用户名: 密码: 验证码:
天然气水合物钻控泥浆制冷系统及孔底冷冻机构传热数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上第三冻土大国,多年冻土面积达215万平方公里,占国土总面积的22.3%。我国冻土区主要分布于东北大兴安岭地区和青藏高原,并零星分布在一些高山上。初步调查研究成果显示我国冻土区尤其是羌塘盆地、祁连山、风火山和漠河盆地等具备较好的天然气水合物成矿条件和找矿前景。
     钻探取心是获得天然气水合物岩心最直接手段,也是验证其他方法(如地球物理方法)调查结果的最可靠方法和开展天然气水合物开发工作的必要前提。通过对天然气水合物岩心的分析,可以评估资源量、规模和性质等地质参数,这对于开发天然气水合物都具有十分重要的意义。
     鉴于天然气水合物热物理性质及赋存地质条件的特殊性,国外在陆地冻土区一般采用分解抑制法钻进。同时,为取得原状岩心样品,在钻遇天然气水合物层取样时,采用特殊的取样钻具,国内外采用的取样钻具以保压取样器为主。保压取样器机械保压机构一般采用球阀或板阀,当取样器的设计压力达到一定程度后,如果想再要增加压力,取样器的材料和和密封性能将需要做很大的提高,而且这并不容易做到。
     本论文设计并加工了一套适合低温泥浆制冷的泥浆制冷系统,并在前人的研究基础之上,对孔底冷冻取样器主要从孔底冷冻方式、孔底冷冻过程和储冷机构三个方面进行研究。
     依据天然气水合物钻探取心施工工艺要求,首先总体设计了泥浆制冷系统工作原理和工作流程。考虑泥浆特性、泥浆流量、运行温度和运行压力等因素,对泥浆制冷系统换热器进行选型,并采用平均温差法对其具体参数设计计算;载冷剂箱是泥浆制冷系统中重要装置之一,载冷剂箱应保证系统运行时所需载冷剂循环量,载冷剂箱应容纳足够多载冷剂,以携带足够的冷量防止制冷机组频繁启动,达到保护制冷机组各部件的作用,因此,根据其功能要求设计计算载冷剂箱容积。
     根据设计的泥浆制冷系统组成,选择所需设备;然后,进行室内试验,检验泥浆制冷系统在设计条件下,换热器泥浆进出口温度差是否能够达到设计要求,并验证设计换热器所选取的经验关联式的可靠性;之后,依托2009年在祁连山木里地区天然气水合物钻探取心工程项目,检验该套泥浆制冷系统是否能够满足天然气水合物钻探取心工艺要求:结合2010年在东北漠河盆地的天然气水合物钻探施工,在第一套泥浆制冷系统的基础上,再加工了一套泥浆制冷系统并进行野外试验。试验证明,该系统原理可靠,成功将泥浆温度控制在低温范围之内,满足了天然气水合物钻探取心对泥浆温度要求,达到了设计要求和预期效果。
     根据泥浆制冷系统在野外试验过程中出现的问题,对其进行改进。首先对比研究了三种管路连接方式,比较其各自特点;根据野外出现的泥浆堵塞现象,增设泥浆制冷系统预防泥浆堵塞功能;从强化传热过程的三个途径对该换热器展开分析并改进,并从流量匹配角度对该换热器进行优化分析;最后根据以上分析结果,设计了采用螺纹管作为内管、具有流量匹配功能和预防泥浆堵塞功能的泥浆制冷系统。
     孔底冷冻取样器采用干冰为冷源,酒精为载冷剂和催化剂。首先分析了孔底冷冻取样器的特点:然后在对CO2温压特性分析的基础上,研究了孔底冷冻取样器的孔底冷冻方式。其次,数值模拟了取样器冷冻机构在孔底的冷冻过程,分析孔底冷冻过程中,岩心冷冻所需时间及冷冻机构各部分的温度分布。最后,通过数值模拟,分析目前储冷机构的保冷效果,根据模拟结果分析储冷机构所存在问题并进行改进。
     本论文的研究可为我国在陆地冻土区正在进行的天然气水合物调查研究和勘探开发提供技术支撑,以及在未来海洋天然气水合物钻探开采中提供技术参考。
China is the third in the world with a permafrost area of 2.15 million square meters, which is mainly distributed in the Daxing"anling region and Qing-Tibet Plateau, while a few in the high mountains. The permafrost area accounts for 22.3% of total land area in China. The previous studies have showed that it has perfect conditions and great prospecting potential for gas hydrate in the Qiangtang Basin, Qilian Mountain region, Fenghuo Mountain region and Mohe Basin.
     Core drilling is not only the most direct method used to identify gas hydrate, it is also a necessary means to verify the findings of other methods (e.g.. geophysical methods) and a prerequisite for the development and utilization of gas hydrate. By means of the gas hydrate core sample analysis, it could be assessed the reservoirs, scale and other geological parameters, which are of great significance for gas hydrate exploration and exploitation.
     In view of the thermophysical properties and the geological conditions of occurrence, the decomposition inhibition method is commonly used in permafrost gas hydrate drilling operation. The essentials of decomposing inhibition method involves low-temperature mud is chilled by mud cooling system to prevent the temperature of the gas hydrate strata and core sample from increasing, maintaining the gas hydrates at the equilibrium state of inhibition, and maintaining borehole stability. Meanwhile, in order to obtain undisturbed core samples, a special core sampler should be used when encounter the gas hydrate strata. At present, the pressure-tight core barrel is the main truth-preserving core sampling, and its operating principle is that maintaining pressure inhibits the gas hydrates dissociating by mechanical operating mechanism. It demands high intensity for core barrel especially, the higher intensity and tightness for ball valve. If the tightness of ball valve has a small drop; the core will not preserve its primitive pressure, and lead to sample failure. When the design pressure of sampling device arrives at a high value, it is very difficult to raise the tight pressure for designing core barrel, and it must greatly improve the leak tightness and intensity of material.
     A down-hole freezing method for gas hydrate core drilling is proposed by Jilin University. It involves that a low-temperature mud chilled by mud cooling system cycles in drilling well during the running of drilling occurrence, and a down-hole freezing core sampler (FCS) is used for gas hydrate core sample in the coring operation.
     Mud cooling and FCS are two key technologies in the down-hole freezing core drilling method. A mud cooling system suited for low-temperature mud is designed and developed. And. based on previous studies, a research on FCS will be studied, which involved the down-hole freezing way. the processing of down hole freezing and cold-store mechanism.
     According to the requirement of gas hydrate core drilling, firstly, a mud cooling system is designed, of which involves the process and principle. Considering the mud properties, mud flow, operating temperature, operating pressure and other factors, the heat exchanger for mud cooling system is selected, and the design and calculation for its specific parameters is carried out on request. The secondary refrigerant tank is one of the important devices for mud cooling system. The secondary refrigerant tank should ensure the amount of refrigerant circulation when the system is running, and the secondary refrigerant tank should contain enough refrigerant in order to carry enough cooling energy, to prevent the refrigeration units frequently start, so as to protect various components of the refrigeration units. The secondary refrigerant tank is a place where the air and impurities are carried out by refrigerant cycling and separated. Therefore, the secondary refrigerant tank volume calculation is also important, according to its functional requirement, the design calculation for the secondary refrigerant tank volume has been carried out.
     According to the composition of mud cooling system, the other necessary devices are selected. And then the laboratory experiments are carried out to test whether the temperature difference between the mud import and export of the heat exchanger can meet the design requirement when it is in the designed flow conditions. Then, according to gas hydrate drilling in the Muli Basin in the Qilian region in 2009. The system has been tested that whether it can meet the technological requirements of gas hydrate core drilling or not. Combined the gas hydrate core drilling in 2010 in Mohe Basin, and based on the first set of mud cooling system, a new mud cooling system has been developed, and field experiments are conducted.
     According to the problems occurred during the field experiments, the mud cooling system is improved. First, three possible piping connections are explored, and a comparative study of their own characteristics are conducted. According to mud clogging problem found in field experiments, its anti-blocking function is designed. The heat transfer efficiency of heat exchanger plays a great role on the heat transfer efficiency of the mud cooling system, enhancing the heat transfer efficiency can increase the heat transfer efficiency of the system. Finally, based on the analysis above, a new mud cooling system is designed, of which screwed pipe instead of smooth pipe in the heat exchanger is used. The mud cooling system have two special functions, one is the velocity of flow adapted and another is mud could prevent from blocking during the running.
     The FCS uses dry ice as freezing source, uses alcohol as refrigerant and catalyst. Firstly, the characteristics of the FCS is analyzed based on the analysis of cot characteristics of temperature and pressure, the freezing way of the FCS in the bottom of the hole is also analyzed. Second, the freezing process of sampler freezing institution is simulated when coring in the 200m deep in the hole. Finally, the insulated effect of cold-store mechanism is carried out by means of simulation and the cold-store mechanism is improved.
     This study could provide a technical support for the terrestrial permafrost gas hydrate exploration and exploitation, also provide a technical reference for seabed gas hydrate drilling in the future.
引文
[1]金庆焕.天然气水合物-未来的新能源[J].中国工程科学,2000,(11):29-34.
    [2]Sloan, E.D.Clathrate hydrates of natural gases [M].2nded.New York:Marcel Becker Inc.,1998.
    [3]蒋国盛,王达,汤凤林,叶建良,邹华耀,倪晓阳等.天然气水合物的勘探与开发[M].武汉:中国地质大学出版社,2002,11.
    [4]李常茂,耿瑞伦.关于天然气水合物钻探的思考[J].探矿工程(岩土钻掘工程),2000,(3):5-8.
    [5]COLLETT T S, DALLIMORE S R. Permafrost-related natural gas hydrate[C] //Max M D.Natural gas hydrate in oceanic and permafrost environments. The Netherlands:Kluwer Academic Publishers,2000:43-60.
    [6]DALLIMORE S. R.,COLLETT T. S. Regional gas hydrate occurrences,permafrost conditions.and Cenozoic geology, Mackenzie Delta area[C]//Dallimore S R,Uchida T,Colle T S.Scientific results from JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well,Mackenzie Delta, Northwest Territories,CanadaOttawa,Ontario:Geological Survey of Canada,1999,544:31-43.
    [7]祝有海,赵省民,卢振权.中国冻土区天然气水合物的找矿选区及其资源潜力[J].天然气工业,2011,31(1):13-19.
    [8]刘广志.天然气水合物开发的现状和商业化的技术关键[J].探矿工程(岩土钻掘工程),2003,(2):8-10.
    [9]刘广志.天然气水合物——未来新能源及其勘探开发难度[J].自然杂志,2005.27(5):258-262.
    [10]周幼吾,郭东信,邱国庆,程国栋,李树德.中国冻土[M].北京:科学出版社,2000.
    [11]祝有海;刘亚玲;张永勤.祁连山多年冻土区天然气水合物的形成条件.地质通报,2006.25(1-2):58-63.
    [12]徐学祖,程国栋,俞祁浩.青藏高原多年冻土区天然气水合物的前景和建议[J].地球科学进展,1999,14(2):201-204.
    [13]张立新,徐学祖,马巍,青藏高原多年冻土与天然气水合物[J].天然气地球科学,2001,12:22-26.
    [14]黄朋,潘桂棠,王立全等.青藏高原天然气水合物资源预测[J].地质通报,2002,21(11):794-798.
    [15]伊海生,时志强,刘文军等.青藏高原多年冻土区天然气水合物形成潜力及远景[J].西藏地质,2002,20(1):46-49.
    [16]刘怀山,韩晓丽.西藏羌塘盆地天然气水合物地球物理特征识别与预测[J].西北地质,2004,37(4):33-38.
    [17]陈多福,王茂春,夏斌,青藏高原冻土带天然气水合物的形成条件与分布预测[J].地球物理学报,2005,48(1):165-172.
    [18]周怀阳,彭小彤,叶瑛.天然气水合物[M].北京:海洋出版社,2000.
    [19]郭平,刘士鑫,杜建芬.天然气水合物气藏开发[M].北京:石油工业出版社,2006.
    [20]M. Riedel; RE. Long; T.S. Collett.Estimates of in situ gas hydrate concentration from resistivity monitoring of gas hydrate bearing sediments during temperature equilibration [J]. Marine Geology.2006,227(3-4):215-225
    [21]市川佑一郎.甲烷水合物的勘探与生产[J].田志坤 译,国外钻井技术.1997,12(6)1-8.
    [22]叶建良,殷琨,蒋国盛,等.天然气水合物钻井的关键技术与对策[J].探矿工程.2003,(5):45-48.
    [23]李常茂,左汝强.天然气水合物钻采与环境保护[J].探矿工程(岩土钻掘工程).2002,(3):1-3
    [24]郭威.天然气水合物孔底冷冻取样方法的室内试验及传热数值模拟研究[D].吉林大学博士学位论文,2007.
    [25]T. Ohara,S. R. Dallimore, E. Fercho. JAPEX/JNOC/GSC MALLIK 2L-38 Gas Hydrate Research Well, Mackenzie Delta, N.W.T.:Overview of Field Operations[C]. SPE/CERI Gas Technology Symposium,3-5 April 2000, Calgary, Alberta, Canada.
    [26]张金昌.天然气水合物勘探开发:从马利克走向未来——加拿大北极地区天 然气水合物勘探开发情况综述[J].地质通报.2005,24(7):4-7.
    [27]Hideaki Takahashi, Tetsuo Yonezawa, Ed Fercho.Operation Overview of the 2002 Mallik Gas Hydrate Production Research Well Program at the Mackenzie Delta in the Canadian ArcticOffshore[C]. SPE/CERI Gas Technology Symposiumjechnology Conference,5-8 May 2003, Houston, Texas.
    [28]http://www.netl.doe.gov/kmd/cds/disk10/Dallimore.pdf
    [29]Karen Bybee.Overview of the Mallik gas hydrate production research well[R].
    [30]Ali G. Kadaster, Keith K. Millheim, Tommy W. Thompson.The Planning and Drilling of Hot Ice #1-Gas Hydrate Exploration Well in the Alaskan Arctic[C]. IADC/SPE Drilling Conference. Amsterdam, Netherlands:SPE,2005.
    [31]Robert B. Hunter, Scott A. Digert, Ray Boswell, and Timothy S. Collett. Alaska Gas Hydrate Research and Stratigraphic Test Preliminary Results [C].2008.3.
    [32]张永勤,孙建华,贾志耀,等.中国陆地永久冻土带天然气水合物钻探技术研究与应用[J].探矿工程(岩土钻掘工程).2009增刊:22-28.
    [33]卢振权,祝有海,张永勤,文怀军,贾志耀,李永红,刘昌岭,王平康,李清海,郭星旺.青海省祁连山冻土区天然气水合物存在的主要证据[J].现代地质,2010,24(2):329-337.
    [34]张永勤.国外天然气水合物勘探现状及我国水合物勘探进展[J].探矿工程(岩土钻掘工程).2010,37(10):21-8.
    [35]吴景华,云希斌.地热开发应用及效益评价[J].长春工程学院学报(自然科学版).2003,4(1):31-34.
    [36]S. Saito. The Drilling Experience of K6-2, the High-Temperature and Crooked Geothermal Well in Kakkonda, Japan [J]. J. Energy Resour. Technol 1993, 115(2):151-158.
    [37]Seiji Saito, Sumio Sakuma. Frontier Geothermal Drilling Operations Succeed at 500℃ BHST[J]. SPE Drilling & Completion. September 2000,15(3): 152-161.
    [38]Yanaqisawa. N, Uchida.T, Akaku. K, Kamenosono. H, Miyazaki. S, Doi. N. Investigation of the Kakkonda deep geothermal reservoir and side-track drilling of WD-1[C]. Proceedings of the 19th New Zealand geothermal workshop 1997:69-74.
    [39]http://www.col-sge.com/MudCooler.htm.
    [40]http://www.lynsk.com/Drilling%20Mud%20Coolers.htm.
    [41]Elwood Champness. Drilling Fluid Cooling System[P].USA, Appl.No.:66157, 4215753. Aug.5,1980.
    [42]http://www.flowprocess.com/mud_cooling_system.html.
    [43]Tobben, Bernardus, Johannes. Apparatus for the Cooling of Drilling Liquids[P].EUROPE,EP1558020B1.Dec.18,2008.
    [44]汪仲英.高温蒸汽地热田钻井与成井主要技术问题[J].探矿工程.1979,5(15):57-63.
    [45]高杭,刘海涛.钻井液制冷系统概念设计[J].石油矿场机械.2007,36(6):31-32.
    [46]J.P.RUFFELL,T.R.MUPRHY, and C.A.GRAHAM. Planning and Execution of a 500m Corehole Through Offshore Permafrost[C].PERMAFROST-CANADA Proceedings of the Fifth Canadian Permafrost Conference.1990,271-282.
    [47]H. Vrielink, J.S. Bradford, Chevron, et al. Successful Application of Casing-While-Drilling Technology in a Canadian Arctic Permafrost Application[C]. IADC/SPE Drilling Conference. Florida, Orlando:SPE,2008.
    [48]郭威,孙友宏,张祖培,陈晨.天然气水合物孔底冷冻取样技术[J].探矿工程(岩土钻掘工程),2009增刊,S1:147-151.
    [49]郭威,孙友宏,V.K. Chistyakov,张祖培,陈晨.天然气水合物孔底冷冻取样方法的室内试验研究[J].探矿工程(岩土钻掘工程),2009,,36(5):1-6.
    [50]郭威;孙友宏;陈晨;赵江鹏;赵建国.干冰升华式孔底冷冻取样器冷源保冷方法的试验研究[J].探矿工程(岩土钻掘工程),2009,36(9):5-6.
    [51]郭威;孙友宏;陈晨;赵江鹏;赵建国;贾瑞;李国圣FPCS型天然气水合物孔底冷冻保压取样器的设计[J].机械设计与制造,2011,1:24-26.
    [52]汤凤林,张时忠,蒋国盛,刘晓阳,窦斌.天然气水合物钻探取心技术介绍[J].地质科技情报,2002(6):97-100.
    [53]Ruppel C.,Boswell R.,Jones E..Scientific results from Gulf of Mexico gas hydrates joint industry project Leg 1 drilling:introduction and overview[J].Marine and Petroleum Geology,2008,25(9):819-829.
    [54]Fugro-Mcclelland Marine Geosciences Incorporation.Geotechnil investigation Chevron Gulf of Mexico gas hydrates JIP block 13 and 14,at water Valley area block 151,Keathley Canyon area Gulf of Mexico[R].Houston:Chevron Texaco Energy Technology Company Houston.2006.
    [55]白玉湖,李清平.天然气水合物取样技术及装置进展[J].石油钻探技术,2010,38(6):16-23.
    [56]胡海良,唐海雄,罗俊丰,韦红术.深水天然气水合物钻井及取心技术[J].石油钻采工艺,2009,31(1):27-30.
    [57]Masayuki K.,Satoru U.,Masato Y.Pressure Temperature Core Sampler(PTCS)[J].Journal of the Japanese Association for Petroleum Technology,2006,71(1):139-147.
    [58]Pettigrew T. L.Design and operation of a wireline pressure core sample(PCS)[R].Galveston:TexasA&M University,1992.
    [59]Dickens G. R.,Paull C. K.,Wallace P.,et al.Direct measurement of in situ methane quantities in a large gas hydrate reservoir [J].Nature,1997,385(6615):426-428.
    [60]Rothfuss M..Retrieval of cores from marine gas hydrates under in situ conditions with HYACE rotary core:proceedings of the DGMK[C] Spring Conference.GermanyApril 29-30,2003.
    [61]郑秀华.3型天然气水合物保压取心装置[J].探矿工程,2000(4),32-34.
    [62]Kvenvolden K A.Barnard L A,Cameron D H.Pressure corebarrel:application to the study of gas hydrates.deep sea drilling project site 533,leg 76[R].Washington:U S GovernmentPrinting Office,1983.
    [63]朱海燕,刘清友,王国荣,俞祖英,姜正陆,钟雨师.天然气水合物取样装置的研究现状及进展[J].天然气工业,2009,29(6):63-66.
    [64]张凌,蒋国盛,宁伏龙,涂运中,吴翔,窦斌.天然气水合物保真取心装置内部密封技术分析[J].现代地质,2009,23(6):1147-1152.
    [65]程毅.海底表层样品低扰动取样原理及保真技术研究[D].浙江大学硕士学位 论文,2006.
    [66]秦华伟,海底表层样品低扰动取样原理及保真技术研究[D].浙江大学博士学位论文,2005.
    [67]李世伦,程毅,秦华伟,顾临怡,叶瑛,邱敏秀.重力活塞式天然气水合物保真取样器的研制[J].浙江大学学报(工学版),2006,40(5):888-892.
    [68]王媛.天然气水合物钻探取心保真技术研究[D].中国石油大学(华北)硕士学位论文,2009.
    [69]张永勤,孙建华,赵海涛,刘秀美,王汉宝.天然气水合物保真取样钻具的试验研究[J].探矿工程(岩土钻掘工程),2007,37(9):62-65.
    [70]梁宝昌.大庆油田取心工艺技术[M].哈尔滨工业大学出版社,1995.
    [71]王智锋,许俊良,薄万顺.深海天然气水合物钻探取心技术[J].石油矿场机械,2009.38(9):12-15.
    [72]许俊良,薄万顺,朱杰然.天然气水合物钻探取心关键技术研究进展[J].石油钻探技术,2008,36(5):32-34.
    [73]舒水明,丁国忠,胡兴华等.制冷与低温工程实验技术[M].武汉:华中科技大学出版社,2009.
    [74]周远,王如竹等.制冷与低温工程[M].北京:中国电力出版社,2003,11.
    [75]金国砥.制冷设备技术[M].北京:电子工业出版社,2003,8.
    [76]张正端,邵洪福.换热器及计算基础知识[M].北京:化工工业出版社,1980,5.
    [77]靳明聪,程尚模 赵永湘.换热器[M].重庆:重庆大学出版社,1990,5.
    [78]程林,杨培毅,陆煜.换热器运行导论[M].北京:石油工业出版社,1995,3.
    [79]B.M.拉默著.刘桁烈等译.换热器[M].北京:商务印书馆出版社,1956,8.
    [80]朱聘冠.换热器原理及计算[M].北京:清华大学出版社,1987.
    [81]兰州石油机械研究所.换热器(中册)[M].北京:烃加工出版社,1988,12.
    [82]兰州石油机械研究所.换热器(下册)[M].北京:烃加工出版社,1990,5.
    [83]杨世铭,陶文栓.传热学(第三版)[M].北京:高等教育出版社,1998,12.
    [84]冯益民.祁连造山带研究概况——历史、现状及展望[J].地球科学进展,1997,12(4):307-314.
    [85]符俊辉,周立发.南祁连盆地石炭—侏罗纪地层区划及石油地质特征[J].西北地质科学,1998,19(2):47-54.
    [86]文怀军,鲁静,尚潞君,刘天绩,陈江峰,鞠崎,邵龙义.青海聚乎更矿区侏罗纪含煤岩系层序地层研究[J].中国煤田地质,2006,18(5):19-21.
    [87]柯如柏.套管式换热器的强化分析[J].化学工程师,1988:20-23.
    [88]彭洁.螺旋槽管换热过程的三维数值模拟[D].燕山大学硕士学位论文:2006.2.
    [89]王涛,程林.内管纵向敷肋时套管式换热器传热研究[J].水动力学研究与进展,1996,11(6):707-711.
    [90]朱道义,孙红,吴洪特.套管换热器的强化效果试验研究[J].长江大学学报(自然科学版),2010.7(3):197-200.
    [91]袁尚科,赵子琴.流体相对流动对套管式换热器效率的影响分析[J].石油化工设备,2009,38(5):26-29.
    [92]陈维汉,孙毅.换热器两侧换热过程的性能最佳匹配[J].化工装备技术,1997,18(1):17-20.
    [93]廖百胜.套管式换热器结构变化对换热能力影响的模拟研究[J].制冷与空调,2010.24(1):40-44.
    [94]赵建国,孙友宏,王海亮.天然气水合物孔底冷冻取样器室内冷冻试验能量计算与分析[J].探矿工程(岩土钻掘工程),2010,37(1):8-12.
    [95]王海亮.FCS—110型天然气水合物孔底冷冻取样器的研制及试验研究[D].吉林大硕士学位论文:2009.
    [96]赵建国.天然气水合物孔底冷冻绳索取心钻具的设计与室内冷冻试验的研究[D].吉林大硕士学位论文:2010.
    [97]黄文件,刘道平等.天然气水合物的热物理性质[J].天然气化工,2004,29(4):66-70.
    [98]Rodger, The stability of gas hydrates [J].Phys.Chem,1990(94):6080.
    [99]郭威,孙友宏等.陆地天然气水合物冷冻取样方法研究[J].吉林大学学报(地 球科学版),已接受.
    [100]Yakushev V. S., Istomin V. A.. Gas-hydrate self-preservation effect[M]. Physics and Chemistry of Ice. Sapporo:Hokkaido University Press,1992:136-139.
    [101]Gudmundsson J. S,.Parlaktuna M.Khokhar A. A.Storing natural gas as frozen hydrate[J].SPE Production and Facilities,1994,2:69-73.
    [102]丁丽颖,耿春宇,赵月红,何险峰,温浩.甲烷水合物分解及自保护效应的分子动力学模拟[J].中国科学B辑:化学,2008,38(2):161-169.
    [103]施骏业,翟晓华,谢晶,徐晋琼.CO2在食品加工和冷藏业中的应用前景[J].制冷技术,2005,(3):39-43.
    [104]汪家铭.干冰生产开发及应用前景[J].化工商品科技情报,1997,(2):26-29.
    [105]刘涛.超临界CO2制冷循环的应用与研究前景[J].制冷,2007,26(2):44-47.
    [106]陈继辉,童明伟,严嘉.干冰升华特性的实验[J].重庆大学学报(自然科学版),2005,(28)4:50-52.
    [107]王丰.液体和气体的热物理性质表[M].北京:科学出版社,1982.
    [108]马庆芳,方荣生.实用热物理性质手册[M].北京:中国农业机械出版社,1986.
    [109]张家荣,赵廷元.工程常用物质的热物理性质手册[M].北京:新时代出版社,1987.
    [110]http://www.co2.net.cn/co2/Index_ReadNews.asp?id=733.
    [111]张朝晖ANSYS8.0热分析教程与实例解析[M].北京:中国铁道出版社,2005.
    [112]孙刚,刘预,冯芳.聚氨酯泡沫材料的研究进展[J].材料导报,2006,3:29-30.
    [113]郭绍什.钻探手册[M].武汉:中国地质大学出版社,1993,71-96.
    [114]《钻探管材手册》编写组.地质、水文、石油钻探管材手册[M].北京:地质出版社,1975.
    [115]殷平.保冷材料的性能和选择[J].暖通空调.2005,2:44-51.
    [116]冯哲,徐会文,展嘉佳.乙二醇复合聚合物抗低温钻井液体系的试验研究[J].世界地质,2008,27(1):95-99.
    [117]展嘉佳.不分散低固相聚合物钻井泥浆抗低温试验研究及地表制冷系统设计[D].吉林大学硕士学位论文:2009.
    [118]展嘉佳,徐会文,冯哲.低温条件下乙二醇基钻井液体系的试验研究[J].探矿工程(岩土钻掘工程),2008,35(11):17-19.
    [119]邹宁宇,鹿成滨,张德信.绝热材料应用技术[M].北京:中国石化出版社,2005.
    [120]徐成海,巴德纯等.真空工程技术[M].北京:化学工业出版社,2006,8.
    [121]魏蔚,汪荣顺.高真空多层绝热被的性能及其量热器的试验研究[J].低温技术,2007,35(1):21-24.
    [122]Vincent Maury, Alain Guenot.Practical advantages of mud cooling systems for drilling[J]. SPE Drilling & Completion,1995,10(1):42-48.
    [123]Zhao Jiangpeng, Sun Youhong, Guo Wei, Xu Huiwen, Wang Qinghua, Chenchen, Li Guosheng, Jia Rui.Design and Experimental Study of a Gas Hydrate Mud Cooling System[J].Energy Exploration and Exploitation, 2010,28(5):351-364.
    [124]赵江鹏,孙友宏,郭威.钻井泥浆冷却技术发展现状与新型泥浆制冷系统的研究[J].探矿工程(岩土钻掘工程),2010,37(9):1-5.
    [125]李国圣,孙友宏,郭威.天然气水合物钻井泥浆制冷系统的设计及现场应用[J].探矿工程(岩土钻掘工程),2011,38(2):8-11.
    [126]孟祥光.天然气水合物钻探岩矿样冷冻装置的建立及其热传导数学模型的实验研究[D].吉林大学硕士学位论文:2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700