用户名: 密码: 验证码:
金属矿地震高精度成像与数据处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用地震方法进行深部金属矿的探测,可以弥补重磁电传统方法探测深度不足的缺点,为第二找矿空间提供了物探技术可能性。但金属矿区地质条件往往复杂多变;地下矿体形态复杂、倾角大、尺度小;矿体与围岩之间的波阻抗差异较小;且矿体内部常呈现非均匀体性质,使得后续地震资料处理面临很多难题。本文针对金属矿地震数据的这些特点,研究了一系列提高地震分辨率和信噪比的处理技术,有些技术是首次提出,有些技术是应用研究,旨在综合运用以提高金属矿地震数据的分辨率和信噪比,从而为我国深部矿产资源的探测与开发提供技术保障。
     金属矿地震勘探中的分辨率分为垂直分辨率和水平分辨率,一般认为垂直分辨率为调谐厚度——“四分之一波长”,水平分辨率为第一菲涅尔带半径。现代叠前深度偏移技术从波动方程出发,或为积分成像或为延拓成像,可以将菲涅尔带收敛为点,从而大幅提高地震记录中的分辨率,理论上深度偏移成像结果的分辨率仅与空间采样率有关。我们首先对二维复杂Marmousi模型进行了三种叠前深度偏移方法的对比研究,其中有Kirchhoff积分偏移、单程波延拓偏移、逆时偏移。通过对比发现,逆时偏移的成像精度最高,对标准Marmousi模型中的大断裂、小断块、陡倾角断层、高速楔状体、背斜构造、目标储层成像准确清晰,因而适用于大倾角、小尺度、速度陡变的金属矿地质模型。
     我们对逆时偏移成像技术进行了深入研究,总结了目前逆时偏移面临的问题与难点:1、由于时间一致性成像条件多解性,互相关成像条件将折射波、回折波、逆散射波错误互相关而造成低频假象,恶化了浅层的成像效果;2、高计算量与高内存开销;3、数值计算中面临的所有问题。同时也总结了解决这些问题与难点的方案:1、采用多种成像条件综合应用及偏移后剖面多种滤波方法,以压制低频假象;2、平面波偏移技术,多步偏移策略以及采用高性能科学计算技术,包括多节点并行计算技术、GPU通用计算技术等,以应对高计算量、高内存开销问题;3、采用高阶有限差分求解波动方程、吸收边界等技术提高数值计算精度。我们针对金属矿地震勘探的特点,选用了上述消除假象、提高计算效率的一些技术与方法,主要有高阶差分延拓波场、归一化成像条件、成像结果滤波、高性能并行计算等方法,并进行了金属矿模型的逆时偏移试算。以湖北某铜矿和铜铁矿共生的隐伏矿床模型为例,进行了逆时偏移成像,成像后的结果可以清晰的分辨细长隐伏在矿床中的共生铜矿体,铜铁矿与铜矿体的分界面已经可以明显分辨,许多细节特征都可以被刻画出来。
     叠前深度偏移技术相对于叠后和时间偏移,对速度的依赖更为严重,速度误差引起的成像误差已经超过偏移算法本身,研究一种效率高、精度高的速度建模方法十分重要。我们研究了上文介绍的三种叠前深度方法对速度的敏感性问题,给出了速度误差引起深度误差的解析式,分析了在深度偏移剖面和偏移后共成像点道集(CIG)出现“微笑”和“皱眉”现象。通过水平层状模型、高速体模型以及复杂Marmousi模型在相同速度误差下的深度误差,CIG同相轴误差及弯曲程度的分析,得出三种叠前深度偏移方法在简单地质模型下对速度敏感性一致,在复杂地质模型下速度敏感性相似;在简单地质构造情况下,偏移速度分析(MVA)中偏移方法的选择对速度分析准确性的影响不大。根据这个结论,我们提出了联合速度建模方法,这种方法集成了Kirchhoff积分偏移计算效率高、逆时偏移计算精度高的优点。建模的流程如下:第一步,常规速度分析方法估计最佳初始速度模型;第二步,初始速度模型下使用Kirchhoff偏移进行成像;第三步,抽取CIG或者ADCIG(角度域CIG),根据CIG的剩余曲率(深度误差)计算速度扰动,进而更新速度模型;第四步,新速度模型下重复二、三步,将主要构造速度界面估计准确,一般需迭代运算2-3次;第五步,使用逆时偏移进行成像;第六步,抽取CIG或者是ADCIG(角度域CIG),根据CIG的剩余曲率(深度误差)计算速度扰动,进而更新速度模型;第七步,新速度模型下重复五、六步得到最终偏移速度模型,需迭代运算1-2次,将小尺度复杂构造速度界面估计准确,输出最终偏移速度模型;第八步,使用逆时偏移在最终偏移速度模型下进行成像,输出偏移结果。以某蘑菇状高速金属矿模型为例,进行了联合速度建模方法试算,采用逐层分析策略,每层选择适量的速度分析点,其余点通过内插和平滑得到,更新速度时采用剩余曲率分析(RCA)方法,根据CIG同相轴的弯曲曲率反算速度误差。经联合速度建模后,有效地得到了高质量金属矿成像剖面及金属矿体速度模型。
     金属矿地震数据另一特点是信噪比较低,噪声较多且强,有效信号相对较弱,地震数据信噪比低会直接降低地震剖面的分辨率,我们给出了地震数据信噪比与分辨率之间的关系,分析得出金属矿地震数据中保持信噪比大于2是必要的。Radon变换是将地震数据通过一定的路径积分,变换到另一个域中,使得t-x域内耦合的信号和噪声在Radon域内得到分离,经噪声切除后反变换,得到去噪后的地震数据。根据积分路径不同,可将Radon变换分为线性、抛物、多项式、双曲、相移双曲、椭圆Radon变换;其中线性、抛物、多项式Radon变换算子具有时不变特性,可以在频率域求解,这样做的好处是避免了求解t-x域所有慢度采样构成的大矩阵求逆问题,从而提高了计算速度,算子矩阵还具有Toeplitz结构,可以用莱文森递推算法快速求解。基于贝叶斯原理的高分辨率Radon变换技术,运用了频域空间稀疏约束算法进行迭代计算,利用加权矩阵将前一次计算结果联系起来,更新加权矩阵以得到Radon域的高分辨率结果,这种算子矩阵可以使用双共轭梯度算法求解。
     地下介质往往是各向异性的,在Radon变换的积分路径中考虑各向异性参数,符合真实地下介质模型,对于实际数据处理去噪可以收到更好的效果,我们从非双曲时差公式出发,定义了各向异性Radon正变换公式,相比于常规Radon变换公式,增加了各向异性参数(非椭圆率)η,这个参数可以用Thomson各向异性参数ε、δ表示,重新写成τ关于t的形式,得到各向异性反变换公式。Radon域信噪分离时,直接切除噪声方法容易损失有效信号,采用二维蒙版滤波技术可以自动拾取聚焦能量剪切线外侧的能量残余,利用Radon域截断效应的轨迹拾取剪切线外侧的能量残余,这样可以将干扰噪声更好的分离,使有效波的能量更好的保留。使用加入高斯随机噪声的模拟记录,对常规Radon变换、高分辨率Radon变换和二维蒙版滤波去噪进行了对比分析,可以得出后者有更好的压制随机噪声效果;对某中间放炮记录进行了多种方法对比研究,分别使用了FK域滤波、高分辨率线性Radon变换、高分辨率抛物Radon变换以及二维蒙版滤波去噪,比较得出采用Radon变换结合蒙版滤波去噪的结果最佳;对庐枞实际金属矿地震数据进行了去噪处理,通过去噪结果和差值剖面分析,Radon变换及蒙版滤波技术压制了强面波及强线性干扰波,大幅提高了地震数据的信噪比。
     对金昌镍铜矿区地震试验数据进行了特色处理研究。我们根据此地区地质调绘资料制作了镍铜矿的地质模型,其中镍铜矿体呈50-60。倾斜层状分布在围岩之中。在此地质模型下使用高阶差分波动方程进行了数值模拟及波场特征分析,倾斜层引起的倾斜同相轴由于层距微小产生相互干涉现象,其中混杂耦合了来自尖灭点、突变点引起的绕射波能量,使得波场特征十分复杂。模拟数据分别进行了常规地震处理和叠前深度偏移处理,前者得到的叠加剖面矿脉被严重拉伸,细长矿体整体向左上方移动,绕射波和散射波仍严重影响叠后的剖面质量,造成解释上的误差;后者得到的偏移图像有很高的分辨率,已将矿脉、矿体位置正确还原,可以清晰分辨矿脉边界,结合地质资料容易进行地质解译。针对金昌镍铜矿区观测系统方式及地震数据特点,我们使用了自主知识产权的处理软件系统及多种自主开发的特色处理模块对实际数据进行了处理,其中包括:高分辨率速度分析技术,以提高速度谱拾取的精度;Gabor变换地表一致性反褶积技术,以消除由于近地表风化严重,地震检波器与基岩耦合不佳的影响,并提高了地震资料的频带;Curvelet域组合变换法压制随机噪声技术,以提高地震记录信噪比;Radon变换及蒙版自适应切除滤波去噪技术,压制强线性干扰、提取弱反射信号。对比常规处理后的叠加剖面,综合使用这些特色处理技术,可以大幅提高金属矿地震数据的分辨率和信噪比,获得高质量的地震叠加剖面,为指示深部金属矿体的延伸和分布形态提供了技术支持。
Using seismic method for deep mineral exploration, can make up for the shortcoming of probing depth of the traditional exploration method, such as gravity, magnetic and electrical prospecting, it provides the necessary techniques for the second prospecting space. However, metallic mines geological conditions are often complex and undulate; ore bodies underground present complex structure, steep dip, small scale; the impedance has little difference between the ore body and the surrounding rock; and in the ore body often present the heterogeneous nature. The subsequent seismic data processing faces many problems. In this paper, with these characteristics of metallic mines, we study a series of seismic processing techniques to improve the resolution and signal-to-noise ratio of the data, some of these technologies are first proposed, some of these technologies are applied research. With comprehensive application, it provides the technical support for deep exploration and development of mineral resources.
     The resolutions of seismic exploration are the vertical resolution and horizontal resolution. It is generally recognized that the vertical resolution is the tuning thickness "quarter wavelength", the horizontal resolution is the first Fresnel zone radius. Pre-stack depth migration focuses the Fresnel zone on a point, and then it greatly improves the resolution of seismic data. The resolutions of pre-stack depth migration only have relation to the spatial sampling rate in theory. We compare three pre-stack migration methods in two-dimensional complex Marmousi model, which are Kirchhoff integral migration, one-way wave-equation migration and reverse-time migration. By comparison, the lines in the image of Kirchhoff integral migration are thicker, target reservoir is not clear, there are some blind areas and caustic areas, and the imaging is not very well; the image of one-way wave equation migration has higher resolution, but the imaging of high dip angle faults and small-scale fault blocks are indistinct; the reverse time migration has the best imaging result and the resolution is high, many features of details are retained, the imaging of three faults, fault blocks, anticline, high-velocity anomaly and target reservoir are clearer, and the locations are also very accurate. If we neglect the imaging accuracy, the locations of target reservoir obtained by three methods are same correspondent with the speed model. We made a further study on imaging technique of reverse time migration and summed up the present problem and difficulty of reverse time migration we stated:1. Due to the multiple solutions of time consistency imaging conditions, cross-correlation imaging condition cause low-frequency false by mistakenly correlating the refraction wave, diving wave, inverse scattering wave with received wavefield,which deteriorates the imaging quality of shallow;2. The cost of computation and memory is high;3; All problems which numerical calculation faces. Also I summarized to solve these problems and difficulties of the program:1. I comprehensively apply a variety of imaging conditions and the various filtering methods of migrated section, in order to suppress low-frequency false;2.Plane wave migration, multi-step migration strategy and the use of high-performance scientific computing, including multi-node parallel computing, GPU general computing technologies are applied in order to cope with the high computation and high memory overhead;3. I use higher order finite difference solving wave equation, absorbing boundary and other technology to improve the calculation precision. Aiming at the characters of metal mine seismic exploration, certain technologies mentioned above are selected to eliminate the pseudomorph and improve calculation efficiency, mainly including high order wavefield continuation、normalized imaging conditions、the filter of imaging results、the methods such as high-performance parallel computing, and reverse-time migration trial calculation of metal mine model was carried out. Taking the concealed mineral deposit model accreted of copper mine and delafossite in Hubei province for example, reverse-time migration imaging formation was done. Slender symbiotic copper ore body concealed in the mineral deposit and the interface of delafossite and copper mine could be clearly figured out by the results of imaging, and many detail characters could be depicted.
     Pre-stack depth migration respect to post-stack and time migration is more serious dependence on the velocity. The error of migration caused by velocity error has been more than caused by migration algorithm. The study on high efficiency and high precision velocity mode-building method is important. We studied the three pre-stack depth migration methods on velocity sensitive issues, and given analytic equation between the velocity error and the depth error. We analysis the "Smile" and "frown" phenomenon in the depth migrated section and common image gathers (CIG). Through the analysis of horizontal layered model, high-velocity model and Marmousi model, we give below conclusion:the migration depths of three methods with the same velocity perturbation are the same, in other words, they have the same depth error, namely the similar velocity error sensitivity. Consider the imaging effect and computational efficiency, using the advantages of above two imaging methods, we proposed the combined velocity model-building method which based on the Kirchhoff integral migration and reverse time migration, it combines the efficient computing of Kirchhoff integral migration and the high accuracy imaging of reverse time migration. The following eight steps describe the process of combined velocity model-building method:First, Establish the "initial velocity model" by general velocity analysis; Second, Use Kirchhoff integral migration to image section with "initial velocity model"; Third, Form the CIG or ADCIG of the initial velocity model, use the relationship between the imaging depth error and formation parameters error to update the velocity model (RCA strategy layer by layer); Fourth, Repeat steps 2 to 3, the process of updating velocity must be iterative calculation 2-3 times, it will be form "middle velocity model" with major structures, we call it is "part MVA"; Fifth, Use reverse time migration to image section with "middle velocity model"; Sixth, Same to step 3; Seventh, Repeat steps 5 to 6, the process of updating velocity must be iterative calculation 1-2 times, it will be form "final velocity model" with the complex structures of steep dip angle and small scale; Eighth, Use reverse time migration to image section with "final velocity model", as final imaging results. Taking a mushroom-shaped high-speed metal mining model as an example, the velocity analysis using RCA at each layer, we should choose the appropriate amount of control point; the residual points are available through interpolation and smoothing. We use the smooth function between adjacent layers, increase the control point near the complex structure and the acute velocity regions to improve the accuracy of the velocity analysis. The combined velocity modeling can effectively get high quality imaging section and velocity model of metal mine.
     Another characteristic of mineral mining seismic data is low signal-to-noise rate, the noise is strong, and effective signal is relatively weak. Low signal-to-noise ratio of seismic data will directly reduce the resolution of seismic section, we give the relationship between the resolution and the signal-to-noise ratio, analysis of seismic data obtained in the metallic mine to maintain signal-to-noise ratio greater than 2 is necessary. According path can be integral to Radon transform respectively linear, parabolic, polynomial, hyperbolic, elliptic transform. Phase shift hyperbolic Dix hyperbolic equation is far offset error for the larger substitute. Compared with conventional transformation, far offset hyperbolic reflection energy is better focused. Linear, parabolic, polynomial Radon transform operator has invariance when, in the frequency domain can be achieved. Time-the spatial domain into the frequency of the problem-to solve the spatial domain, the benefits of doing so is the speed of Fourier transform is very fast and can be carried out in each frequency component Radon transform, and avoid solving all the time--offset the speed of the large sample matrix problems, and enhance the computing speed. Toeplitz operator matrix structure of (uniform sampling parameters), can be used Levinsion fast recursive algorithm to solve. High resolution Radon transform is a frequency domain space sparse bound algorithm, in the inversion iteration process, in accordance with the results of the previous iteration, through Bayesian principles will be weighted matrix and the results of the previous iteration link be new weighted matrix; weighted matrix and then solve the equation, the frequency domain by the sparse solution. As operator matrix weighted matrix does not have the presence of Toeplitz structure, but still Hermite matrix, we can use the Cholesky decomposition method, LU decomposition method, the faster algorithm is conjugate gradient algorithm. In foreign, some scholars have begun studying time-space domain to direct calculation precision hyperbolic Radon transform algorithm, the algorithm used in least squares method to the most rapid decline in law. Conjugate gradient method fast convergence, the process for stability and the high accuracy solution, which has greatly improved its calculation speed. Subsurface media is often anisotropic, in order to consistent with the real subsurface media, anisotropy parameters should be considered in the integral path of Radon transform. For actual data processing, de-noising can receive better results, based on non-hyperbolic travel time offset function, anisotropic Radon transform formula has been defined, Compared to general Radon transform formula, anisotropy parametersη(anisotropy parameters) has been added, this parameters can be indicated by anisotropy parameters epsilon and delta, re-writtenτin the form of t, we obtain anisotropic inverse transform formula. We use simulation seismic records which added Gaussian random noise, and compared conventional Radon transform, high-resolution Radon transform and 2D mask filtering de-noising, we concluded that 2D mask filtering de-noising has a better effect of random noise suppression. By a variety of methods of a comparative study, which contains FK filtering,high-resolution linear Radon transform, high-resolution parabolic Radon transform and 2D mask filtering, on a middle shooting seismic record, we concluded that Radon transform combined with mask filtering has a best result of filtering and de-noising. De-noising a actual metal mining seismic data,and comparing de-noising results and difference profile, we concluded that Radon transform and mask filtering can suppress strong surface waves and strong linear interference, and then substantially raise signal to noise ratio of seismic data.
     We did characteristic processing and research on seismic test data of Jinchang Nickel-Copper Mining Area. According to geological mapping data of this area, we made nickel-copper geological model, where the layered nickel-copper orebody with dip was distributed in surrounding rock at 50~60 degrees. Then we did numerical simulating and wave-field characteristic analysis with high-order difference wave-equation in this model. Because layer spacing is tiny, the inclined events caused by inclined layers lead to mutual interferences, which are confounded and coupled with diffraction energy from pinch outs and catastrophe points, that's why the wave-field is very complicated. We did conventional seismic processing and pre-stack depth migration processing on the test data, respectively. Mineral vein from the post-stack section of the former is stretched seriously, slim lined orebody entirely moves upward, diffracted wave and scattered wave seriously affect the quality of the post-stack section, this will cause error of interpretation; the migration image from the latter has higher resolution and restores the locations of mineral vein and orebody, the mineral vein boundary can be distinguished clearly, it's easier to process geologic interpretation combined with geologic data. Based on the observation system and seismic data of Jinchang Nickel-Copper Mining Area, we processed the real data using processing software system with self-owned intellectual property rights and several self-developped characteristic processing modules, including Velocity Analysis Technique of High-resolution to improve accuracy of velocity spectrum picking; Surface-consistent Deconvolution Technique of Gabor Transformation to remove uncoupled effect between seismometer and bedrock caused by near surface weathering and to enhance the frequency band of seismic data; Combined Transformation Method of Suppression of Random Noise in Curvelet field to enhance seismic signal/noise ratio; Radon Transformation and Adaptive Mute Mask Filtering and Denoising Technique to suppress strong linear interference and extract weak reflection signals. Compared with post-stack section of conventional processing, synthetically using these characteristic processing techniques can greatly improve resolution and signal/noise ratio of seismic data of metallic orebody,obtain seismic stacked section of high quality and provide technical support for extension and distribution morphology of deep metallic orebody.
引文
[1]滕吉文.强化开展地壳内部第二深度空间金属矿产资源地球物理找矿、勘探和开发[J].地质通报,2006,25(7):767-771.
    [2]孙明,林君.金属矿地震散射波场的数值模拟研究[J].地质与勘探,2001,37(4):68-70.
    [3]徐明才,高景华等.金属矿地震勘探[M].北京:地质出版社,2009.
    [4]Green A G, Mair J A. Subhorizontal fractures in a granite pluton:Their detection and implication for radioactive waste disposal[J]. Geophysics,1983,48(11):1428-1449.
    [5]Pretorius C C, Jamison A, Irons C, et al. Seismic exploration in the Witwatersrand Basin, Republic of South Africa[J]. Proceedings of Exploration'87,1989:241-253.
    [6]周平,施俊法.金属矿地震勘查方法评述[J].地球科学进展,2008,23(2):120-129.
    [7]藉同冰,徐明才.俄罗斯金属矿地震勘探[J].物探化探译丛,1995,99(4):25-34.
    [8]Eaton D W. Weak elastic-wave scattering from massive sulfide orebodies[J]. Geophysics,1999,64(1):289-299.
    [9]Eaton D W,Clarke G. A Kirchhoff integral method to model 3D elastic-wave scattering[J]. Expanded Abstracts of 70th Annual Internat SEG meeting,2000,1-4.
    [10]Clarke G J,Eaton D W. Influence of morphology and surface roughness on the seismic response of massive sulfides, based on elastic-wave Kirchhoff modeling[A]. In:Eaton D W, Mikereit B, Salisbury M H, eds. Hardrock seismic Exploration[C]. Tulas:Society Exploration Geophysicists,2003,45-58.
    [11]Hobbs R W.3D modeling of seismic-wave propagation using complex elastic screens, with application to mineral exploration[A]. In:Eaton D W, Mikereit B, Salisbury M H, eds. Hardrock seismic Exploration[C]. Tulas:Society Exploration Geophysicists,2003,89-69.
    [12]Bohlen T, Muller C, Mikereit B. Elastic seismic-wave scattering from massive sulfide orebodies: On the role of composition and shape[A]. In:Eaton D W, Mikereit B, Salisbury M H, eds. Hardrock seismic Exploration[C]. Tulas:Society Exploration Geophysicists.
    [13]Bernd Milkereit E K, et al. Development of 3D seismic exploration technology for deep nickel-copper deposits-A case history from the Sudbury basin[J]. Canada Geophysics,2001,65(6).
    [14]徐明才,高景华等.散射波地震方法在蔡家营多金属矿区的试验研究[J].物探与化探,2003,27(1):49-54.
    [15]徐明才,高景华.金属矿地震反射勘探[J].国外地质勘探技术,1990(10):23-27.
    [16]徐明才,高景华,柴铭涛,王广科.寻找隐伏金属矿的地震方法技术研究[J].物探与化探,1997,21(6):468-474.
    [17]徐明才,高景华等. 从金属矿地震方法的试验效果探讨其应用前景[J].中国地质,2004,31(1):108-112.
    [18]高景华,徐明才.小热泉子铜矿区地震方法试验研究[J].地质与勘探,2004,40(6):47-52.
    [19]徐明才,高景华,荣立新,刘建勋,柴铭涛,王广科.散射波地震方法在蔡家营多金属矿区的实验研究[J].物探与化探,2003,27(1):49-54.
    [20]徐明才,柴铭涛,荣立新等.厚覆盖区金属矿地震方法技术研究[J].物探化探计算技术,29,2007(6):492-497.
    [21]徐明才.地面地震层析技术在金属矿勘查中的试验研究[J].物探与化探,2005,29(4):299-303.
    [22]贺冬生.九江-瑞昌地区金属矿地震勘探方法技术研究[J].物探与化探,1994,18(1):76-79.
    [23]梁光河,蔡新平.地震勘探在山东蓬家夼金矿深部预测中的应用[J].矿产与地质,2001,15(6):743-749.
    [24]孙明,林君.金属矿地震散射波场的数值模拟研究[J].地质与勘探,2001,37(4):68-70.
    [25]尹军杰.地震散射波场特征的数值模拟研究[D].北京:中国地质大学(北京),2005.
    [26]王伟.基于等效偏移距方法叠前时间偏移的研究[D].北京:中国地质大学(北京),2005.
    [27]李灿苹,刘学伟等.地震波的散射理论和散射特征及其应用[J].勘探地球物理进展,2005,28(2):81-89.
    [28]李灿苹.散射波特征与非均匀地质体对应关系研究[D].北京:中国地质大学(北京),2006.
    [29]勾丽敏,刘学伟等.金属矿地震勘探技术方法研究综述-金属矿地震勘探技术及其现状[J].勘探地球物理进展,2007,30(1):15-24.
    [30]勾丽敏.散射波成像处理技术研究[D].北京:中国地质大学(北京),2007.
    [31]秦雪霏.地震波多次散射波场属性分析[D].长春:吉林大学地探学院,2007.
    [32]宋俊亭.非均匀介质积分正演及波场特征分析[D].长春:吉林大学地探学院,2010.
    [33]许卓.基于等效偏移距的多波叠前偏移研究[D].长春:吉林大学地探学院,2009.
    [34]奚先,姚姚.二维随机介质及波动方程正演模拟[J].石油地球物理勘探,2001,36(5):546-552.
    [35]姚姚,奚先.随机介质模型正演模拟及其地震波场分析[J].石油物探,2002,41(1):31-36.
    [36]奚先,姚姚.二维弹性随机介质中的波场特征[J].地球物理学进展,2005.20(1):147-154.
    [37]雍运动.三维粘弹随机介质地震波场并行模拟研究[D].长春:吉林大学地探学院,2007.
    [38]朱生旺,魏修成,曲寿利等.用随机介质模型方法描述孔洞型油气储层[J].地质学报,2008,82(3):421-425.
    [39]吴何珍,符力耘,兰晓雯.基于随机介质模型的储层非均质性分析[J].地球物理学进展,2008,23(3):793-799.
    [40]田春志,刘洪.深层地震勘探的地震波传播理论研究前景[J].地球物理学进展,2002,17(4):564-574.
    [41]李海丰.青藏高原东缘及龙门山被动源地震剖面及台阵研究[D].成都:成都理工大学,2008.
    [42]严加永,滕吉文,吕庆田.深部金属矿产资源地球物理勘查与应用[J].地球物理学进展,2008,23(3):871-891.
    [43]滕吉文,张忠杰,杨顶辉等.地震波传播理论与地震“孕育”、发生和发展的深部介质和构造环境[J].地球物理学进展,2009,24(1):1-19.
    [44]Lu Q T, Hou Z Q, Zhao J H, Shi D N, et al. Deep seismic reflection profiling reveals the complex crustal structure of Tongling ore district[J]. Science in China.2004,47 (3):193-200.
    [45]吕庆田,侯增谦,赵金华等.深地震反射剖面揭示的铜陵矿集区复杂地壳结构形态[J].中国科学D辑,2003,33(5):442-449.
    [46]吕庆田,史大年,赵金花,严加永,徐明才.深部矿产勘查的地震学方法:问题与前景—铜陵矿集区的应用实例[J].地质通报,2005,24(3):211-218.
    [47]吕庆田,侯增谦,史大年等.铜陵狮子山金属矿地震反射结果及对区域找矿的意义[J].矿床地质,2004,23(3):390-398.
    [48]吕庆田,侯增谦,杨竹森,史大年.长江中下游地区的底侵作用及动力学演化模式:来自地球物理资料的约束[J].中国科学D辑,地球科学,2004,34(9):783-794.
    [49]吕庆田,杨竹森,严加永,徐文艺.长江中下游成矿带深部成矿潜力、找矿思路与初步尝试[J].地质学报,2007,81(7):865-881.
    [50]吕庆田,廉玉广,赵金花.反射地震技术在成矿地质背景与深部矿产勘查中的应用:现状与前景[J].地质学报,2010,84(6):771-787.
    [51]高锐,王海燕,马永生等.松潘地块若尔盖盆地与西秦岭造山带岩石圈尺度的构造关系-深地震反射剖面探测成果[J].地球学报,2006,27(5):411-418.
    [52]高锐,马永生,李秋生等.松潘地块与西秦岭造山带下地壳的性质与关系-深地震反射剖面的揭露[J].地质通报,2006,25(12):1361-1367.
    [53]高锐,熊小松,李秋生,卢占武.由地震探测揭示的青藏高原莫霍面深度[J].地球学报,2009,30(6):761-773.
    [54]张中杰,秦义龙,陈赞等.由宽角反射地震资料重建壳幔反射结构的相似性剖面[J].地球物理学报,2004,47(3):469-474.
    [55]Claerbout J F. Imaging the earth's interior[M]. Blackwell Scientific publications,1985.
    [56]Stolt P H. Migration by Fourier transform[M]. Geophysics,1978,43:23-48.
    [57]Gazdag J. Wave equation migration with the phase shift method[M]. Geophysics,1978,43: 1351-1432.
    [58]Sun J. Limited-aperture migration[J]. Geophysics,2000,65:584-595.
    [59]Zhang Y, Zhang G, Bleistein N. True amplitude wave equation migration arsing from true amplitude one-way equation[J]. Inverse Problems,2004,19(5):1113-1138.
    [60]张宇.振幅保真的单程波偏移理论[J].地球物理学报,2006,49(5):1410-1430.
    [61]杨勤勇,段心标.逆时偏移技术发展现状与趋势[J].石油物探,2010,49(1):92-98.
    [62]Biondi B. Which depth imaging method should you use? A road map through the maze of possibilities[J]. The Leading Edge,2005,24(6):602-606.
    [63]李振春,朱莉,叶月明等.角度域共成像点道集的提取与叠加成像[J].石油物探,2008,47(6):567-572.
    [64]Symes W W. Reverse time migration with optimal checkpointing[J]. Geophysics,2007,72(5): SM213-SM221.
    [65]Vigh D, Starr E W. Comparisons of Shot-profile vs. plane-wave reverse time migration[J]. Expanded Abstracts of 76th Annual Internat SEG Mtg,2006:2358-2361.
    [66]Guan H,Kim C,Ji J, Yoon K W, Wang B, Xu W, and Li Z. Multistep reverse time migration[J]. The leading Eage,2009,48(4):442-447.
    [67]李博,刘国峰,刘洪.地震叠前时间偏移的一种图形处理器提速实现方法[J].地球物理学报,2009,52(1):245-252.
    [68]Liu F Q,Zhang G Q,Morton S A,et al. Reverse-time migration using one-way wavefield imaging condition[J]. Expanded Abstracts of 77th Annual Internat SEG Mtg,2007,2170-2174.
    [69]何兵寿,张会星,魏修成,陈美年.双程声波方程叠前逆时深度偏移的成像条件[J].石油地球物理勘探,2010,45(2):237-243.
    [70]Costa J C, Silva Neto F A, Alcantara M R, Schleicher J and Novais A. Obliquity-correction imaging condition for reverse time migration [J]. Geophysics,2009,74(3):S57-S66.
    [71]Zhang Y, Sun J. Practical issues in reverse time migration:true amplitude gathers, noise removal and harmonic source[J]. First Break,2009,26(1):29-35.
    [72]Guitton A, Kaelin B. Least-square attenuation of reverse time migration artifacts [J]. Expanded Abstracts of 76th Annual Internat SEG Mtg,2006:2348-2352.
    [73]Liu Z Y, Bleistein N. Migration velocity analysis:theory and an iterative algorithm [J]. Geophysics,1995,60(11):142-153.
    [74]Liu Z Y. Migration velocity analysis [D]. Colorado School of Mines,1995.
    [75]Meng Z, Bleistein N, Wyatt K D.3-D analytical migration velocity analysis I:Two-step velocity estimation by reflector-normal update [J].69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,1999:1727-1730.
    [76]Al-Yahya K. Velocity and analysis by iterative profile migration [J]. Geophysics,1989,54(6): 718-729
    [77]Biondi B, Sava P. Wave-equation migration velocity analysis [J].69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,1999:1723-1726.
    [78]Biondi B, Symes W W. Angle-domain common-image gathers for migration velocity analysis by wavefield-continuation imaging [J]. Geophysics,2004,69(5):1283-1298.
    [79]TRIP, http://www.trip.caam.rice.edu/,2009.
    [80]王昌龙,张叔伦,赵景霞等.基于控制照明的合成震源记录交互剩余偏移速度分析[J].地球物理学报,2007,50(3):860-867.
    [81]杜向东,翁斌,刘军荣等.Tl介质偏移速度建模研究[J].地球物理学报,2008,51(2):538-545.
    [82]刘守伟,王华忠,程玖兵等.时空移动成像条件及偏移速度分析[J].地球物理学报,2008,51(6):1883-1891.
    [83]刘守伟.角度域共成像点道集及偏移速度分析[D].上海:同济大学,2007.
    [84]Reshef M, Ruger A. Influence of structural dip angles on interval velocity analysis [J]. Geophysics, 2008,73(4):U13-U18.
    [85]Farmer P, Zhou Z Z, Jones D. The role of reverse time migration in imaging and model estimation [J]. The Leading Edge,2009,28(4):436-441.
    [86]潘宏勋,孙开峰,叶勇.地震速度分析技术新进展[J].勘探地球物理进展,2008,31(3):172-177.
    [87]Zhu J M, Lines L, Gray S. Smiles and frowns in migration velocity analysis[J]. Geophysics,1998,63(4):P1200-P1209.
    [88]Pon S, Lines L R. Sensitivity analysis of seismic depth migration[J]. Geophysics.2005,70(2): S39-S42.
    [89]Karazincir M H, Gerrard C M. Two-way versus one-way wave equation PSDM velocity sensitivity [J].77th Ann. Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts,2007.
    [90]Shan G J, Zhang L, Wang Y. Velocity sensitivity of reverse-time migration [J].78th Ann. Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts,2008.
    [91]巩向博,韩立国.偏移成像中速度敏感度分析[C].中国地球物理年会,2009:435.
    [92]巩向博,韩立国.联合偏移速度建模[C].中国地球物理年会,2010:498.
    [93]Xiangbo Gong, Liguo Han, Jianjun Niu. Reverse-time migration velocity modeling for tunnel prediction [C]. Near-Surface Geophysics and Geohazards, Science Press USA Inc. Proceedings of the 4th International Conference on Environmental and Engineer Geophysics,2010:58-61.
    [94]GONG Xiang-bo, HAN Li-guo, Niu Jian-jun, ZHANG Xiao-pei, WANG De-li, Du Li-zhi. Combined migration velocity model-building and its application in tunnel seismic prediction [J]. Applied Geophysics.2010,7(3):265-271.
    [95]Stoffa P L, Buhl P, Diebold J B. Direct mapping of seismic data to the domain of intercept time and ray parameter A plane-wave decomposition [J]. Geophysics,1981,46:255-267.
    [96]Thorson J R, Claerbout J F. Velocity-stack and slant-stack stochastic inversion [J]. Geophysics,1985,50:2727-2741.
    [97]Hampson D. Inverse velocity stacking for multiple elimination [J]. Journal of the Canadian Society of Exploration Geophysics,1986,22:44-45.
    [98]Beylkin G. The discrete Radon transform [J]. IEEE Transactions of Acoustics, Speech, and Signal Processing,1987,35:162-712.
    [99]Foster D J, Mosher C C. Suppression of multiples using the Radon transform [J]. Geophysics,1992,57(3):386-395.
    [100]Yilmaz O. Velocity-stack processing [J]. Geophys Prosp,1989,37:357-382.
    [101]Sacchi M D, Ulrych T J. High-resolution velocity gathers and offset space reconstruction [J]. Geophysics,1995,60(4):1169-1177.
    [102]Sacchi M D. Aperture Compensated Radon and Fourier Transforms [D]. University of British Columbia,1996.
    [103]Cary P W. The simplest discrete Radon transform [J]. SEG Expanded Abstracts,1998.
    [104]Yanghua W. Multiple attenuation coping with the spatial truncation effect in the Radon transform domain [J]. Geophysical Prospecting,2003,51,75-87.
    [105]Zhou Y, John F. Wavelet-Radon domain dealiasing and interpolation of seismic data [J]. Geophysics,2007,72(2):41-49.
    [106]Cristina M C, Sacchi M D. Enhanced resolution in Radon domain using the shifted hyperbola equation [J]. SEG/Houston Annual Meeting,2005.
    [107]Ethan J N, Matthias G I. Amplitude preservation of Radon-based multiple-removal filters [J]. Geophysics,2006,71(5):123-126.
    [108]Yilmaz O, Taner M T. Discrete plane-wave decomposition by least-mean square-error method [J]. Geophysics,1994,59:973-982.
    [109]Zhihong Cao. Analysis and application of the Radon transform [D]. Geology and Geophysics Calgary,2006:45.
    [110]Ng M, Perz M. High resolution Radon transform in the t-x domain using "intelligent" prioritization of the Gauss-Seidel estimation sequence [J]. SEG Expanded Abstracts,2004: 2160-2163.
    [111]何樵登,熊维纲.应用地球物理教程:地震勘探[M].北京:地质出版社,1991:70-71.
    [112]刘清林Tau-p变换的频率域算法及Tau-p域的偏移处理[J].长春地质学院学报.1986(4):77-80.
    [113]吴律.τ-p变换及应用[M].北京:石油工业出版社,1993.
    [114]牛滨华,孙春岩.多项式Radon变换[J].地球物理学报,2001,44(2):263-271.
    [115]王维红,首皓.线性同相轴波场分离的高分辨率τ-p变换法[J].地球物理学进展,2006,21(1):74-78.
    [116]王维红,裴江云,张剑锋.加权抛物Radon变换叠前地震数据重建[J].地球物理学报,2007,50(3):851-859.
    [117]沈操,牛滨华,余钦范Radon变换的Matlab实现[J].物探化探计算技术,2000,22(4):346-351.
    [118]黄新武,孙春岩,牛滨华.基于数据一致性预测与压制自由表面多次波[J].地球物理学报,2005,48(1):173-180.
    [119]刘喜武,刘洪.高分辨率Radon变换方法及其在地震信号处理中的应用[J].地球物理学进展,2004,19(1):8-15.
    [120]刘喜武,刘洪,刘彬.反假频非均匀地震数据重建方法研究[J].地球物理学报,2004,47(2):299-305.
    [121]朱生旺,魏修成,李峰等.用抛物线radon变换稀疏解分离和压制多次波[J].石油地球物理勘探,2002,37(2):110-115.
    [122]刘保童,朱光明.一种频率域提高Radon变换分辨率的方法[J].西安科技大学学报,2006,26(1):112-116.
    [123]陈见伟.用高分辨率双曲线Radon变换实现波场分离[D].长安大学,2005:11.
    [124]曾有良Radon变换波场分离技术研究[D].中国石油大学,2007.
    [125]郭全仕,张卫华等.高精度拉冬变换方法及应用[J].石油地球物理勘探,2005,40(6):622-627.
    [126]李建.炮集域多次波压制的Radon变换法[D].中国海洋大学,2005.
    [127]孙显义,陈可为,许世勇.采用τ-q变换法进行纵横波波场分离[J].大庆石油地质与开发,2002,21(4):76-77.
    [128]巩向博,单刚义,刘冰.压制截断效应的Radon变换在波场分离中的应用[J].吉林大学学报(地球科学版).2007,37(增刊):74-77.
    [129]巩向博,韩立国,牛建军,杜立志Radon变换在非规则观测系统中波场分离的应用[J].地球物理学进展,2008,23(6):1886-1893.
    [130]巩向博,韩立国,王恩利,杜立志.压制噪声的高分辨Radon变换法[J].吉林大学学报(地球科学版),2009,39(1):152-157.
    [131]巩向博.高精度Radon变换及其应用研究[D].吉林大学地探学院,2008.
    [132]William H P, Saul A T,傅祖芸,赵梅娜等译.C数值算法[M].北京:电子工业出版社,2004.
    [133]Jeffrey A F. Conjugate-Gradient Preconditioning Methods Numerical Results[J]. The University of Michigan Ann Arbor,1997:303.
    [134]阮百尧,熊彬.大型对称变带宽方程组的Cholesky分解法[J].物探化探计算技 术,2000,22(4):361-363.
    [135]姜岩,王维红.对比抛物Radon正变换几种矩阵求解方法[J].物探化探计算技术,2007,29(6):555-559.
    [136]何樵登.地震波理论[M].北京:地质出版社,1988.
    [137]何樵登.地震勘探原理和方法[M].北京:地质出版社,1986.
    [138]何樵登,张中杰.横向各向同性介质中地震波及其数值模拟[M].长春:吉林大学出版社,1996.
    [139]Thomsen L. Weak elastic anisotropy [J]. Geophysics,1986,51(10):1954-1966.
    [140]Castle R. A theory of normal moveout [J]. Geophysics,1994,59(4):983-999.
    [141]Alkhalifah T. Velocity analysis using nonhyperbolic moveout in transverse isotropic media [J]. Geophysics,1997,62(6):1839-1854.
    [142]Alkhalifah T, Tsvankin I. Velocity analysis for transversely isotropic media [J]. Geophysics,1995,60(5):1550-1566.
    [143]Alkhalifah T. Seismic processing in transversely isotropic media [D]. Colorado Scholl of Mines,1996.
    [144]Siliqi R, Bousquie N. Anelliptic time processing based on a shifted hyperbola approach [J],70th Ann. Internat. Mtg:Soc. of Expl. Geophys.,2000,2245-2248.
    [145]Siliqi R, Bousquie N. Time to move to Anelliptic Time Processing [J]. Geophysics,2001, 66(5):9-14.
    [146]Siliqi R, Le Meur D, Gamar F, Smith L and Toure J. High-density moveout parameter fields V and Eta, Part 1:Simultaneous automatic picking [J].73rd Ann. Internat. Mtg.:Soc. of Expl. Geophys,2003,2088-2091.
    [147]Siliqi R, Le Meur D, Gamar F, Smith L and Toure J. High-density moveout parameter fields V and Eta, Part 2:Simultaneous geostatistical filtering [J].73rd Ann. Internat. Mtg.:Soc. of Expl. Geophys.2003,2092-2095.
    [148]谢里夫.勘探地震学[M].北京:石油工业出版社,1999.
    [149]Zhang Y, Xu S, Tang B, Bai B, Huang Y and Huang T. Angle gathers from reverse time migration [J]. The Leading Edge,2010,29(11):1364-1371.
    [150]Kaelin B, A Guitton. Imaging condition for reverse time migration [J].76th International Annual Meeting, SEG, Expanded Abstracts,2006:2594-2597.
    [151]Costa J C, Silva Neto F A, Alcantara M R M, Schleicher J, Novais A. Obliquity-correction imaging condition for reverse time migration [J]. Geophysics,74(3):S57-S66.
    [152]周学明.交错网格高阶差分数值模拟以叠前逆时偏移[D].长安大学,2010.
    [153]刘建勋.提高海上单道反射地震记录信噪比和分辨率的方法技术[J].物探化探计算技术,2007,29(S):116-120.
    [154]Oppert S K, Brown R J. Improved Radon transforms for filtering of coherent noise [J]. CREWES Research Report,2002,14.
    [155]Darche G. Spatia linterpolatio nusing a fast parabolic transform [J]. SEG meeting/SanFrancisco Expanded Abstracts,1990:1647-1650.
    [156]Anderson J E. Parabolic and linear 2-D tau-p transforms using the generalized radon transform [J]. Center for Wave Phenomena internal report,1993,137:11-14.
    [157]Trad D O, Ulrych T J, Sacchi M D. Accurate interpolation with high-resolution time-variant Radon transform [J]. Geophysics,2002,67(2):644-656.
    [158]Stoffa P L, Buhl P, Diebold J B. Direct mapping of seismic data to the domain of intercept time and ray parameter A plane-wave decomposition [J]. Geophysics,1981,46:255-267.
    [159]董树文,李廷栋,高锐,吕庆田等.地球深部探测国际发展与我国现状综述[J].地质学报,2010,84(6):743-770.
    [160]Morozov I B, Smithson B. High-resolution velocity determination:statistical phase correlation and image processing [J]. Geophysics,1996,61(4):1115-1127.
    [161]王德利,何樵登,韩立国.相位相关统计高分辨率速度分析[J].石油地球物理勘探,2001,36(2):198-204.
    [162]崔杰.转换波高分辨率速度分析方法研究[D].吉林大学地探学院,2008.
    [163]曹磊.基于Gabor变换的反褶积方法研究及应用[D].吉林大学地探学院,2009.
    [164]韩佳君Curvelet变换组合法压制地震随机噪声研究[D].吉林大学地探学院,2009.
    [165]韩利,韩立国,巩向博,单刚义,崔杰.TTl介质隐式有限差分平面波偏移[J].地球物理学报,2011,54(4):1090-1097.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700