用户名: 密码: 验证码:
利用天然地震研究地球内部结构与动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东亚地区地处欧亚板块东南部,四个重要的板块强烈交互作用,形成了诸多俯冲带、造山带及数千公里的大陆离散变形带。本论文通过地震学的方法(地震层析成像,横波分裂和应力反演)研究中国大陆及东北日本的三维速度结构。研究结果对理解这两个地区的地震活动构造和地球动力学过程有重要的意义。
     东北日本是大地震发生最频繁的地区之一,大多数地震发生在日本海东缘的地壳内和西太平洋俯冲带的逆冲断层带上。为了研究这些地震的发震原因,本论文利用大量经过sP深度震相重定位的海底地震到时数据反演震源区的三维速度结构。地壳内的大地震大多发生在低速异常区及其边缘。这些区域代表了地壳内受流体作用或岩浆影响而变薄弱的地方,在应力积累的过程中,这里最先发生破裂。俯冲带逆冲断层带是世界上绝大多数八级以上特大地震发生的地方。地震层析成像显示特大地震大多发生在高速异常区。这些区域可能对应着太平洋板块俯冲之前的海岭和海山地区,他们与上覆板块的拼贴结合更加紧密、更容易产生应力的集中而发生大地震,例如2011年3月11日发生在东北日本的9级巨震。
     东北日本也是世界上最典型的板块俯冲带。利用地震层析成像和横波分裂方法获得了该区速度结构的横向不均一性和各向异性。结果显示,在地幔楔中广泛分布着低速异常,从火山前线一直延伸到弧后地区,其各向异性快波方向与俯冲方向一致。这表明被俯冲太平洋板片带下去的含水矿物在深部发生了脱水作用,并随着地幔楔中的上升流被运移到浅部。由于俯冲引起的弧后扩张及地幔楔内的次级对流造成了橄榄石晶体定向排列,其快波方向与俯冲方向平行。俯冲的太平洋板片表现为明显的高速异常,其各向异性快波方向与海沟平行。它可能是保留在板片里的、板块在洋中脊处形成时的各向异性,也可能反映了板片俯冲过程中受到挤压而在板片上部形成的断层、微裂隙和橄榄石晶体的定向排列。应力场反演结果表明东北日本地壳的主压应力方向(WNW-ESE)与太平洋板块俯冲方向一致。由于受到地壳流体和火山前线高温岩浆的影响,东北日本的地壳强度变得很弱。台湾地区是由于欧亚板块和菲律宾海板块相互作用而形成的特殊的俯冲带和碰撞带。远震层析成像结果表明在台湾南部,欧亚板块(南中国海板块)向菲律宾海板块下方俯冲;在台湾北部,俯冲的欧亚板块被折断,菲律宾海板块转而向欧亚板块俯冲。东亚地区大规模的俯冲作用,造成了新生代该区强烈的地幔上升流,降低了上地幔的地震波速度。
     通过对138个固定台站横波分裂的研究,获得了中国大陆上地幔各向异性及岩石圈和软流圈地幔变形的重要信息。整体上,中国东部的快波方向(WNW-ESE)与绝对板块运动方向和GPS观测的地壳运动方向一致。这表明中国东部的横波分裂主要是由绝对板块运动引起的软流圈内橄榄石晶体的定向排列引起的;而岩石圈变形较弱,对横波分裂的影响较小。在中国西部,快波方向与地表造山带和断层的走向平行,又与水平主压应力方向垂直。这表明由于岩石圈变形引起的岩石圈各向异性是造成横波分裂的重要原因。同时,快波方向也和中国西部的绝对板块运动方向也具有良好的相关性。因此,软流圈内的各向异性也是观测到的横波分裂的重要原因。需要强调的是,由于受到印度板块-欧亚板块陆陆碰撞的影响,中国西部是世界上岩石圈变形最强烈的地区。但即使这样,软流圈内依然发育了十分稳定的各向异性组构。从地震波各向异性的研究结果来看,软流圈的地球动力学演化是相对独立的过程,很少受上覆岩石圈变形的影响。
East Asia is located in the southeastern part of the Eurasian plate where four ma-jor plates are interacting with each other and form subduction zones, active orogens and broad continental diffusion that spreads thousands of kilometers. The present thesis fo-cuses on revealing the seismic structure beneath Mainland China and Northeast Japan by seismological studies, including seismic tomography, shear-wave splitting and stress tensor inversion. The results enable us to better understand the seismotectonics and geo-dynamics in these regions.
     Northeast Japan is one of the most active regions where many large earthquakes oc-cur frequently. Most of these large earthquakes occurred in the eastern margin of the Japan Sea and in the interplate thrust zone under the Pacific Ocean. To study the seis-motectonics in Northeast Japan, we determined high-resolution three-dimensional (3-D) velocity structure in the source areas of these earthquakes by jointly using the arrival-time data from many suboceanic earthquakes that are well relocated with sP depth phases. Many large intraplate crustal earthquakes occurred in or around low-velocity zones which may represent weak sections of the seismogenic crust. Strong heterogeneities are imaged above the subducting Pacific slab under the Pacific Ocean and most large thrust-type in-terplate earthquakes occurred in the high-velocity areas where the Pacific slab and the overriding continental plate may be strongly coupled. Compared with the adjacent low-velocity areas where fluids may exist, stress tends to accumulate near the high-velocity areas and leads to large earthquakes, such as the Tohoku-oki earthquake (M 9.0) occurring on March 11,2011.
     To better understand the geodynamics in the subduction zone, we determined high-resolution 3-D velocity structure as well as the anisotropic structure beneath Northeast iv Ph.D. Thesis, Nanjing University-by Z.Huang (DG0829022)
     Japan. A notable low-velocity zone is imaged in the mantle wedge with significant along-arc variations under the volcanic front, and it extends westward under the Japan Sea in the back-arc. P-wave anisotropy tomography reveals predominant E-W (subduction-parallel) anisotropy in the mantle wedge, which is consistent with the shear-wave splitting mea-surements for intermediate-depth earthquakes in the subducting slab. These results in-dicate that the fluids brought downward by the subducting Pacific slab are released into the mantle wedge by dehydration and are subsequently transported to surface by the up-welling flow in the mantle wedge. The subduction-parallel anisotropy is the result of the lattice-preferred orientation (LPO) of olivine caused by the back-arc spreading due to the subduction of the Pacific plate and the induced mantle-wedge convection. In contrast, high-velocity anomalies and nearly N-S (trench-parallel) anisotropy are imaged in the subducting Pacific slab. The anisotropy may either represent the original fossil anisotropy when the Pacific plate formed in the mid-ocean ridge or reflect the trench-parallel crys-tallographic and shaped preferred orientation in the subducting slab due to the slab bend-ing. Stress inversion result indicates that the maximal horizontal stress (WNW-ESE) is subparallel to the motion direction of the Pacific plate relative to Northeast Japan. The seismogenic layer in Northeast Japan is very weak because of the abundant fluids as well as the high-temperature magma beneath the volcanic front. Taiwan orogen resulting from the interaction between the Eurasian and Philippine Sea (PHS) plates is a subduction and collision zone. Teleseismic tomography using 5671 relative travel-time residuals in Southeast China indicates that the Eurasian plate is subducting eastward beneath the PHS plate under South Taiwan, while in North Taiwan, the subducted Eurasian plate is broken-off and the subduction is flipped, i.e., the PHS plate is subducting beneath the Eurasian plate. The subduction in East Asia may have driven extensive upwelling mantle flow from the lower mantle during the Cenozoic which results in extensive low-velocity anomalies in the upper mantle.
     Shear-wave splitting at 138 permanent seismograph stations provides important con-straints on seismic anisotropy and mantle dynamics under Mainland China. The results show that the fast orientations (p of the anisotropy (WNW-ESE) in eastern China are gen-erally consistent with the absolute plate motion (APM) direction of the Eurasian plate and the crustal movement revealed by GPS, suggesting that the anisotropy is mainly lo-cated in the asthenosphere resulting from the LPO of olivine due to the shear deformation there. The fast axes in western China generally agree with the strikes of the orogens and active faults, while they are perpendicular to the direction of the maximum horizontal stress, suggesting that the anisotropy in the lithosphere contributes significantly to the observed shear-wave splitting. The fast axes in western China are also consistent with the APM direction, suggesting that the APM-driven anisotropy in the asthenosphere is another source of the shear-wave splitting there. These results suggest that APM-driven anisotropy commonly exists under continents, similar to that under oceanic regions, even though the continental lithosphere has suffered extensive deformation.
引文
Abdelwahed, M., and D. Zhao (2007), Deep structure of the Japan subduction zone, Phys. Earth Planet. Inter.,162,32-52.
    Abe, S., H. Saito, H. Sato, S. Koshiya, N. Kato, K. Shiraishi, and T. Kawanaka (2008), Multidisciplinary seismic survey across the Kitakami Lowland, Northeast Japan, in Japan Geoscience Union Meeting, pp. S147-010, Chiba, Japan.
    Abers, G., and J. W. Gephart (2001), Direct inversion of earthquake first motions for both the stress tensor and focal mechanisms and application to southern California, J. Geophys. Res.,106,26,523-26,540.
    Ai, Y., Y. Chen, F. Zeng, X. Hong, and W. Ye (2007), The crust and upper mantle structure beneath southeastern China, Earth Planet. Sci. Lett.,260,549-563.
    Aki, K., and W. Lee (1976), Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes. Part I:a homogeneous initial model, J. Geophys. Res.,81,4381-4399.
    Aki, K., E. Husebye, A. Christoffersson, and C. Powell (1974), Three-dimensional seis-mic velocity anomalies in the crust and upper mantle under the USGS California seis-mic array, EOS Trans. AGU,56,1145.
    Aki, K., A. Christoffersson, and E. S. Husebye (1977), Determination of the three-dimensional seismic structure of the lithosphere, J. Geophys. Res.,82,277-296.
    Almeida, R., J. Chester, F. Chester, T. Waller, and D. Kirschner (2005), Lithology and structure of SAFOD Phase I core samples, EOS Trans. AGU,86, T21A-0454.
    Alsina, D., and R. Snieder (1995), Small-scale sublithospheric continental mantle defor-mation:constraints from SKS splitting observations, Geophys. J. Int.,123,431-448.
    An, M., and Y. Shi (2006), Lithospheric thickness of the Chinese continent, Phys. Earth Planet. Inter.,159,257-266.
    Ando, M., Y. Ishikawa, and H. Wada (1980), S-wave anisotropy in the upper mantle under a volcanic area in Japan, Nature,286,43-46.
    Ando, M., Y. Ishikawa, and F. Yamazaki (1983), Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan, J. Geophys. Res.,88,5850-5864.
    Ando, R., and S. Okuyama (2010), Deep roots of upper plate faults and earthquake gen-eration illuminated by volcanism, Geophys. Res. Lett.,37, L10308.
    Asano, K., and T. Iwata (2010), Characterization of stress drops on asperities estimated from heterogeneous kinematic slip model for strong motion prediction for inland crustal earthquakes in Japan, Pure Appl. Geophys.,168,105-116.
    Aster, R., B. Borchers, and C. Thurber (2005), Parameter estimation and inverse prob-lems,296 pp., Elsevier, London.
    Audoine, E., M. K. Savage, and K. Gledhill (2004), Anisotropic structure under a back arc spreading region, the Taupo Volcanic Zone, New Zealand, J. Geophys. Res.,109, L11305.
    Backus, G., and F. Gilbert (1968), The resolving power of gross Earth data, Geophys. J. Int.,16,169-205.
    Bai, L., T. Iidaka, H. Kawakatsu, Y. Morita, and N. Dzung (2009), Upper mantle anisotropy beneath Indochina block and adjacent regions from shear-wave splitting analysis of Vietnam broadband seismograph array data, Phys. Earth Planet. Inter.,176, 33-43.
    Bai, L., H. Kawakatsu, and Y. Morita (2010), Two anisotropic layers in central orogenic belt of North China Craton, Tectonophysics,494,138-148.
    Barruol, G., A. Deschamps, J. Deverchere, V. Mordvinova, M. Ulziibat, J. Perrot, S. Artemiev, T. Dugarmaa, and G. Bokelmann (2008), Upper mantle flow beneath and around the Hangay Dome, central Mongolia, Earth Planet. Sci. Lett.,274,221-233.
    Bassin, C, G. Laske, and G. Masters (2000), The current limits of resolution for surface wave tomography in North America, EOS Trans. AGU,81, F897.
    Becker, T. W., S. Chevrot, V. Schulte-Pelkum, and D. K. Blackman (2006), Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models, J. Geophys. Res., 111, B08309.
    Becker, T. W., B. Kustowski, and G. Ekstrom (2008), Radial seismic anisotropy as a constraint for upper mantle rheology, Earth Planet. Sci. Lett.,267,213-227.
    Ben Ismail, W., and D. Mainprice (1998), An olivine fabric database:an overview of upper mantle fabrics and seismic anisotropy, Tectonophysics,296,145-157.
    Bijwaard, H., W. Spakman, and E. R. Engdahl (1998), Closing the gap between regional and global travel time tomography, J. Geophys. Res.,103,30,055-30,078.
    Bird, P. (2003), An updated digital model of plate boundaries, Geochem. Geophys. Geosyst.,4,1027.
    Bowman, J. R., and M. Ando (1987), Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone, Geophys. J. Int.,88,25-41.
    Cagnioncle, A.-M., E. M. Parmentier, and L. T. Elkins-Tanton (2007), Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries, J. Geophys. Res.,112, B09402.
    Cappa, F., Y. Guglielmi, and J. Virieux (2007), Stress and fluid transfer in a fault zone due to overpressures in the seismogenic crust, Geophys. Res. Lett.,34, L05301.
    Chai, B. (1972), Structure and tectonic evolution of Taiwan, Am. J. Sci.,272,389-422.
    Chang, L., C. Wang, and Z. Ding (2009), Seismic anisotropy of upper mantle in eastern China, Sci. China D:Earth Sci.,39,1169-1178.
    Charvet, J., L. Shu, Y. Shi, L. Guo, and M. Faure (1996), The building of south China: collision of Yangzi and Cathaysia blocks, problems and tentative answers, J. SE Asian Earth Sci.,13,223-235.
    Chemenda, A., R. Yang, E. Stephan, J., Konstantinovskaya, and G. Ivanov (2001), New results from physical modelling of arc-continent collision in Taiwan:evolutionary model, Tectonophysics,333,159-178.
    Chen, J., and B. Jahn (1998), Crustal evolution of southeastern China:Nd and Sr isotopic evidence, Tectonophysics,284,101-133.
    Chen, L., W. Tao, L. Zhao, and T. Zheng (2008), Distinct lateral variation of lithospheric thickness in the northeastern North China Craton, Earth Planet. Sci. Lett.,267,56-68.
    Chen, R.-Y., H. Kao, W.-T. Liang, T.-C. Shin, Y.-B. Tsai, and B.-S. Huang (2009), Three-dimensional patterns of seismic deformation in the Taiwan region with special impli-cation from the 1999 Chi-Chi earthquake sequence, Tectonophysics,466,140-151.
    Chen, W.-P., M. Martin, T.-L. Tseng, R. L. Nowack, S.-H. Hung, and B.-S. Huang (2010), Shear-wave birefringence and current configuration of converging lithosphere under Tibet, Earth Planet. Sci. Lett.,295,297-304.
    Chen, Y., L. Wang, N. Mi, H. Li, D. Yu, M. Xu, S. Liu, C. Li, and Z. Xu (2005), Shear wave splitting observations in the Chinese Tianshan orogenic belt, Geophys. Res. Lett., 32, L07306.
    Cheng, B., D. Zhao, and G. Zhang (2011), Seismic tomography and anisotropy in the source area of the 2008 Iwate-Miyagi earthquake (M 7.2), Phys. Earth Planet. Inter., 184,172-185.
    Cheng, W.-B. (2009), Tomographic imaging of the convergent zone in eastern Taiwan — a subducting forearc sliver revealed?, Tectonophysics,466,170-183.
    Chevrot, S. (2000), Multichannel analysis of shear wave splitting,J.Geophys. Res.,105, 21,579-21,590.
    Clark, M. K., and L. H. Royden (2000), Topographic ooze:building the eastern margin of Tibet by lower crustal flow, Geology,28,703-706.
    Conrad, C. P., M. D. Behn, and P. G. Silver (2007), Global mantle flow and the devel-opment of seismic anisotropy:differences between the oceanic and continental upper mantle, J. Geophys. Res.,112, B07317.
    Crampin, S. (1984), Effective anisotropic elastic constants for wave propagation through cracked solids, Geophys. J. Int.,76,135-145.
    Crampin, S., and S. Peacock (2008), A review of the current understanding of seismic shear-wave splitting in the Earth's crust and common fallacies in interpretation, Wave Motion,45,675-722.
    Crampin, S., S. Peacock, Y. Gao, and S. Chastin (2004), The scatter of time-delays in shear-wave splitting above small earthquakes, Geophys. J. Int.,156,39-44.
    Dalton, C. A., G. Ekstrom, and A. M. Dziewonski (2008), The global attenuation structure of the upper mantle, J. Geophys. Res.,113, B09303.
    Davies, J., and F. von Blankenburg (1995), Slab breakoff:a model of lithosphere de-
    tachment and its test in the magmatism and deformation of collisional orogens, Earth Planet. Sci. Lett.,129,85-102.
    Debayle, E., B. Kennett, and K. Priestly (2005), Global azimuthal seismic anisotropy and the unusuall plate-motion deformation of Australia, Nature,433,509-512.
    Dricker, I. G., S. W. Roecker, L. P. Vinnik, E. A. Rogozhin, and L. I. Makeyeva (2002), Upper-mantle anisotropy beneath the Altai-Sayan region of central Asia, Phys. Earth Planet. Inter.,131,205-223.
    Duan, Y., D. Zhao, X. Zhang, S. Xia, Z. Liu, F. Wang, and L. Li (2009), Seismic structure and origin of active intraplate volcanoes in Northeast Asia, Tectonophysics,470,257-266.
    Dziewonski, A. M. (1984), Mapping the lower mantle:determination of lateral hetero-geneity in P velocity up to degree and order 6, J. Geophys. Res.,89,5929-5952.
    Dziewonski, A. M, and J. H. Woodhouse (1983), An experiment in systematic study of global seismicity:centroid-moment tensor solutions for 201 moderate and large earthquakes of 1981, J. Geophys. Res.,88,3241-3271.
    Eberhart-Phillips, D., and M. Reyners (2009), Three-dimensional distribution of seismic anisotropy in the Hikurangi subduction zone beneath the central North Island, New Zealand, J. Geophys. Res.,114, B06301.
    Engdahl, E. R., and W. Lee (1976), Relocation of local earthquakes by seismic ray tracing, J. Geophys. Res.,81,4400-4406.
    Engdahl, E. R., R. van der Hilst, and R. Buland (1998), Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, Bull. Seism. Soc. Am.,88,122-143.
    Faccenda, M., L. Burlini, T. V. Gerya, and D. Mainprice (2008), Fault-induced seismic anisotropy by hydration in subducting oceanic plates, Nature,455,1097-1100.
    Favier, N., and S. Chevrot (2003), Sensitivity kernels for shear wave splitting in transverse isotropic media, Geophys. J. Int.,153,213-228.
    Fedorov, P., and A. Koloskov (2005), Cenozoic volcanism of Southeast Asia, Petrology, 13,352-380.
    Flesch, L. M., W. E. Holt, P. G. Silver, M. Stephenson, C. Wang, and W. W. Chan (2005), Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data, Earth Planet. Sci. Lett.,238,248-268.
    Fouch, M., and S. Rondenay (2006), Seismic anisotropy beneath stable continental inte-riors, Phys. Earth Planet. Inter.,158,292-320.
    Foulger, G. R. (2010), Plates vs. plumes:a geological controversy,364 pp., Wiley-Blackwell, Oxford.
    Francis, T. (1969), Generation of seismic anisotropy in the upper mantle along the mid-oceanic ridges, Nature,221,162-165.
    Fu, Y., Y. Chen, A. Li, S. Zhou, X. Liang, G. Ye, G. Jin, M. Jiang, and J. Ning (2008), Indian mantle corner flow at southern Tibet revealed by shear wave splitting measure-ments, Geophys. Res. Lett.,35, L02308.
    Fu, Y., Y. Chen, and A. Li (2010), Seismic anisotropy beneath the Chinese mainland, Earthq.Sci.,23,583-595.
    Fukahata, Y., Y. Fukushima, and M. Arimoto (2008), Slip distribution of the 2008 Iwate-Miyagi Nairiku, Japan, earthquake inverted from PALSAR data, in AGU Fall Meeting, San Francisco, CA.
    Fukao, Y. (1984), Evidence from core-reflected shear waves for anisotropy in the Earth's mantle, Nature,309,695-698.
    Fukao, Y., and M. Furumoto (1975), Mechanism of large earthquakes along the eastern margin of the Japan sea, Tectonophysics,26,247-266.
    Fukao, Y., S. Widiyantoro, and M. Obayashi (2001), Stagnant slabs in the upper and lower mantle transition region, Rev. Geophys.,39,291-323.
    Fukuyama, E., M. Ishida, D. Dreger, and H. Kawai (1998), Automated seismic moment tensor determination by using on-line broadband seismic waveforms, J. Seism. Soc. Japan,51,149-156.
    Furukawa, Y.(1993), Depth of the decoupling plate interface and thermal structure under arcs, J. Geophys. Res.,98,20,005-20,013.
    Gamage, S. S. N., N. Umino, A. Hasegawa, and S. H. Kirby (2009), Offshore double-planed shallow seismic zone in the NE Japan forearc region revealed by sP depth phases recorded by regional networks, Geophys. J. Int.,178,195-214.
    Gao, S. S., and K. H. Liu (2009), Significant seismic anisotropy beneath the southern Lhasa terrane, Tibetan Plateau, Geochem. Geophys. Geosyst.,10, Q02008.
    Gao, S. S., P. Davis, H. Liu, P. D. Slack, Y. A. Zorin, V. V. Mordvinova, V. Kozhevnikov, and R. P. Meyer (1994), Seismic anisotropy and mantle flow beneath the Baikal rift zone, Nature,371,149-151.
    Gephart, J. W., and D. W. Forsyth (1984), An improved method for determining the re-gional stress tensor using earthquake focal mechanism data:application to the San Fernando earthquake sequence, J. Geophys. Res.,89,9305-9320.
    Gerya, T. V., and D. A. Yuen (2003), Rayleigh-Taylor instabilities from hydration and melting propel'cold plumes'at subduction zones, Earth Planet. Sci. Lett.,212,47-62.
    Gerya, T. V., J. A. Connolly, D. A. Yuen, W. Gorczyk, and A. Capel (2006), Seismic implications of mantle wedge plumes, Phys. Earth Planet. Inter.,156,59-74.
    Gorbatov, A., J. Dominguez, G. Suarez, V. Kostoglodov, D. Zhao, and E. Gordeev (1999), Tomographic imaging of the P-wave velocity structure beneath the Kamchatka penin-sula, Geophys. J. Int.,137,269-279.
    Gorczyk, W., T. V. Gerya, J. A. Connolly, D. A. Yuen, and M. Rudolph (2006), Large-scale rigid-body rotation in the mantle wedge and its implications for seismic tomog-raphy, Geochem. Geophys. Geosyst.,7, Q05018.
    Grand, S. P., R. D. Van Der Hilst, and S. Widiyantoro (1997), Global seismic tomography: a snapshot of convection in the Earth, GSA Today,7,1-7.
    Greve, S. M., and M. K. Savage (2009), Modelling seismic anisotropy variations across the Hikurangi subduction margin, New Zealand, Earth Planet. Sci. Lett.,285,16-26.
    Griffin, W., A. Zhang, S. Y. O'Reilly, and C. G. Ryan (1998), Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton, in Mantle dynamics and plate interactions in East Asia, edited by M. Flower, S. Chung, C. Lo, and T. Y. Lee, pp.107-126, AGU, Washington, D.C.
    Gripp, A., and R. G. Gordon (2002), Young tracks of hotspots and current plate velocities, Geophys. J. Int.,150,321-261.
    Gung, Y., M. Panning, and B. Romanowicz (2003), Global anisotropy and the thickness of continents, Nature,422,707-711.
    Hall, C. E., K. M. Fischer, E. M. Parmentier, and D. K. Blackman (2000), The influence of plate motions on three-dimensional back arc mantle flow and shear wave splitting, J. Geophys. Res.,105,28,009-28,033.
    Hall, P., and C. Kincaid (2001), Diapiric flow at subduction zones:a recipe for rapid transport, Science,292,2472-2475.
    Hardebeck, J. L., and E. Hauksson (1999), Role of fluids in faulting inferred from stress field signatures, Science,285,236-239.
    Hardebeck, J. L., and E. Hauksson (2001), Crustal stress field in southern California and its implications for fault mechanics, J. Geophys. Res.,106,21,859-21,882.
    Hasegawa, A., and A. Yamamoto (1994), Deep, low-frequency microearthquakes in or around seismic low-velocity zones beneath active volcanoes in northeastern Japan, Tectonophysics,233,233-252.
    Hasegawa, A., N. Umino, and A. Takagi (1978), Double-planed structure of the deep seismic zone in the northeastern Japan arc, Tectonophysics,47,43-58.
    Hasegawa, A., J. Nakajima, N. Uchida, T. Okada, D. Zhao, T. Matsuzawa, and N. Umino (2009), Plate subduction, and generation of earthquakes and magmas in Japan as in-ferred from seismic observations:an overview, Gondwana Res.,16,370-400.
    He, R., D. Zhao, R. Gao, and H. Zheng (2010), Tracing the Indian lithospheric mantle beneath central Tibetan Plateau using teleseismic tomography, Tectonophysics,491, 230-243.
    Healy, D., S. M. Reddy, N. E. Timms, E. M. Gray, and A. V. Brovarone (2009), Trench-parallel fast axes of seismic anisotropy due to fluid-filled cracks in subducting slabs, Earth Planet. Sci. Lett.,283,75-86.
    Heidbach, O., M. Tingay, A. Barth, J. Reinecker, D. Kurfeβ, and B. Muller (2010), Global crustal stress pattern based on the World Stress Map database release 2008, Tectono-physics,482,3-15.
    Helmberger, D. V., X. J. Song, and L. Zhu (2001), Crustal complexity from regional wave-form tomography:aftershocks of the 1992 Landers earthquake, California, J. Geophys. Res.,106,609-620.
    Herquel, G., and P. Tapponnier (2005), Seismic anisotropy in western Tibet, Geophys. Res. Lett.,32, L17306.
    Hess, H. (1964), Seismic anisotropy of the uppermost mantle under oceans, Nature,203, 629-632.
    Hok, S., and E. Fukuyama (2011), A new BIEM for rupture dynamics in half-space and its application to the 2008 Iwate-Miyagi Nairiku earthquake, Geophys. J. Int.,184, 301-324.
    Holtzman, B. K., D. L. Kohlstedt, M. E. Zimmerman, F. Heidelbach, T. Hiraga, and J. Hustoft (2003), Melt segregation and strain partitioning:implications for seismic anisotropy and mantle flow, Science,301,1227-1230.
    Honda, S., and M. Saito (2003), Small-scale convection under the back-arc occurring in the low viscosity wedge, Earth Planet. Sci. Lett.,216,703-715.
    Honda, S., M. Saito, and T. Nakakuki (2002), Possible existence of small-scale convection under the back arc, Geophys. Res. Lett.,29,2043.
    Horiguchi, K., and J. Matsuda (2008), On the change of 3He/4He ratios in hot spring gases after the Iwate-Miyagi Nairiku earthquake in 2008, Geochem. J.,42, el-e4.
    Horikawa, H. (2006), Rupture process of the 2005 West Off Fukuoka Prefecture, Japan, earthquake, Earth Planets Space,58,87-92.
    Horiuchi, S., G. Rocco, and A. Hasegawa (1995), Discrimination of fault planes from aux-iliary planes based on simultaneous determination of stress tensor and a large number of fault plane solutions, J. Geophys. Res.,100,8327-8338.
    Hu, S., and J. Wang (2000), Heat flow, deep temperature and thermal structure across the orogenic belts in Southeast China, J. Geodyn.,30,461-473.
    Hu, S., L. He, and J. Wang (2000), Heat flow in the continental area of China:a new data set, Earth Planet. Sci. Lett.,179,407-419.
    Huang, J., and D. Zhao (2004), Crustal heterogeneity and seismotectonics of the region around Beijing, China, Tectonophysics,385,159-180.
    Huang, J., and D. Zhao (2006), High-resolution mantle tomography of China and sur-rounding regions, J. Geophys. Res., 111, B09305.
    Huang, W.-C., et al. (2000), Seismic polarization anisotropy beneath the central Tibetan Plateau, J. Geophys. Res.,105,27,979-27,989.
    Huang, Z., L. Wang, M. Xu, J. Liu, N. Mi, and S. Liu (2007), Shear wave splitting across the Ailao Shan-Red River fault zone, SW China, Geophys. Res. Lett.,34, L20301.
    Huang, Z., M. Xu, L. Wang, N. Mi, D. Yu, and H. Li (2008), Shear wave splitting in the southern margin of the Ordos Block, north China, Geophys. Res. Lett.,35, L19301.
    Huang, Z., D. Zhao, N. Umino, L. Wang, T. Matsuzawa, A. Hasegawa, and T. Yoshida (2010a), P-wave tomography, anisotropy and seismotectonics in the eastern margin of Japan Sea, Tectonophysics,489,177-188.
    Huang, Z., L. Wang, D. Zhao, M. Xu, N. Mi, D. Yu, H. Li, and C. Li (2010b), Upper mantle structure and dynamics beneath Southeast China, Phys. Earth Planet. Inter., 182,161-169.
    Huang, Z., D. Zhao, and L. Wang (2011a), Seismic heterogeneity and anisotropy of the Honshu arc from the Japan Trench to the Japan Sea, Geophys. J. Int.,184,1428-1444.
    Huang, Z., D. Zhao, and L. Wang (2011b), Shear wave anisotropy in the crust, man-tle wedge, and subducting Pacific slab under northeast Japan, Geochem. Geophys. Geosyst.,12, Q01002.
    Humphreys, E., and R. W. Clayton (1988), Adaptation of back projection tomography to seismic travel time problems, J. Geophys. Res.,93,1073-1085.
    Hyndman, R. D., and S. M. Peacock (2003), Serpentinization of the forearc mantle, Earth Planet. Sci. Lett.,212,417-432.
    Igarashi, T., T. Matsuzawa, and A. Hasegawa (2003), Repeating earthquakes and inter-plate aseismic slip in the northeastern Japan subduction zone, J. Geophys. Res.,108, 2249.
    Iidaka, T., and F. Niu (2001), Mantle and crust anisotropy in the eastern China region inferred from waveform splitting of SKS and PpSms, Earth Planets Space,53,159-168.
    Inoue, H., Y. Fukao, and K. Tanabe (1990), Whole mantle P-wave travel time tomography, Phys. Earth Planet. Inter.,59,294-328.
    Isezaki, N., and H. Miki (1978), A compilation of magnetic data in the northwestern Pacific and in the Philippine Sea, J. Phys. Earth, S26, S403-S407.
    Ishise, M., and H. Oda (2005), Three-dimensional structure of P-wave anisotropy beneath the Tohoku district, northeast Japan, J. Geophys. Res.,110, B07304.
    Iwamori, H. (1998), Transportation of H2O and melting in subduction zones, Earth Planet. Sci. Lett.,160,65-80.
    Iwamori, H., and D. Zhao (2000), Melting and seismic structure beneath the Northeast Japan arc, Geophys. Res. Lett.,27,425-428.
    Iwasaki, T., and H. Sato (2009), Crust and upper mantle structure of island arc being elucidated from seismic profiling with controlled sources in Japan, J. Seism. Soc. Japan, 67, S165-S176.
    Jahn, B., X. Zhou, and J. Li (1990), Formation and tectonic evolution of southeastern China and Taiwan:isotopic and geochemical constraints, Tectonophysics,183,145-160.
    Jiang, G., D. Zhao, and G. Zhang (2008), Seismic evidence for a metastable olivine wedge in the subducting Pacific slab under Japan Sea, Earth Planet. Sci. Lett.,270,300-307.
    Jiang, G., D. Zhao, and G. Zhang (2009), Seismic tomography of the Pacific slab edge under Kamchatka, Tectonophysics,465,190-203.
    Jin, S., P. Park, and W. Zhu (2007), Micro-plate tectonics and kinematics in Northeast Asia inferred from a dense set of GPS observations, Earth Planet. Sci. Lett.,257,486-496.
    Jung, H., and S.-i. Karato (2001), Water-induced fabric transitions in olivine, Science, 293,1460-1463.
    Kanamori, H. (1981), The nature of seismicity patterns before large earthquakes, in Earth-quake prediction:an international review, edited by D. Simpson and P. G. Richards, pp.1-19, AGU, Washington, D. C.
    Kaneshima, S. (1990), Origin of crustal anisotropy:shear wave splitting studies in Japan, J. Geophys. Res.,95,11,121-11,133.
    Kao, H., S. Shen, and K. Ma (1998), Transition from oblique subduction to collision: earthquakes in the southernmost Ryukyu arc-Taiwan region, J. Geophys. Res.,103, 7211-7229.
    Kao, H., G.-C. Huang, and C.-S. Liu (2000), Transition from oblique subduction to colli-sion in the northern Luzon arc-Taiwan region:constraints from bathymetry and seismic observations, J. Geophys. Res.,105,3059-3079.
    Karato, S.-i., H. Jung, I. Katayama, and P. Skemer (2008), Geodynamic significance of seismic anisotropy of the upper mantle:new insights from laboratory studies, Ann. Rev. Earth Planet. Sci.,36,59-95.
    Katayama, I. (2009), Thin anisotropic layer in the mantle wedge beneath northeast Japan, Geology,37,211-214.
    Kawakatsu, H., and S. Watada (2007), Seismic evidence for deep water transportation in the mantle, Science,316,1468-1471.
    Kawasaki, I. (1986), Azimuthally anisotropic model of the oceanic upper mantle, Phys. Earth Planet. Inter.,43,1-21.
    Kawasaki, I., Y. Asaib, and Y. Tamura (2001), Space-time distribution of interplate moment release including slow earthquakes and the seismo-geodetic coupling in the Sanriku-oki region along the Japan Trench, Tectonophysics,330,267-283.
    Kennett, B., and E. R. Engdahl (1991), Traveltimes for global earthquake location and phase identification, Geophys. J. Int.,105,429-465.
    Kincaid, C., and I. S. Sacks (1997), Thermal and dynamical evolution of the upper mantle in subduction zones, J. Geophys. Res.,102,12,295-12,315.
    Kobayashi, K., M. Nakanishi, K. Tamaki, and Y. Ogawa (1998), Outer slope faulting associated with the western Kuril and Japan trenches, Geophys. J. Int.,134,356-372.
    Kreemer, C. (2009), Absolute plate motions constrained by shear wave splitting orienta-tions with implications for hot spot motions and mantle flow, J. Geophys. Res.,114, B10405.
    Kustowski, B., G. Ekstrom, and A. M. Dziewonski (2008), Anisotropic shear-wave ve-locity structure of the Earth's mantle:a global model, J. Geophys. Res.,113, B06306.
    Lallemand, S. E., Y. Font, H. Bijwaard, and H. Kao (2001), New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications, Tectonophysics, 335,229-253.
    Lapierre, H., B. Jahn, J. Charvet, and Y. Yu (1997), Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with the tec-tonic activity in southeastern China, Tectonophysics,274,321-338.
    Leary, P. C., S. Crampin, and T. V. McEvilly (1990), Seismic fracture anisotropy in the Earth's crust:an overview, J. Geophys. Res.,95,11,105-11,114.
    Lee, C. T., and W.-B. Cheng (1986), Preliminary heat-flow measurements in Taiwan, in The 4th Circum-Pacific Energy and Mineral Resources Conference, pp.31-36, Singa-pore.
    Lees, J. M., and R. S. Crosson (1989), Tomographic inversion for three-dimensional at Mount St. Helens using earthquake data, J. Geophys. Res.,94,5716-5728.
    Lei, J., and D. Zhao (2005), P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia, Tectonophysics,397,281-295.
    Lei, J., and D. Zhao (2009), Structural heterogeneity of the Longmenshan fault zone and the mechanism of the 2008 Wenchuan earthquake (Ms 8.0), Geochem. Geophys. Geosyst.,10, Q10010.
    Lei, J., D. Zhao, and Y. Su (2009), Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data, J. Geophys. Res.,114, B05302.
    Lev, E., M. D. Long, and R. D. Van Der Hilst (2006), Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation, Earth Planet. Sci. Lett.,251,293-304.
    Levin, V., W. Menke, and J. Park (1999), Shear wave splitting in the Appalachians and the Urals:a case for multilayered anisotropy, J. Geophys. Res.,104,17,975-17,993.
    Li, A., and C. Chen (2006), Shear wave splitting beneath the central Tien Shan and tec-tonic implications, Geophys. Res. Lett.,33, L22303.
    Li, C, R. D. Van Der Hilst, A. Meltzer, and E. R. Engdahl (2008), Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma, Earth Planet. Sci. Lett., 274,157-168.
    Li, J., and F. Niu (2010), Seismic anisotropy and mantle flow beneath northeast China inferred from regional seismic networks, J. Geophys. Res.,115, B12327.
    Li, Y., Q. Wu, L. Jiang, and R. Zhang (2010), Complex seismic anisotropic structure beneath the central Tien Shan revealed by shear wave splitting analyses, Geophys. J. Int.,181,1678-1686.
    Li, Y, Q. Wu, F. Zhang, Q. Feng, and R. Zhang (2011), Seismic anisotropy of the North-eastern Tibetan Plateau from shear wave splitting analysis, Earth Planet. Sci. Lett.,304, 147-157.
    Li, Z.-X., and X.-H. Li (2007), Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:a flat-slab subduction model, Geology,35,179-182.
    Li, Z.-X., Y. Xu, and T. Hao (2009), Vp and Vp/Vs structures in the crust and upper mantle of the Taiwan region, Sci. China D:Earth Sci.,52,975-983.
    Liu, K. H., S. S. Gao, Y. Gao, and J. Wu (2008a), Shear wave splitting and mantle flow associated with the deflected Pacific slab beneath northeast Asia, J. Geophys. Res.,113, B01305.
    Liu, M., X. Cui, and F. Liu (2004), Cenozoic rifting and volcanism in eastern China:a mantle dynamic link to the Indo-Asian collision?, Tectonophysics,393,29-42.
    Liu, R., G. Xie, X. Zhou, W. Chen, and Q. Fan (1995), Tectonic environments of Cenozoic volcanic rocks in China and characteristics of the source regions in the mantle, Chinese J. Geochem.,14,289-302.
    Liu, Y., S. Crampin, and I. Main (1997), Shear-wave anisotropy:spatial and temporal variations in time delays at Parkfield, central California, Geophys. J. Int.,130,771-785.
    Liu, Y., H. Zhang, C. Thurber, and S. Roecker (2008b), Shear wave anisotropy in the crust around the San Andreas fault near Parkfield:spatial and temporal analysis, Geophys. J. Int.,172,957-970.
    Long, M. D. (2010), Frequency-dependent shear wave splitting and heterogeneous anisotropic structure beneath the Gulf of California region, Phys. Earth Planet. Inter., 182,59-72.
    Long, M. D., and T. W. Becker (2010), Mantle dynamics and seismic anisotropy, Earth Planet. Sci. Lett.,297,341-354.
    Long, M. D., and P. G. Silver (2008), The subduction zone flow field from seismic anisotropy:a global view, Science,319,315-318.
    Long, M. D., and P. G. Silver (2009a), Shear wave splitting and mantle anisotropy:mea-surements, interpretations, and new directions, Surv. Geophys.,30,407-461.
    Long, M. D., and P. G. Silver (2009b), Mantle flow in subduction systems:the subslab flow field and implications for mantle dynamics, J. Geophys. Res.,114, B10312.
    Long, M. D., and R. D. van der Hilst (2005), Upper mantle anisotropy beneath Japan from shear wave splitting, Phys. Earth Planet. Inter.,151,206-222.
    Ma, X. (1987), Summary of the lithospheric dynamics in China, Acta Geol. Sinica,61, 15-29.
    Ma, X. (1988), Lithospheric dynamics of China, Episodes,11,84-90.
    Mahan, K. (2006), Retrograde mica in deep crustal granulites:implications for crustal seismic anisotropy, Geophys. Res. Lett.,33, L24301.
    Mainprice, D. (2007), Seismic anisotropy of the deep Earth from a mineral and rock physics perspective, in Treatise on Geophysics, edited by G. Schubert, pp.431-492, Elsevier, Oxford.
    Malavieille, J., et al. (2002), Arc-continent collision in Taiwan:new marine observations and tectonic evolution, Geol. Soc. Am.,358,189-213.
    Marson-Pidgeon, K., and M. K. Savage (1997), Frequency-dependent anisotropy in Wellington, New Zealand, Geophys. Res. Lett.,24,3297-3300.
    Maruyama, S. (1994), Plume tectonics, J. Geol. Soc. Jpn.,100,24-49.
    Masson, D. G. (1991), Fault patterns at outer trench walls, Mar. Geophys. Res.,13,209-225.
    Matsuzawa, T., N. Umino, A. Hasegawa, and A. Takagi (1986), Upper mantle velocity structure estimated from Ps-converted wave beneath the north-eastern Japan arc, Geo-phys. J. Int.,86,767-787.
    Matsuzawa, T., T. Kono, A. Hasegawa, and A. Takagi (1990), Subducting plate boundary beneath the northeastern Japan arc estimated from SP converted waves, Tectonophysics, 181,123-133.
    McCaffrey, R. (2008), Global frequency of magnitude 9 earthquakes, Geology,36,263-
    McKenzie, D. P. (1969), The relation between fault plane solutions for earthquakes and the directions of the principal stresses, Bull. Seism. Soc. Am.,59,591-601.
    McNamara, D. E., T. J. Owens, P. G. Silver, and F. T. Wu (1994), Shear wave anisotropy beneath the Tibetan Plateau, J. Geophys. Res.,99,13,655-13,665.
    Menke, W., and V. Levin (2003), The cross-convolution method for interpreting SKS splitting observations, with application to one and two-layer anisotropic earth models, Geophys. J. Int.,154,379-392.
    Menzies, M., Y. Xu, H. Zhang, and W. Fan (2007), Integration of geology, geophysics and geochemistry:a key to understanding the North China Craton, Lithos,96,1-21.
    Michael, A. J. (1987), Stress rotation during the Coalinga aftershock sequence, J. Geo-phys. Res.,92,7963-7979.
    Michibayashi, K., N. Abe, A. Okamoto, T. Satsukawa, and K. Michikura (2006), Seis-mic anisotropy in the uppermost mantle, back-arc region of the northeast Japan arc: petrophysical analyses of Ichinomegata peridotite xenoliths, Geophys. Res. Lett.,33, L10312.
    Michibayashi, K., T. Oohara, T. Satsukawa, S. Ishimaru, S. Arai, and V. M. Okrugin (2009), Rock seismic anisotropy of the low-velocity zone beneath the volcanic front in the mantle wedge, Geophys. Res. Lett.,36, L12305.
    Mishra, O., and D. Zhao (2003), Crack density, saturation rate and porosity at the 2001 Bhuj, India, earthquake hypocenter:a fluid-driven earthquake?, Earth Planet. Sci. Lett., 212,393-405.
    Mishra, O. P., and D. Zhao (2004), Seismic evidence for dehydration embrittlement of the subducting Pacific slab, Geophys. Res. Lett.,31, L09610.
    Mishra, O. P., D. Zhao, N. Umino, and A. Hasegawa (2003), Tomography of northeast Japan forearc and its implications for interplate seismic coupling, Geophys. Res. Lett., 30,1850.
    Miura, S., T. Sato, A. Hasegawa, Y. Suwa, K. Tachibana, and S. Yui (2004), Strain con-centration zone along the volcanic front derived by GPS observations in NE Japan arc, Earth Planets Space,56,1347-1355.
    Miyatake, T., A. Kato, K. Hikima, and T. Kimura (2008), The effects of negative stress drop on the fault rupture —the 2004 mid-Niigata (Chuetsu), Japan, earthquake, Bull. Earthq. Res. Inst. Univ. Tokyo,83,273-279.
    Molnar, P., and P. Tapponnier (1975), Cenozoic tectonics of Asia:effects of a continental collision, Science,189,419-426.
    Monteiller, V., and S. Chevrot (2010), How to make robust splitting measurements for single-station analysis and three-dimensional imaging of seismic anisotropy, Geophys. J.Int.,182,311-328.
    Montelli, R., G. Nolet, F. Dahlen, G. Masters, E. R. Engdahl, and S.-H. Hung (2004), Finite-frequency tomography reveals a variety of plumes in the mantle, Science,303, 338-343.
    Mooney, W., G. Laske, and G. Masters (1998), CRUST 5.1:a global crustal model at 5°×5°, J. Geophys. Res.,103,727-747.
    Moschetti, M. P., M. H. Ritzwoller, F. Lin, and Y. Yang (2010), Seismic evidence for widespread western-US deep-crustal deformation caused by extension, Nature,464, 885-889.
    Nagai, R., M. Kikuchi, and Y. Yamanaka (2001), Comparative study on the source process of recurrent large earthquakes in Sanriku-oki region:the 1968 Tokachi-oki earthquake and the 1994 Sanriku-oki earthquake, J. Seism. Soc. Japan,54,267-280.
    Nakajima, J., and A. Hasegawa (2004), Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northeastern Japan, Earth Planet. Sci. Lett.,225,365-377.
    Nakajima, J., and A. Hasegawa (2008), Existence of low-velocity zones under the source areas of the 2004 Niigata-Chuetsu and 2007 Niigata-Chuetsu-Oki earthquakes inferred from travel-time tomography, Earth Planets Space,60,1127-1130.
    Nakajima, J., T. Matsuzawa, A. Hasegawa, and D. Zhao (2001), Three-dimensional struc-ture of Vp, Vs, and Vp/Vs beneath northeastern Japan:implications for arc magmatism and fluids, J. Geophys. Res.,106,21,843-21,857.
    Nakajima, J., Y. Takei, and A. Hasegawa (2005), Quantitative analysis of the inclined low-velocity zone in the mantle wedge of northeastern Japan:a systematic change of melt-filled pore shapes with depth and its implications for melt migration, Earth Planet. Sci. Lett.,234,59-70.
    Nakajima, J., Y. Tsuji, and A. Hasegawa (2009), Seismic evidence for thermally-controlled dehydration reaction in subducting oceanic crust, Geophys. Res. Lett.,36, L03303.
    Nicolas, A. (1993), Why fast polarization directions of SKS seismic waves are parallel to mountain belts, Phys. Earth Planet. Inter.,78,337-342.
    Nicolas, A., and N. Christensen (1987), Formation of anisotropy in upper mantle peridotites-Areview, in Composition, structure and dynamics of the lithosphere-asthenosphere system, Geodynamic Series, edited by K. Fuchs and C. Froideveaux, pp.407-433, AGU, Washington, D. C.
    Nishimoto, S., M. Ishikawa, M. Arima, T. Yoshida, and J. Nakajima (2008), Simulta-neous high P-T measurements of ultrasonic compressional and shear wave velocities in Ichino-megata mafic xenoliths:their bearings on seismic velocity perturbations in lower crust of northeast Japan arc, J. Geophys. Res.,113, B12212.
    Nishisaka, H., M. Shinohara, T. Sato, R. Hino, K. Mochizuki, and J. Kasahara (2001), Crustal structure of the Yamato basin and the margin of the northeastern Japan Sea using ocean bottom seismographs and controlled sources, J. Seism. Soc. Japan,54, 365-379.
    Nolet, G. (2008), A breviary of seismic tomography:imaging the interior of the Earth and Sun,344 pp., Geosciences Azur, France.
    Nuttli, O. (1961), The effect of the earth's surface on the S wave particle motion, Bull. Seism. Soc. Am.,51,237-246.
    Ogawa, Y., and Y. Honkura (2004), Mid-crustal electrical conductors and their correla-tions to seismicity and deformation at Itoigawa-Shizuoka Tectonic Line, central Japan, Earth Planets Space,56,1285-1291.
    Ohtake, M., A. Taira, and Y. Ohta (2002), Active faults and seismo-tectonics of the eastern margin of the Japan Sea,201 pp., Univ. Tokyo Press, Tokyo.
    Okada, T., T. Matsuzawa, and A. Hasegawa (1995), Shear-wave polarization anisotropy beneath the north-eastern part of Honshu, Japan, Geophys. J. Int.,123,781-797.
    Okada, T., N. Umino, and A. Hasegawa (2010), Deep structure of the Ou mountain range strain concentration zone and the focal area of the 2008 Iwate-Miyagi Nairiku earth-quake, NE Japan —seismogenesis related with magma and crustal fluid, Earth Planets Space,62,347-352.
    Okamura, Y., M. Watanabe, R. Morijiri, and M. Satoh (1995), Rifting and basin inversion in the eastern margin of the Japan Sea, Island Arc,4,166-181.
    Okubo, Y., H. Tsu, and K. Ogawa (1989), Estimation of Curie point temperature and geothermal structure of island arcs of Japan, Tectonophysics,159,279-290.
    Paige, C., and M. Saunders (1982), LSQR:an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software,8,43-71.
    Panning, M., and B. Romanowicz (2006), A three-dimensional radially anisotropic model of shear velocity in the whole mantle, Geophys. J. Int.,167,361-379.
    Pavlis, G. L., and J. R. Booker (1980), The mixed discrete-continuous inverse problem: application to the simultaneous determination of earthquake hypocenters and velocity structure, J. Geophys. Res.,85,4801-4810.
    Pei, S., J. Zhao, Y. Sun, Z. Xu, S. Wang, H. Liu, C. A. Rowe, M. N. Toksoz, and X. Gao (2007), Upper mantle seismic velocities and anisotropy in China determined through Pn and Sn tomography, J. Geophys. Res.,112, B05312.
    Qi, C., D. Zhao, Y. Chen, Q. Chen, and B. Wang (2006),3-D P and S wave velocity structures and their relationship to strong earthquakes in the Chinese capital region, Chinese J. Geophys.,49,805-815.
    Qi, C., D. Zhao, and Y. Chen (2007), Search for deep slab segments under Alaska, Phys. Earth Planet. Inter.,165,68-82.
    Raegan, R. (1978), A finite-difference study of subterranean cavity detection and seismic tomography, Ph.D. thesis, University of Missouri-Rolla, Rolla, MO.
    Raitt, R., G. Shor, T. Francis, and G. Morris (1969), Anisotropy of the Pacific upper mantle, J. Geophys. Res.,74,3095-3109.
    Rawlinson, N., S. Pozgay, and S. Fishwick (2010), Seismic tomography:a window into deep Earth, Phys. Earth Planet. Inter.,178,101-135.
    Ren, J., Z. Wang, B. Chen, C. Jiang, B. Niu, J. Li, G. Xie, Z. He, and Z. Liu (1999), The tectonics of China from a global view —α guide to the tectonic map of China and adjacent regions, Geological Publishing House, Beijing.
    Ren, J., K. Tamaki, S. Li, and J. Zhang (2002), Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas, Tectonophysics,344,175-205.
    Romanowicz, B. (1995), A global tomographic model of shear attenuation in the upper mantle,J.Geophys. Res.,100,12,375-12,394.
    Romanowicz, B. (2003), Global mantle tomography:progress status in the past 10 years, Ann. Rev. Earth Planet. Sci.,31,303-328.
    Royden, L. H., B. C. Burchfiel, R. King, E. Wang, Z. Chen, F. Shen, and Y. Liu (1997), Surface deformation and lower crustal flow in eastern Tibet, Science,276,788-790.
    Royden, L. H., B. C. Burchfiel, and R. D. van der Hilst (2008), The geological evolution of the Tibetan Plateau, Science,321,1054-1058.
    Sagiya, R., S. Miyazaki, and T. Tada (2000), Continuous GPS array and present-day crustal deformation of Japan, Pure Appl. Geophys.,157,2303-2322.
    Saltzer, R. L., J. B. Gaherty, and T. H. Jordan (2000), How are vertical shear wave splitting measurements affected by variations in the orientation of azimuthal anisotropy with depth?, Geophys. J. Int.,141,374-390.
    Sato, H. (1994), The relationship between late Cenozoic tectonic events and stress field and basin development in northeast Japan, J. Geophys. Res.,99,22,261-22,274.
    Savage, M. K. (1999), Seismic anisotropy and mantle deformation:what have we learned from shear wave splitting?, Rev. Geophys.,37,65-106.
    Scholz, C. H. (2002), The mechanics of earthquakes and faulting,2nd ed.,496 pp., Cam-bridge University Press, New York.
    Seno, T. (1999), Syntheses of the regional stress fields of the Japanese islands, Island Arc, 8,66-79.
    Seno, T., S. Stein, and A. Gripp (1993), A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data, J. Geophys. Res.,98,17,941-17,948.
    Shapiro, N. M., M. Campillo, L. Stehly, and M. H. Ritzwoller (2005), High-resolution surface-wave tomography from ambient seismic noise, Science,307,1615-1618.
    Shearer, P. (2009), Introduction to seismology,2nd ed.,396 pp., Cambridge University Press, New York.
    Sibson, R. H. (2009), Rupturing in overpressured crust during compressional inversion —the case from NE Honshu, Japan, Tectonophysics,473,404-416.
    Sibuet, J., and S. Hsu (2004), How was Taiwan created?, Tectonophysics,379,159-181.
    Silver, P. G. (1996), Seismic anisotropy beneath the continents:probing the depths of geology, Ann. Rev. Earth Planet. Sci.,24,385-432.
    Silver, P. G., and W. W. Chan (1988), Implications for continental structure and evolution from seismic anisotropy, Nature,335,34-39.
    Silver, P. G., and W. W. Chan (1991), Shear wave splitting and subcontinental mantle deformation, J. Geophys. Res.,96,16,429-16,454.
    Silver, P. G., and M. D. Long (2011), The non-commutivity of shear wave splitting oper-ators at low frequencies and implications for anisotropy tomography, Geophys. J. Int., 184,1415-1427.
    Silver, P. G., and M. K. Savage (1994), The interpretation of shear-wave splitting param-eters in the presence of two anisotropic layers, Geophys. J. Int.,119,949-963.
    Sol, S., et al. (2007), Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy, Geology,35,563-566.
    Spencer, C., and D. Gubbins (1980), Travel-time inversion for simultaneous earthquake location and velocity structure determination in laterally varying media, Geophys. J. Int.,63,95-116.
    Stein, S., and M. Wysession (2003), An introduction to seismology, earthquakes, and Earth structure,498 pp., Blackwell, Oxford.
    Stern, R. J. (2002), Subduction zones, Rev. Geophys.,40,1012.
    Suwa, Y., S. Miura, A. Hasegawa, T. Sato, and K. Tachibana (2006), Interplate cou-pling beneath NE Japan inferred from three-dimensional displacement field, J. Geo-phys. Res., 111, B04402.
    Suzuki, W., S. Aoi, and H. Sekiguchi (2010), Rupture process of the 2008 Iwate-Miyagi Nairiku, Japan, earthquake derived from near-source strong-motion records, Bull. Seism. Soc. Am.,100,256-266.
    Takada, Y., T. Kobayashi, M. Furuya, and M. Murakami (2009), Coseismic displacement due to the 2008 Iwate-Miyagi Nairiku earthquake detected by ALOS/PALSAR:pre-liminary results, Earth Planets Space,61, e9-e12.
    Tamaki, K., and E. Honza (1985), Incipient subduction and deduction along the eastern margin of the Japan Sea, Tectonophysics,119,381-406.
    Tanaka, A., and Y. Ishikawa (2005), Crustal thermal regime inferred from magnetic anomaly data and its relationship to seismogenic layer thickness:the Japanese islands case study, Phys. Earth Planet. Inter.,152,257-266.
    Tape, C., Q. Liu, A. Maggi, and J. Tromp (2009), Adjoint tomography of the southern California crust, Science,325,988-992.
    Tapponnier, P., and P. Molnar (1977), Active faulting and tectonics in China, J. Geophys. Res.,82,2905-2930.
    Tapponnier, P., and P. Molnar (1979), Active faulting and Cenozoic tectonics of Tien Shan, Mongolia, and Baikal regions, J. Geophys. Res.,84,3425-3459.
    Tapponnier, P., G. Peltzer, A. Y. Le Dain, R. Armijo, and P. Cobbold (1982), Propagat-ing extrusion tectonics in Asia:new insights from simple experiments with plasticine, Geology,10,611-616.
    Tapponnier, P., Z. Xu, F. Roger, B. Meyer, N. Arnaud, G. Wittlinger, and Y. Jingsui (2001), Oblique stepwise rise and growth of the Tibet plateau, Science,294,1671-1677.
    Teng, L. S., C. T. Lee, Y. B. Tsai, and L.-Y. Hsiao (2000), Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan, Geology,28,155-158.
    Thurber, C, and J. Ritsema (2007), Theory and observations—seismic tomography and inverse methods, in Treatise on Geophysics, edited by G. Schubert, pp.323-360, Elsevier, Oxford.
    Thurber, C. H. (1983), Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California, J. Geophys. Res.,88,8226-8236.
    Tian, Y, D. Zhao, R. Sun, and J. Teng (2009), Seismic imaging of the crust and upper mantle beneath the North China Craton, Phys. Earth Planet. Inter.,172,169-182.
    Tian, Z., P. Han, and K. Xu (1992), The Mesozoic-Cenozoic East China rift system, Tectonophysics,208,341-363.
    Toda, S., and T. Maruyama (2009), Complexity and unpredictability of surface ruptures associated with reverse faulting earthquake in volcanic region:an example from the 2008 Mw 6.9 Iwate-Miyagi Japan earthquake, in AGU Fall Meeting, San Francisco, CA.
    Townend, J., and M. D. Zoback (2000), How faulting keeps the crust strong, Geology,28, 399-402.
    Tsuji, Y., J. Nakajima, and A. Hasegawa (2008), Tomographic evidence for hydrated oceanic crust of the Pacific slab beneath northeastern Japan:implications for water transportation in subduction zones, Geophys. Res. Lett.,35, L14308.
    Tsumura, N., S. Matsumoto, S. Horiuchi, and A. Hasegawa (2000), Three-dimensional attenuation structure beneath the northeastern Japan arc estimated from spectra of small earthquakes, Tectonophysics,319,241-260.
    Um, J., and C. Thurber (1987), A fast algorithm for two-point seismic ray tracing, Bull. Seism. Soc. Am.,77,972-986.
    Umino, N., and A. Hasegawa (1975), On the two-layered structure of deep seismic plane in northeastern Japan arc, J. Seism. Soc. Japan,27,125-139.
    Umino, N., and A. Hasegawa (1994), Aftershock focal depths of the 1993 Hokkaido-Nansei-Oki earthquake estimated from sP depth phase at small epicentral distances, J. Phys. Earth,42,321-329.
    Umino, N., A. Hasegawa, and A. Takagi (1990), The relationship between seismicity patterns and fracture zones beneath northeastern Japan, Tohoku Geophys.J.,33,149-162.
    Umino, N., A. Hasegawa, and T. Matsuzawa (1995), sP depth phase at small epicentral distances and estimated subducting plate boundary, Geophys. J. Int.,120,356-366.
    Umino, N., S. Hori, and A. Hasegawa (1998), Depth distribution of crustal earthquakes in the eastern margin of Japan Sea determined by using sP depth-phase data, in Joint Meeting of Japan Earth and Planetary Sciences, Chiba, Japan.
    Usami, T. (2003), Materials for comprehensive list of destructive earthquakes in Japan, 605 pp., Univ. Tokyo Press, Tokyo.
    Utsu, T. (1982), Catalog of large earthquakes in the region of Japan from 1885 through 1980, Bull. Earthq. Res. Inst. Univ. Tokyo,57,401-463.
    Uyeshima, M., et al. (2005), Resistivity imaging across the source region of the 2004 Mid-Niigata Prefecture earthquake (M 6.8), central Japan, Earth Planets Space,57, 441-446.
    van Keken, P. E. (2003), The structure and dynamics of the mantle wedge, Earth Planet. Sci. Lett.,215,323-338.
    Vecsey, L., J. Plomerova, and V. Babuska (2008), Shear-wave splitting measurements— problems and solutions, Tectonophysics,462,178-196.
    Verdon, J. P. (2010), Passive seismic monitoring and geomechanical modelling of CO2 storage in subsurface reservoirs, Ph.D. thesis, University of Bristol, Bristol.
    Vidale, J. E. (1986), Complex polarization analysis of particle motion, Bull. Seism. Soc. Am.,76,1393-1405.
    Vinnik, L. P., V. Farra, and B. Romanowicz (1989), Azimuthal anisotropy in the Earth from observations of SKS at Geoscope and NARS broadband stations, Bull. Seism. Soc. Am.,79,1542-1558.
    Vinnik, L. P., L. I. Makeyeva, A. Milev, and A. Y. Usenko (1992), Global patterns of azimuthal anisotropy and deformations in the continental mantle, Geophys. J. Int., 111, 433-447.
    Vinnik, L. P., I. Aleshin, S. Kiselev, G. Kosarev, and L. Makeyeva (2007), Depth localized azimuthal anisotropy from SKS and P receiver functions:the Tien Shan, Geophys. J. Int.,169,1289-1299.
    Wang, C.-Y., L. M. Flesch, P. G. Silver, L. Chang, and W. W. Chan (2008a), Evidence for mechanically coupled lithosphere in central Asia and resulting implications, Geology, 36,363-366.
    Wang, F., X. Zhou, L. Zhang, J. Ying, Y. Zhang, F. Wu, and R. Zhu (2006a), Late Meso-zoic volcanism in the Great Xing'an Range (NE China):timing and implications for the dynamic setting of NE Asia, Earth Planet. Sci. Lett.,251,179-198.
    Wang, J., and D. Zhao (2008), P-wave anisotropic tomography beneath Northeast Japan, Phys. Earth Planet. Inter.,170,115-133.
    Wang, J., and D. Zhao (2009), P-wave anisotropic tomography of the crust and upper mantle under Hokkaido, Japan, Tectonophysics,469,137-149.
    Wang, J., and D. Zhao (2010), Mapping P-wave anisotropy of the Honshu arc from Japan Trench to the back-arc, J. Asian Earth Sci.,39,396-407.
    Wang, Q., et al. (2001), Present-day crustal deformation in China constrained by global positioning system measurements, Science,294,574-577.
    Wang, Z., and D. Zhao (2005), Seismic imaging of the entire arc of Tohoku and Hokkaido in Japan using P-wave, S-wave and sP depth-phase data, Phys. Earth Planet. Inter.,152, 144-162.
    Wang, Z., and D. Zhao (2006), Vp and Vs tomography of Kyushu, Japan:new insight into arc magmatism and forearc seismotectonics, Phys. Earth Planet. Inter.,157,269-285.
    Wang, Z., D. Zhao, J. Wang, and H. Kao (2006b), Tomographic evidence for the Eurasian lithosphere subducting beneath south Taiwan, Geophys. Res. Lett.,33, L18306.
    Wang, Z., Y. Fukao, S. Kodaira, and R. Huang (2008b), Role of fluids in the initiation of the 2008 Iwate earthquake (M 7.2) in northeast Japan, Geophys. Res. Lett.,35, L24303.
    Wang, Z., Y. Fukao, and S. Pei (2009), Structural control of rupturing of the Mw 7.92008 Wenchuan earthquake, China, Earth Planet. Sci. Lett.,279,131-138.
    Watanabe, T. (1993), Effects of water and melt on seismic velocities and their application to characterization of seismic reflectors, Geophys. Res. Lett.,20,2933-2936.
    Wei, D., and T. Seno (1998), Determination of the Amurian plate motion, in Mantle dynamics and plate interactions in East Asia, edited by M. Flower, S. Chung, C. Lo, and T. Lee, pp.337-346, AGU, Washington D.C.
    Wei, W., R. Sun, and Y. Shi (2010), P-wave tomographic images beneath southeastern Tibet:investigating the mechanism of the 2008 Wenchuan earthquake, Sci. China D: Earth Sci.,53,1252-1259.
    Weiss, T., S. Siegesmund, W. Rabbel, T. Bohlen, and M. Pohl (1999), Seismic velocities and anisotropy of the lower continental crust:a review, Pure Appl. Geophys.,156, 97-122.
    Wessel, P., D. Sandwell, and S. Kim (2010), The global seamount census, Oceanography, 23,24-33.
    Wiens, D. A., J. A. Conder, and U. H. Faul (2008), The seismic structure and dynamics of the mantle wedge, Ann. Rev. Earth Planet. Sci.,36,421-455.
    Wirth, E., and M. D. Long (2010), Frequency-dependent shear wave splitting beneath the Japan and Izu-Bonin subduction zones, Phys. Earth Planet. Inter.,181,141-154.
    Wolfe, C. J., and P. G. Silver (1998), Seismic anisotropy of oceanic upper mantle:shear wave splitting methodologies and observations, J. Geophys. Res.,103,749-771.
    Wu, W.-N., S.-K. Hsu, C.-L. Lo, H.-W. Chen, and K.-F. Ma (2009), Plate convergence at the westernmost Philippine Sea Plate, Tectonophysics,466,162-169.
    Wu, Y.-M., C.-H. Chang, L. Zhao, J. B. H. Shyu, Y.-G. Chen, K. Sieh, and J.-P. Avouac (2007), Seismic tomography of Taiwan:improved constraints from a dense network of strong motion stations, J. Geophys. Res.,112, B08312.
    Wu, Y.-M., C.-H. Chang, L. Zhao, T.-L. Teng, and M. Nakamura (2008), A comprehen-sive relocation of earthquakes in Taiwan from 1991 to 2005, Bull. Seism. Soc. Am.,98, 1471-1481.
    Wustefeld, A., and G. Bokelmann (2007), Null detection in shear-wave splitting measure-ments, Bull. Seism. Soc. Am.,97,1204-1211.
    Wustefeld, A., G. Bokelmann, C. Zaroli, and G. Barruol (2008), SplitLab:a shear-wave splitting environment in Matlab, Comput. Geosci.,34,515-528.
    Xia, S., D. Zhao, X. Qiu, J. Nakajima, T. Matsuzawa, and A. Hasegawa (2007), Mapping the crustal structure under active volcanoes in central Tohoku, Japan using P and PmP data, Geophys. Res. Lett.,34, L10309.
    Xia, S., D. Zhao, and X. Qiu (2008), The 2007 Niigata earthquake:effect of arc magma and fluids, Phys. Earth Planet. Inter.,166,153-166.
    Xu, P., and D. Zhao (2009), Upper-mantle velocity structure beneath the North China Craton:implications for lithospheric thinning, Geophys. J. Int.,177,1279-1283.
    Yamada, R., and T. Yoshida (2004), Volcanic sequences related to Kuroko mineralization in the Hokuroku district, Northeast Japan, Resource Geology,54,399-412.
    Yamanaka, Y., and M. Kikuchi (2004), Asperity map along the subduction zone in north-eastern Japan inferred from regional seismic data, J. Geophys. Res.,109, B07307.
    Yang, Z., Y. Cheng, and H. Wang (1986), The geology of China,303 pp., Clarendon Press, Oxford.
    Yin, A. (2010), Cenozoic tectonic evolution of Asia:a preliminary synthesis, Tectono-physics,488,293-325.
    Yoshida, T., J. Nakajima, A. Hasegawa, H. Sato, Y. Nagahashi, J. Kimura, A. Tanaka, O. Prima, and K. Ohguchi (2005), Distribution of quaternary volcanoes and mantle structures in the NE Honshu arc, Quaternary Res.,44,195-216.
    Yu, S., H.-W. Chen, and L. Kuo (1997), Velocity field of GPS stations in the Taiwan area, Tectonophysics,274,41-59.
    Yuan, X., J. Ni, R. Kind, J. Mechie, and E. Sandvol (1997), Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment, J. Geophys. Res.,102,27,491-27,500.
    Yuen, D. A., S. Maruyama, S. Karato, and B. F. Windley (2007), Superplumes:beyond plate tectonics,582 pp., Springer, AA Dordrecht, the Netherlands.
    Yukutake, Y., Y. Iio, H. Katao, and T. Shibutani (2007), Estimation of the stress field in the region of the 2000 Western Tottori earthquake:using numerous aftershock focal mechanisms, J. Geophys. Res.,112, B09306.
    Zang, S., R. Wei, and Y. Liu (2005), Three-dimensional rheological structure of the litho-sphere in the Ordos block and its adjacent area, Geophys. J. Int.,163,339-356.
    Zhang, S., and S.-i. Karato (1995), Lattice preferred orientation of olivine aggregates deformed in simple shear, Nature,375,774-777.
    Zhao, D. (2001a), New advances of seismic tomography and its applications to subduction zones and earthquake fault zones:a review, Island Arc,10,68-84.
    Zhao, D. (2001b), Seismic structure and origin of hotspots and mantle plumes, Earth Planet. Sci. Lett.,192,251-265.
    Zhao, D. (2004), Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics, Phys. Earth Planet. Inter.,146,3-34.
    Zhao, D. (2007), Seismic images under 60 hotspots:search for mantle plumes, Gondwana Res.,12,335-355.
    Zhao, D. (2009), Multiscale seismic tomography and mantle dynamics, Gondwana Res., 15,297-323.
    Zhao, D., and H. Kanamori (1993), The 1992 Landers earthquake sequence:earthquake occurrence and structural heterogeneities, Geophys. Res. Lett.,20,1083-1086.
    Zhao, D., and H. Kanamori (1995), The 1994 Northridge earthquake:3-D crustal struc-ture in the rupture zone and its relation to the aftershock locations and mechanisms, Geophys. Res. Lett.,22,763-766.
    Zhao, D., and J. Lei (2004), Seismic ray path variations in a 3D global velocity model, Phys. Earth Planet. Inter.,141,153-166.
    Zhao, D., and H. Negishi (1998), The 1995 Kobe earthquake:seismic image of the source zone and its implications for the rupture nucleation,J. Geophys. Res.,103,9967-9986.
    Zhao, D., A. Hasegawa, and S. Horiuchi (1992), Tomographic imaging of P and S wave velocity structure beneath Northeastern Japan, J. Geophys. Res.,97,19,909-19,928.
    Zhao, D., A. Hasegawa, and H. Kanamori (1994), Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events, J. Geophys. Res.,99, 22,313-22,329.
    Zhao, D., D. Christensen, and H. Pulpan (1995), Tomographic imaging of the Alaska subduction zone, J. Geophys. Res.,100,6487-6504.
    Zhao, D., H. Kanamori, H. Negishi, and D. Wiens (1996), Tomography of the source area of the 1995 Kobe earthquake:evidence for fluids at the hypocenter?, Science,274, 1891-1894.
    Zhao, D., Y. Xu, D. Wiens, L. Dorman, J. Hildebrand, and S. Webb (1997a), Depth extent of the Lau back-arc spreading center and its relation to subduction processes, Science, 278,254-257.
    Zhao, D., T. Matsuzawa, and A. Hasegawa (1997b), Morphology of the subducting slab boundary in the northeastern Japan arc, Phys. Earth Planet. Inter.,102,89-104.
    Zhao, D., H. Kanamori, and D. A. Wiens (1997c), State of stress before and after the 1994 Northridge earthquake, Geophys. Res. Lett.,24,519-522.
    Zhao, D., K. Wang, G. Rogers, and S. Peacock (2001a), Tomographic image of low P velocity anomalies above slab in northern Cascadia subduction zone, Earth Planets Space,53,285-293.
    Zhao, D., O. P. Mishra, and R. Sanda (2002), Influence of fluids and magma on earth-quakes:seismological evidence, Phys. Earth Planet. Inter.,132,249-267.
    Zhao, D., H. Tani, and O. Mishra (2004), Crustal heterogeneity in the 2000 western Tottori earthquake region:effect of fluids from slab dehydration, Phys. Earth Planet. Inter., 145,161-177.
    Zhao, D., S. Todo, and J. Lei (2005), Local earthquake reflection tomography of the Landers aftershock area, Earth Planet. Sci. Lett.,235,623-631.
    Zhao, D., J. Lei, T. Inoue, A. Yamada, and S. S. Gao (2006), Deep structure and origin of the Baikal rift zone, Earth Planet. Sci. Lett.,243,681-691.
    Zhao, D., S. Maruyama, and S. Omori (2007a), Mantle dynamics of western Pacific and East Asia:insight from seismic tomography and mineral physics, Gondwana Res.,11, 120-131.
    Zhao, D., Z. Wang, N. Umino, and A. Hasegawa (2007b), Tomographic imaging outside a seismic network:application to the Northeast Japan arc, Bull. Seism. Soc. Am.,97, 1121-1132.
    Zhao, D., Z. Wang, N. Umino, and A. Hasegawa (2009a), Mapping the mantle wedge and interplate thrust zone of the northeast Japan arc, Tectonophysics,467,89-106.
    Zhao, D., Y. Tian, J. Lei, L. Liu, and S. Zheng (2009b), Seismic image and origin of the Changbai intraplate volcano in East Asia:role of big mantle wedge above the stagnant Pacific slab, Phys. Earth Planet. Inter,173,197-206.
    Zhao, D., M. Santosh, and A. Yamada (2010a), Dissecting large earthquakes in Japan: role of arc magma and fluids, Island Arc,19,4-16.
    Zhao, D., S. Yu, and E. Ohtani (2011), East Asia:seismotectonics, magmatism and mantle dynamics, J. Asian Earth Sci.,40,689-709.
    Zhao, G., S. Wilde, P. Cawood, and M. Sun (2001b), Archean blocks and their bound-aries in the North China Craton:lithological, geochemical, structural and P-T path constraints and tectonic evolution, Precam. Res.,107,45-73.
    Zhao, J., et al. (2010b), The boundary between the Indian and Asian tectonic plates below Tibet, Proc. Nat. Acad. Sci.,107,11,229-11,233.
    Zhao, L., and M. Xue (2010), Mantle flow pattern and geodynamic cause of the North China Craton reactivation:evidence from seismic anisotropy, Geochem. Geophys. Geosyst.,11, Q07010.
    Zhao, L., T. Zheng, L. Chen, and Q. Tang (2007c), Shear wave splitting in eastern and central China:implications for upper mantle deformation beneath continental margin, Phys. Earth Planet. Inter.,162,73-84.
    Zhao, L., T. Zheng, and G. Lu (2008), Insight into craton evolution:constraints from shear wave splitting in the North China Craton, Phys. Earth Planet. Inter.,168,153-162.
    Zheng, J., W. Griffin, S. Y. O'Reilly, M. Zhang, N. Pearson, and Y. Pan (2006), Widespread Archean basement beneath the Yangtze craton, Geology,34,417-420.
    Zhou, X., and W. Li (2000), Origin of Late Mesozoic igneous rocks in Southeastern China:implications for lithosphere subduction and underplating of mafic magmas, Tectonophysics,326,269-287.
    Zhou, X., T. Sun, W. Shen, L. Shu, and Y. Niu (2006), Petrogenesis of Mesozoic gran-itoids and volcanic rocks in South China:a response to tectonic evolution, Episodes, 29,26-33.
    Zinke, J. C., and M. Zoback (2000), Structure-related and stress-induced shear-wave ve-locity anisotropy:observations from microearthquakes near the Calaveras Fault in cen-tral California, Bull. Seism. Soc. Am.,90,1305-1312.
    Zoback, M. L. (1992), First-and second-order patterns of stress in the lithosphere:the world stress map project, J. Geophys. Res.,97,11,703-11,728.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700