学特征.地质与资源,14(3):187-191
    王忠,朱洪森.1999.大兴安岭中南段中生代火山岩特征及演化.中国区域地质,18(4):351-358
    吴福元,江博明,林强.1997.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义.科学通
    报,42(20):2188-2192
    吴福元,孙德有,林强.1999.东北地区显生宙花岗岩的成因与地壳增生.岩石学报,15(2):181-189
    吴福元,孙德有,张广良,任向文.2000.论燕山运动的深部地球动力学本质.高校地质学报,6(3):379-388
    吴福元,葛文春,孙德有,等.2003.中国东部岩石圈减薄研究中的几个问题.地学前缘,10(3):51-60
    吴福元,李献华,杨进辉,郑永飞.2007.花岗岩成因研究的若干问题.岩石学报,23(6):1217-1238
    吴根耀.2006.白垩纪:中国及邻区板块构造演化的一个重要变换期.中国地质,33(1):64-77
    吴华英,张连昌,陈志广,等.2008.内蒙古西拉木伦成矿带库里吐钼(铜)矿区二长花岗岩地球化学、构造环境及含矿性分析.岩石学报,24(4):867-878
    吴言昌.1992.论岩浆夕卡岩——种新类型夕卡岩.安徽地质,2(1):12-26
    吴言昌,常印佛.1998.关于岩浆夕卡岩问题.地学前缘,5(4):291-301
    魏富有.1988.四川泸沽磁铁矿床上找矿地球化学研究.矿物岩石,8(1):61-68
    武广,孙丰月,赵财胜,李之彤,赵爱琳,庞庆帮,李广远.2005.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义.科学通报,50(20):2278-2288
    武广.2006.大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用.吉林大学博士学位论文,1-202
    武广,孙丰月,赵财胜,丁清峰,王力.2007.额尔古纳成矿带西北部金矿床流体包裹体研究.岩石学报,23(9):2227-2240
    武广,陈衍景,孙丰月,李景春,李之彤,王希今.2008.大兴安岭北端晚侏罗世花岗岩类地球化学及其地质和找矿意义.岩石学报,24(4):899-910
    武守诚.1994.石油资源地质评价导论.北京:石油工业出版社,1-325
    夏军,王成善,李秀华,等.1993.海拉尔及其邻区中生代火山岩的特征与边缘陆块型火山岩的提出.成都地质学院学报,20(4):67-80
    向君峰,赵海杰,李永峰,程彦博,高亚龙,侯可军,董春艳,李向前.2010.华北地台南缘张士英岩体的锆石SHRIMP U-Pb测年、Hf同位素组成及其地质意义.岩石学报,26(3):871-887
    肖成东,刘学武.2002.东蒙地区夕卡岩石榴子石稀土元素地球化学及其成因.中国地质,29(3):311-316
    肖成东,张忠良,赵利青.2004.东蒙地区燕山期花岗岩Nd-Sr-Pb同位素及其岩石成因.中国地质,31(1):57-63
    肖娥,邱检生,徐夕生,将少涌,胡建,李真.2007.浙江瑶坑碱性花岗岩体的年代学、地球化学及其成因与构造指示意义.岩石学报,23(6):1431-1440
    肖利梅.2005.内蒙古赤峰拜仁达坝银多金属矿矿床特征及成因探讨.吉林大学硕士学位论文,1-79
    肖庆辉,邓晋福,邱瑞照,等.2009.花岗岩类与大陆地壳生长初探—以中国典型造山带花岗岩类岩石的形成为例.中国地质,36(3):594-622
    谢桂青,毛景文,李瑞玲,蒋国豪,赵财胜,赵海杰,侯可军,潘怀军.2008.鄂东南地区大型夕卡岩型铁矿床金云母40Ar-39Ar同位素年龄及其构造背景初探.岩石学报,24:1917-1927
    谢桂青,赵海杰,赵财胜,李向前,侯可军,潘怀军.2009.鄂东南铜绿山矿田夕卡岩型铜铁金矿床的辉铝矿Re-Os同位素年龄及其地质意义.矿床地质,28(3):227-239
    邢集善,杨巍然,邢作云,刘建华,赵斌.2007.中国东部深部构造特征及其与矿集区关系.地学前缘,14(3):114-130
    许发新,覃顺平,范元健.2010.四川冕宁泸沽大顶山磁铁矿床地质特征及成矿条件分析.现代矿业,11:41-43
    徐林刚,毛景文,杨富全,等.2007.新疆蒙库铁矿床夕卡岩矿物学特征及其意义.矿床地质,26(4):455-463
    徐毅.2005.黄岗-甘珠尔庙成矿带多金属矿构造控矿特征分析.中国地质大学(北京)硕士学位论文,1-75
    徐文杰,刘伟,韩奎,刘运锷.2010.广西金子岭地区锡铁矿床地质特征及找矿前景分析.矿产与地质,24(6):523-527
    徐志刚,张德全.1993.内蒙古东南部铜多金属矿床成矿构造背景.大兴安岭及邻区铜多金属矿床论文集.北京:地震出版社,22-41
    席忠,张志刚,贾立炯,苟小军,孙庆茹,侯万荣.2010.内蒙古马尼图-查干花大型钼-铋-钨矿化区的发现及地质意义.地球学报,31(3):466-468
    杨丹,徐文艺,崔艳合,陈伟十,连玉.2007.二维气相色谱法测定流体包裹体中气相成分.岩矿测试,26(6):451-454
    杨德彬,许文良,裴福萍,王清海.2009.蚌埠隆起区古元古代钾长花岗岩的成因:岩石地球化学、锆石U-Pb年代学与Hf同位素的制约.地球科学(中国地质大学学报),34(1):148-164
    杨富全,毛景文,柴凤梅,刘锋,周刚,耿新霞,刘国仁,徐林刚.2008.新疆阿尔泰蒙库铁矿床的成矿流体及成矿作用.矿床地质,27(6):659-680
    杨光树,温汉捷,胡瑞忠,秦朝建,于文修.2008.安庆夕卡岩型铁铜矿床流体包裹体研究.地球化学,37(1):27-36
    杨国富.1996.内蒙大兴安岭南端二叠系的地质建造与控矿作用.矿产与地质,10(2):120-125
    杨时惠,傅光学.四川泸沽锡铁矿床黑硼锡铁矿的发现及其意义.中国地质科学院成矿地质矿产研究所论文集,4:51-56
    杨小男,徐兆文,高庚,陆现彩,刘苏明,李海勇.2008.安徽铜陵朝山金矿床流体包裹体研究.岩石学报,24(8):1889-1899
    杨振强.1997.大宝山块状硫化物矿床成因:泥盆纪海底热事件.华南地质与矿产,1:7-17
    杨志.1983.我国东部地区夕卡岩铁矿的成岩成矿时代.地质与勘探,7:26-31
    杨志达,鲍修坡.1997.黄岗-甘珠尔庙地区多金属矿床地质地球化学.见:大兴安岭及其邻区铜多金属矿床成矿规律与远景评价.北京:地震出版社,125-144
    杨智荣,李凤,杨成奎.2008.广东省新丰县—东源县鹿湖嶂锡多金属矿矿化地质特征及找矿方向探讨.科技创新导报,29:143-144
    姚凤良,孙丰月.2006.矿床学教程.北京:地质出版社,78
    姚军明,赵太平,魏庆国,原振雷.2008.河南王坪西沟铅锌矿床流体包裹体特征和矿床成因类型.岩石学报,24(9):2113-2123
    姚鹏,李金高,顾雪祥,等.2006.从REE和硅同位素特征探讨西藏甲马矿床层状夕卡岩成因.岩石矿物学杂志,25(4):305-313
    叶杰,刘建明,张安立,等.2002.沉积喷流型矿化的岩石学证据——以大兴安岭南段黄岗和大井矿床为例.岩石学报,18(4):585-595
    尹冰川,冉清昌.1997.小兴安岭一张广才岭地区区域成矿演化.矿床地质,16(3):235-242
    尹京直,李焦县,崔庆国,等.2000.湖南省柿竹园夕卡岩矿床中石榴石特征.地球科学(中国地质大学学报),25(2):163-171
    英基丰,周新华,张连昌,等.2008.大大兴安岭晚中生代火山岩的年代学和地球化学研究及其构造意义.矿物岩石地球化学通报,27(增刊):66-67
    于津海,周新民,赵蕾,蒋少涌,王丽娟,凌洪飞.2005.壳幔作用导致武平花岗岩形成—Sr-Nd-Hf-U-Pb同位素证据.岩石学报,21(3):651-664
    岳永君.1994.大兴安岭南段朝阳沟-新林镇一带印支期花岗岩的确认及其基本地质特征.中国地质科学院院报,29:67-78
    袁忠信,张敏,万德芳.2003.低180碱性花岗岩成因讨论——以内蒙巴尔哲碱性花岗岩为例.岩石矿物学杂志.22(2):119-124
    曾庆栋,刘建明,万志民,等.2007.内蒙古赤峰市白音诺尔铅锌矿床构造控制与找矿方向.大地构造与成矿学,31(4):72-80
    曾庆栋,刘建明,张作伦,覃锋,陈伟军,张瑞斌,于昌明,叶杰.2009.华北克拉通北缘鸡冠山斑岩钼矿床成矿年代及印支期成矿事件.岩石学报,25(2):393-398
    曾三红.1992.内蒙黄岗铁锡矿床磁铁矿中锡的存在形式.矿物岩石,12(1):23-25
    翟德高,刘家军,王建平,彭润民,王守光,李玉玺,常忠耀.2009.内蒙古太平沟斑岩型钼矿床Re-Os等时线年龄及其地质意义.现代地质,23(2):262-268
    张长青,毛景文,余金杰,李厚民.2007.四川甘洛赤普铅锌矿床流体包裹体特征及成矿机制初步探讨.岩石学报,23(10):2541-2552
    张德全,鲍修文.1990.内蒙古白音诺中酸性火山-深成杂岩体的岩石学、地球化学与成因研究.地质论评,36(4):289-297
    张德全,赵一鸣.1993a.大兴安岭及邻区铜多金属矿床论文集.北京:地震出版社,1-147
    张德全.1993b.敖瑙达巴斑岩型锡多金属矿床地质特征.矿床地质,12(1):10-19
    张宏,权恒,赵春荆,等.1999.辽西-大兴安岭晚侏罗世-早白垩世火山岩形成动力学背景的新认识.地质论评,45(增刊):431-443
    张宏飞,肖龙,张利,袁洪林,靳兰兰.2007.扬子陆块西北缘碧口块体印支期花岗岩类地球化学和Pb-Sr-Nd同位素组成:限制岩石成因及其动力学背景.中国科学(D辑),37(4):460-470
    张炯飞,庞庆邦,朱群,金成洙.2003.内蒙古孟恩陶勒盖银铅锌矿床白云母Ar-Ar年龄及其意义.矿床地质,22(3):253-256
    张连昌,陈志广,周新华,英基丰,王非,张玉涛.2007.大兴安岭根河地区早白垩世火山岩深部源区与构造-岩浆演化:Sr-Nd-Pb-Hf同位素地球化学制约.岩石学报,23(11):2823-2835
    张梅生,彭向东,孙晓猛.1998.中国东北区古生代构造古地理格局.辽宁地质,2:91-96
    张吉衡.2006.大兴安岭中生代火山岩的年代学格架.吉林大学硕士学位论文,1-88
    张吉良,喻亨祥,何国朝.2004.原生锡矿床成矿理论研究历史和进展.矿产与地质,18(3):202-206
    张旗,钱青,王二七,王焰,赵太平,郝杰,郭光军.2001.燕山中晚期的中国东部高原:埃达克岩的启示.地质科学,36(2):248-255
    张旗,王焰,李承东,王元龙,金惟俊,贾秀勤.2006.花岗岩的Sr-Yb分类及其地质意义.岩石学报,22(9):2249-2269
    张旗,王焰,熊小林,李承东.2008.埃达克岩和花岗岩:挑战与机遇.北京:大地出版社,1-344
    张旗,金惟俊,李承东,王元龙.2009.中国东部燕山期大规模岩浆活动与岩石圈减薄:与大火成岩省的关系.地学前缘,16(2):21-50
    张乾,潘家永.1994.接触交代夕卡岩型多金属矿床铅源新认识.地质论评,40(1):330-339
    张少兵,郑永飞.2011.低δ18O岩浆岩的成因.岩石学报,27(2):520-530
    张彤,陈志勇,许立权,陈郑辉.2009.内蒙古卓资县大苏计钼矿辉钼矿铼-锇同位素定年及其地质意义.岩矿测试,28(3):279-282
    张万益.2008.内蒙古东乌珠沁旗岩浆活动与金属成矿作用.中国地质科学院博士学位论文:1-179
    张喜周,张振邦.2003.内蒙大兴安岭南段地质构造与成矿.矿产与地质,17(增刊):298-301
    张彦龙,葛文春,柳小明,张吉衡.2008.大兴安岭新林镇岩体的同位素特征及其地质意义.吉林大学学报(地球科学版),38(2):177-186
    张艳斌,吴福元,孙德有,等.2002a.延边“早海西期”棉田花岗岩体和仲坪紫苏辉石闪长岩的单颗粒锆石U-Pb定年.地质论评,48(4):424-429
    张艳斌,吴福元,李惠民,等,2002b.吉林黄泥岭花岗岩体的单颗粒锆石U-Pb年龄.岩石学报,18(4):475-481
    张艳斌,吴福元,翟明国,等.2004.和龙地块的构造属性与华北地台北缘东段边界.中国科学(D辑),34(9):795-806
    张永正,李秀荣,杨宏智,邵军.2007.大兴安岭东南段铜多金属成矿构造条件.地质与资源,16(1):38-41
    张作伦,曾庆栋,屈文俊,刘建明,孙兴国,张瑞斌,陈伟军,覃锋.2009.内蒙碾子沟钼矿床辉钼矿Re-Os同位素年龄及其地质意义.岩石学报,25(1):212-218
    赵斌,李统锦,李昭平.1983.夕卡岩形成的物理化学条件实验研究.地球化学,3:256-267
    赵斌,Barton MD.1987.接触交代夕卡岩型矿床中石榴子石和辉石成分特点及其与矿化的关系.矿物学报,7(1):1-8
    赵斌.1989.中国主要夕卡岩及夕卡岩型矿床.北京:科学出版社,1-342
    赵斌,赵劲松,张重泽,等.1993.岩浆成因夕卡岩的实验证据.科学通报,38(21):1986-1989
    赵斌,李院生,赵劲松.1995.岩浆成因夕卡岩的包裹体证据.地球化学,24(2):198-200
    赵春荆,李之彤.1983.东北北部地区古生代构造花岗岩区划及其地质构造意义.中国北方板块构造文集,沈阳:沈阳地质矿产研究所,280-292
    赵国龙,杨桂林,王忠,傅嘉友,杨玉琢.1989.大兴安岭中南部中生代火山岩.北京:北京科学技术出版社,182-187
    赵劲松,赵斌,李兆麟.2000.大冶铁矿床夕卡岩矿物中熔融包裹体的发现及其地质地球化学意义.地球化学,5:500-503
    赵书跃,韩彦东,朱春燕,等.2004.大兴安岭火山喷发带北段中性、中酸性火山岩地球化学特征及其地质意义.地质力学学报,10(3):276-287
    赵一鸣,林文蔚,毕承思,李大新.1986.中国夕卡岩矿床基本地质特征.中国地质科学院院报,14:59-67
    赵一鸣,林文蔚,毕承思,等.1990.中国夕卡岩矿床.北京:地质出版社,1-354
    赵一鸣.1991.环太平洋地区的夕卡岩矿床.矿床地质,10(1):41-51
    赵一鸣,王大畏,张德全,等.1994.内蒙古东南部铜多金属成矿地质条件及找矿模式.北京:地震出版社,1-231
    赵一鸣,张德全.1997a.大兴安岭及其邻区铜多金属矿床成矿规律与远景评价.北京:地震出版社,135-137
    赵一鸣,林文蔚,毕承思,等.1997b.中国含金夕卡岩矿床的分布和主要地质特征.矿床地质,16(3):193-203
    赵一鸣,张轶男,毕承思,等.1999.安微淮北三铺地区镁夕卡岩金(铜、铁)矿床生成地质环境、分带和流体演化.矿床地质,18(1):1-10
    赵一鸣.2002.夕卡岩矿床研究的某些重要新进展.矿床地质,21(2):113-120,136
    赵一鸣,李大新.2003.中国夕卡岩矿床中的角闪石.矿床地质,22(4):345-358
    赵一鸣,吴良士,白鸽,等.2004.中国主要金属矿床成矿规律.北京:地质出版社,1-411
    赵越,杨振宇,马醒华.1994.东亚大地构造发展的重要转折.地质科学,29(2):105-119
    赵越,徐刚,张栓宏,杨振宇,张岳桥,胡健民.2004.燕山运动与东亚构造体制的转变.地学前缘,11(3):319-328
    赵振华,熊小林,韩小东.1999.花岗岩稀土元素四分组效应形成机理探讨—以千里山和巴尔哲花岗岩为例.中国科学(D辑),29(4):331-338
    郑建民.2007.翼南邯邢地区夕卡岩铁矿成矿流体及成矿机制.中国地质大学(北京)博士学位论文,1-108
    周新华,张国辉,杨进辉,陈文寄,孙敏.2001.华北克拉通北缘晚中生代火山岩Sr-Nd-Pb同位素填图及其构造意义.地球化学,30(1):10-23
    周新华,英基丰,张连昌,张玉涛.2009.大兴安岭晚中生代火山岩成因与古老地块物质贡献:锆石U-Pb年龄及多元同位素制约.地球科学—中国地质大学学报,34(1):1-10
    周询若,任进.1994.长江中下游中生代花岗岩.北京:地质出版社,118
    朱炳泉.2007.全球幔源岩Pb-Sr-Nd同位素体系.地学前缘,14(2):24-36
    朱华平,孙丰月,李碧乐,王力.2007.青海驼路沟钻矿床流体包裹体及成矿物理化学条件.地球科学与环境学报,29(4):351-355
    朱勤文,路凤香,谢意红,郑建平.1997.大陆边缘扩张型活动带火山岩组合-松辽盆地周边中生代火山岩研究.岩石学报,13(4):551-562
    祝洪臣,张炯飞,权恒.2005.大兴安岭中生代两期成岩成矿作用的元素、同位素特征及其形成环境.吉林大学学报(地球科学版),35(4):436-442

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700