用户名: 密码: 验证码:
晋西黄土区果农间作系统种间关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农林复合经营作为解决水土流失、恢复生态平衡、提高土地利用率和增加经济效益的最有效的措施和途径之一,在黄土区被广泛的应用。但农林复合系统内部存在着一定程度的种间竞争,对农林复合系统种间关系的研究有助于更深层次地理解生态系统结构和功能的稳定性,探索资源合理和高效的利用方式,为经营种间关系协调的高产、高效和稳定的农林复合系统提供理论依据。为了提出黄土高原区适宜的间作模式和经营管理措施,本文以黄土高原地区典型果农间作系统为研究对象,针对间作系统地下部分土壤水分、土壤养分、果树根系,地上部分光合有效辐射、净光合速率以及产量和经济收入进行研究,分析研究树木与农作物种群界面中土壤水分、土壤养分和光分布特征,旨在使树木和农作物之间的资源竞争最小化,资源利用最大化,为该地区农林复合系统调控和管理技术的研究提供重要的基础理论依据和决策依据。研究结果表明:
     (1)果农间作系统土壤水分分布特征:时间上,果农间作系统土壤水分在不同物候期变化极为显著。空间上,在垂直方向上,核桃间作和苹果间作土壤含水量变化规律存在差异,但土壤水分的变异系数随着土壤深度的增加而减小,且为中等变异程度;在水平方向上,土壤含水量变化与离果树行的距离有关,均是离树行越近,土壤含水量越少。苹果间作土壤含水量明显小于相应的核桃间作土壤含水量,且其二维分布明显要比核桃间作复杂很多。根据移动窗口法,判定3种核桃间作模式的土壤水分影响域,其0~20cm和20~40cm土壤水分的边界影响域宽度在4.0m~5.5m。
     (2)果农间作系统土壤养分分布特征:在垂直方向上,土壤养分随土层深度的增加而减少,并且距果树行越远,土壤养分的垂直变化梯度越小;在水平方向上,在果树区内,离果树行越近,土壤养分越少、在农作物区,离果树行越远,土壤养分越大,养分水平变化越小。在典型物候期,观测范围内果树和农作物存在养分竞争。
     (3)果农间作系统果树根系分布特征:在所研究范围内,不同径级根生物量分布规律基本一致。作为土壤水分、养分吸收和传输作用的细根,核桃和苹果细根垂直方向集中在0~40cm和0~60cm的土层,分别占细根总量的68.51%和94.39%;水平方向集中在离树0.5~1.5m范围内和0~1.5m范围内,分别占细根总量的56.15%和83.85%。根系消弱系数反映出的根系分布特点与根系的实际分布情况相符,可以作为描述果树根系垂直变化的参数。
     (4)果农间作系统光照空间分布特征:核桃间作的遮荫区域多取决于单株核桃树遮荫区的累加,群体遮荫时间段相对较少,遮荫程度相对较轻;苹果间作光照分布较为复杂,其受到多重遮荫影响,地面受光相对有限,遮荫程度相对较重。受到果树的影响,农作物的光合有效辐射、净光合速率均出现不同程度的降低,并且离树行越近,影响越大。
     (5)果农间作系统土壤水分效应和养分效应均表现为核桃×花生>核桃×大豆>苹果×花生>苹果×大豆:当土壤层次取0~40cm时,其土壤水分效应依次为-5.33%、-5.66%、-10.54%和-12.81%,土壤养分效应依次是-8.68%、-15.00%、-21.77%和-22.12%;当土壤层次取0~100cm时,其土壤水分效应依次为-4.08%、-5.25%、-11.20%和-16.83%,土壤养分效应依次是-10.19%、-16.85%、-23.40%和-25.69%。果农间作系统光效应表现为核桃×花生>核桃×大豆>苹果×大豆>苹果×花生,其光效应依次为-16.62%、-18.12%、-21.89%和-26.39%。从土地利用效率和经济效益来看,核桃×花生、核桃×大豆、苹果×花生和苹果×大豆间作模式可以作为该区的主要果农间作模式,推荐模式土地利用效率平均提高约70%,经济效益平均提高约14%,适合该地区实践推广的。
Agroforestry management is widely applied in China Loess Plateau as one of effective measures to reduce soil and water loss, restore ecological balance, raise land utilization rate and increase economic benefits. However, interspecific competition exists in agroforestry system to some extent, the sduty on the relationship among different species in agroforestry system could contribute to intensively understanding the stability of ecosystem structure and function, explore reasonable and efficient utilization ways of resource, provide theoretical basis for managing agroforestry system with high-yield, high-efficiency and stabilization. In order to find suitable intercropping models and management in Loess Plateau, typical economic tree and crop intercropping models in loess region of western Shanxi Province were selected as research objects to study the underground for soil moisture, soil nutrient and walnut roots, the aboveground for photosynthetic active radiation and net photosynthetic rate, yield and economic benefit, and soil moisture, soil nutrient and light distribution at tree-crop interface were analyzed. The objectives of the paper are:1) to minimize the competition between trees and crops and maximize resource utilization,2) to provide a theoretical basis for the agroforestry control and management in this region. The results showed that:
     (1) Soil moisture distribution in economic tree and crop intercropping system showed that:In temporal, the soil moisture variation of economic tree and crop intercropping was very significant in different phonological phases; In spatial, the variation of soil moisture was different between walnut-crop intercropping and apple-crop intercropping in vertical direction. However, the variation coefficient of soil moisture decreased with soil depth, and soil moisture in the system of walnut-crop intercropping and apple-crop intercropping belonged to intermediate variability; In horizontal direction, soil moisture was related to distance from tree row. The closer to trees sampling points, the lower the soil moistures. The soil moisture in applet-crop intercropping was much less than that in walnut-crop intercropping, and two-dimension isogram of soil moisture content in applet-crop intercropping was more complicated than that in walnut-crop intercropping. By using moving split-window techniques, the distance of edge influence of compound boundary to soil moisture content at soil depth of 0-20 cm and 20-60 cm were [4.0 m,5.5 m] in walnut-crop intercropping.
     (2) Soil nutrient distribution in economic tree and crop intercropping system showed that:In vertical direction, soil nutrient decreased with increasing soil depth, and vertical decrease gradient of soil nutrient decreased with the increase of the distance from the tree row. In horizontal direction, soil nutrient decreased with the decrease of the distance from the tree row in economic tree area. Soil nutrient increased and its horizontal variation decreased with the increase of the distance from the tree row in crop area. It showed soil nutritent competition between crops and trees of observation range in typical phonological phase.
     (3) Economic tree roots distribution in economic tree and crop intercropping system showed that: Roots biomass distributions of different diameters were consistent in research ranges. As the main organ of absorption of soil moisture and nutrient, fine roots of walnut trees and apple trees concentrated within the depth of 0-40 cm and 0-60 cm in vertical direction, which accounted for 68.51% and 94.39% of total fine roots biomass respectively. In horizontal direction, fine roots concentrated at [0.5 m,1.5 m] and [0 m,1.5 m] distance from the trees, which accounted for 56.15% and 83.85% of total biomass of fine roots respectively. The root extinction coefficient could be used as a parameter revealing the vertical distribution characteristics of economic tree roots.
     (4) Light distribution in economic tree and crop intercropping system showed that:The shading areas more depended on accumulation of shading area of per walnut tree in walnut-crop intercropping, and time quantum of canopy shading was relative short. Therefore, shading degree was relative slighter. The light distribution was relative more complicated in apple-crop intercropping, which was influnenced by multiple shading, there was less light on the ground. Therefore, shading degree was relative stronger. The crops were influenced by trees, the photosynthetic active radiation and net photosynthetic rate of crops were significantly decreased by trees, and the decreasing degree is decreased with the increasing of distance from tree rows.
     (5) The values of EM in economic tree and crop intercropping system were -5.33%,-5.66%, -10.54%, and -12.81% for walnut-peanut, walnut-soybean, apple-peanut and apple-soybean in layer of 0-40 cm respectively, while that were -4.08%,-5.25%,-11.20%, and -16.83% in layer of 0-100 cm respectively, and the values of EN in intercropping with crops were -8.68%,-15.00%,-10.54%, and-12.81% for walnut-peanut, walnut-soybean, apple-peanut and apple-soybean in layer of 0-40 cm respectively, while that were -10.19%,-16.85%,-23.40%, and -25.69% in layer of 0-100 cm respectively. The values of EM in economic tree and crop intercropping were -16.62%,-18.12%,-21.89%, and -26.39% for walnut-peanut, walnut-soybean, apple-soybean and apple-peanut respectively. According to land use efficiency and economic benefits, walnut-peanut, walnut-soybean, apple-peanut, and apple-soybean intercropping models could be used as the main models of economic tree and crop intercropping, and they should be extended in the Loess Plateau. The average value of land use efficiency increased by 70%, and the average economic benefits increased by 14%.
引文
1. 阿拉木萨,蒋德明,骆永明.植物根系水力提升作用研究进展综述[J].干旱区研究,2008,25(2):236-241.
    2. 别智鑫,翟梅枝,贺立虎,等.核桃青皮水提液对小麦和三叶草的化感作用研究[J].西北林学院学报,2007,22(6):108-110.
    3. 蔡崇法,王峰,丁树文,等.间作及农林复合系统中植物组分间养分竞争机理分析[J].水土保持研究,2000,7(3):219-222,252.
    4. 陈洪松,邵明安,王克林.黄土荒草地和裸地土壤水分的循环特征[J].应用生态学报,2005,16(10):1853-1857.
    5. 陈健翔,葛耿恕.吉县经济社会发展迈上稳健轨道[N].临汾日报,2008-1-9(B01).
    6. 陈龙池,廖利平,汪思龙.香草醛对杉木幼苗养分吸收的影响[J].植物生态学报,2003,27(1):41-46.
    7. 陈向明,马云飞.山核桃外果皮黄酮提取液对小麦和绿豆幼苗的化感效应[J].西北植物学报,2010,30(4):0645-0651.
    8. 程鹏.银杏复合经营生物生产力及生态效应研究[D].南京:南京林业大学,2010.
    9. 代巍,郭小平,毕华兴,等.晋西地区不同套种模式对苹果光合特性的影响[J].山西果树,2009a,(2):3-6.
    10.代巍,郭小平,毕华兴,等.晋西地区果树—农作物复合模式的光合特点[J].吉林农业大学学报,2009b,31(6):688-693.
    11.戴晓琴.幼龄杨树和小麦—玉米复合系统土壤水分和养分时空变化及作物表现[D].北京:中国农业大学,2006.
    12.邓鹏程.吉县水土保持生态环境建设实践与回顾[J].山西水利,2010,(5):26-27.
    13.邓玉林,陈治谏,刘绍权,等.果牧结合生态农业模式的综合效益试验研究[J].水土保持学报,2003,17(2):24-27.
    14.丁瑞兴.茶园间作乌桕的气候生态效应[J].应用生态学报,1992,3(2):131-137.
    15.樊巍,孔令省,阴三军,等.干旱丘陵区苹果—紫花苜蓿复合系统对苹果生长、产量和品质的影响[J].河南农业大学学报,2004,38(4):423-426.
    16.樊巍,李芳东,孟平.河南平原复合农林业[M].郑州:黄河出版社,2001.
    17.樊小林,李生秀.植物根系的提水作用[J].西北农业大学学报,1997,25(5):75-81.
    18.方斌,朱清科,李文华,等.林木个体影响林下太阳辐射分布的动态仿真[J].西北农林科技大学学报(自然科学版),2008,36(6):113-125.
    19.费世民.农林业系统分类研究综述[J].四川林业科技,1993,14(2):27-32.
    20.冯宗炜.农林业系统结构和功能[M].北京:中国科学技术出版社,1992.
    21.高椿翔,高杰,邓国胜,等.林粮间作生态效果分析[J].防护林科技,2000,44(3):97-98.
    22.高国治,王明珠,张斌.低丘红壤南酸枣—花生复合系统物种间水肥光竞争的研究—Ⅱ.南酸枣与花生利用光能分析[J].中国生态农业学报,2004,12(2):92-94.
    23.韩士杰.叶面界面生态学[M].哈尔滨:东北林业大学出版社,1996.
    24.黄明斌,康绍忠,李玉山.黄土高原沟壑区小流域水分环境演变研究[J].应用生态学报,1999,10(4):411-414.
    25.黄志刚,李瑞峰,曹云,等.南方红壤丘陵区杜仲人工林土壤水分动态[J].应用生态学报,2007,18(9):1937-1944.
    26.惠竹梅,李华,张振文,等.西北半干早地区葡萄园行间生草对土壤水分的影响[J].干旱地区农业研究,2004,22(4):39-42.
    27.贾志清.晋西北黄土丘陵沟壑区典型灌草植被土壤水分动态变化规律研究[J].水土保持通报,2006,26(1):10-15.
    28.柯世省,金则新,陈贤田.浙江天台山七子花等6种阔叶树光合生态特性[J].植物生态学报,2002,26(3):363-371.
    29.雷钧杰,陈兴武,乔旭,等.杏麦间作系统生态效应及小麦生理特性研究初报[J].新疆农业科学,2010,47(12):2339-2343.
    30.李洪建,王孟本,柴宝峰.黄土高原土壤水分变化的时空特征分析[J].应用生态学报,2003,14(4):515-519.
    31.李洪建,王孟本,柴宝峰.晋西北人工林土壤水分特点与降水关系研究[J].水土保持学报,1998,4(4):60-65.
    32.李会科,赵政阳,张广军.种植不同牧草对渭北苹果园土壤肥力的影响[Jl.西北林学院学报,2004,19(2):31-34.
    33.李杰,彭方仁,黄宝龙.农林复合系统种群互作研究进展[J].世界林业研究,1999,12(5):10-14.
    34.李俊.晋西黄土残塬沟壑区不同植被类型土壤水分动态研究[D].北京:北京林业大学,2007.
    35.李俊祥,宛志沪.淮北平原杨-麦间作系统的小气候效应与土壤水分变化研究[J].应用生态学报,2002,4(13):391-394.
    36.李丽光,何兴元,李秀珍,等.岷江上游干旱河谷农林边界影响域的研究[J].应用生态学报,2004,15(10):1804-1808.
    37.李丽光,何兴元,李秀珍,等.岷江上游花椒地/林地边界土壤水分影响域的定量判定[J].应用生态学报,2006,17(11):2011-2015.
    38.李鹏,李占斌,赵忠,等.渭北黄土高原不同立地上刺槐根系分布特征研究[J].水土保持通报,2002,22(5):15-19.
    39.李鹏,赵忠,李占斌,等.渭北黄土区刺槐根系空间分布特征研究[J].生态环境,2005,14(3):405-409.
    40.李文华,赖世登.中国农林复合经营[M].北京:科学出版社,1994.
    41.李笑吟.晋西黄土区土壤水分时空变化规律研究[D].北京:北京林业大学,2006.
    42.李振吾,籍增顺.山西旱地农业高效持续发展模式研究[J].干旱地区农业研究,2001,19(1):108-114.
    43.林培群,余雪标,刘苇,等.桉农间作系统对土壤性质变化的影响研究[J].广东农业科学,2010,(1):24-27.
    44.刘丽霞.绿洲农田防护林系统水分生态特征研究[D].兰州:甘肃农业大学,2007.
    45.刘兴宇,曾德慧.农林复合系统种间关系研宄进展[J].生态学杂志,2007,26(9):1464-1470.
    46.刘秀萍,陈丽华,陈吉虎.刺槐和油松根系密度分布特征研究[J].干旱区研究,2007,24(5):647-651.
    47.刘志鹏,邵明安.黄土高原小流域土壤水分及全氮的垂直变异[J].农业工程学报,2010,26(5):71-77.
    48.娄安如.生物多样性与我国的农林业的复合经营[J].生态农业研究,1994,2(4):14-17.
    49.卢琦,慈龙骏.农用林业研究的回顾与展望[J].世界林业研究,1996,2:39-49.
    50.卢琦,赵体顺,师永全,等.农用林业系统仿真的理论与方法[M].北京:中国环境科学出版社,1999.
    51.罗锡文,周学成,严小龙,等.基于XCT技术的植物根系原位形态可视化研究[J].农业机械学报,2004,35(2):104-106.
    52.马雯静,毕华兴,云雷,等.晋西黄土区林草复合界面土壤水分养分分布规律研究[J].水土保持研究,2009,16(5):78-82.
    53.马雯静.晋西黄土区农林复合系统植物根系分布研究[D].北京:北京林业大学,2010.
    54.毛瑢,曾德慧.农林复合系统植物竞争研究进展[J].中国生态农业学报,2009,17(2):379-386.
    55.孟平,张劲松.中国复合农林业发展机遇与研究展望[J].防护林科技,2011,(1):7-10.
    56.孟平,张劲松,樊巍,等.农林复合生态系统研究[M].北京:科学出版社,2004.
    57.孟平,张劲松,樊巍.中国复合农林业研究[M].北京:中国林业出版社,2003.
    58.孟平,张劲松,宋兆民,等.农林复合模式耗水的研宄[J].林业科学研究,1996,9(3):221-226.
    59.孟平,张劲松,尹昌君,等.太行山丘陵区果—草复合系统生态经济效益的研究[J].中国生态农业学报,2003,11(2):111-114.
    60.孟平,张劲松.梨麦间作系统水分效应与土地利用效应的研究[J].林业科学研究,2004,17(2):167-171.
    61.潘瑞炽.植物生理学[M].北京:高等教育出版社,2000.
    62.庞家平,陈明勇,唐建维,等.橡胶—大叶千斤拔复合生态系统中的植物生长与土壤水分养分动态[J].山地学报,2009,27(4):433-441.
    63.彭奎,欧阳华,朱波.农林复合生态系统氮素平衡及其评价—以中国科学院盐亭农业生态试验站为例[J].长江流域资源与环境,2004,13(3):252-257.
    64.彭晓邦,蔡靖,姜在民,等.光能竞争对农林复合系统生产力的影响[J].生态学报,2009b, 29(1):545-552.
    65.彭晓邦,蔡靖,姜在民,等.渭北黄土区农林复合系统光能竞争与生产力研究[J].应用生态学报,2008,19(11):2414-2419.
    66.彭晓邦.渭北黄土区农林复合系统生理生态特性及生产力研究[D].杨凌:西北农林科技大学,2009.
    67.秦娟,上官周平.植物之间互作效应及其生理机制[J].干旱地区农业研究,2005,23(3):225-230
    68.秦树高,吴斌,张宇清.林草复合系统地上部分种间互作关系研究进展[J].生态学报,2010,30(13):3616-3627.
    69.邱扬,傅伯杰,王军,等.黄土丘陵小流域土壤水分时空分异与环境关系的数量分析[J].生态学报,2000,20(5):741-747.
    70.裘福庚,方嘉兴.农林复合经营系统及其实践[J].林业科学研究,1996,9(3):318-322.
    71.沈平,彭晓邦,仲崇高,等.李子叶水浸液对5种作物的化感效应[J].西北林学院学报,2009,24(4):151-155.
    72.石培礼,李文华.生态交错带的定量判定[J].生态学报,2002,22(4):586-592.
    73.石培礼,刘兴良.游动分割窗技术在生态交错带定量判定中的应用:以四川巴郎山岷江冷杉林线为例[J].植物生态学报,2002,26(2):189-194.
    74.史晓丽,郭小平,毕华兴,等.晋西果农间作光竞争及产量研究[J].北京林业大学学报,2009,31(Supp2):115-118.
    75.宋兆民.黄淮海平原综合防护林体系生态经济效益的研究[M].北京:北京农业大学出版社,1990.
    76.孙尚伟,尹伟伦,夏新莉,等.修枝对复合农林系统内小气候及作物生长的影响[J].北京林业大学学报,2009,31(1):25-30.
    77.孙守家,孟平,张劲松,等.华北石质山区核桃—绿豆复合系统氘同位素变化及其水分利用[J].生态学报,2010,30(14):3717-3726.
    78.孙祥.关于林草间作的研究[J].林业科技通讯,1985,(1):20-30.
    79.万开元,陈防,余常兵,等.杨树-农作物复合系统中的化感作用[J].生态科学,2005,24(1):57-60.
    80.汪贵斌,曹福亮,程鹏,等.不同银杏复合经营模式土壤肥力综合评价[J].林业科学,2010,46(8):1-7.
    81.王德利.关于生态场的几点评述[J].应用生态学报,2000,11(3):472-476.
    82.王德利.植物生态场导论[M].吉林:吉林科学技术出版社,1994.
    83.王广钦,樊巍.农田林网内土壤水分变化动态的研宄[J].河南农业大学学报,1988,22(3):285-293.
    84.王汉杰.生态界面理论研究的最新进展[J].南京林业大学学报,1990,15:6-10.
    85.王九龄.我国混交林营造的研究现状[J].林业科技通讯,1986,(11):1-5.
    86.王军,傅伯杰,邱扬,等.黄土丘陵区土地利用与土壤水分的时空关系[J].自然资源学报,2001,41(6):113-120.
    87.王孟本,李洪建.林分立地和林种对土壤水分的影响[J].水土保持学报,2001,15(6):43-46.
    88.王孟本,李洪健.晋西北黄土区人工林土壤水分动态的定量研究[J].生态学报,1995,5(2):178-184.
    89.王欣然,彭晓邦,蔡靖,等.杜仲叶水提液对3种作物的化感效应研究[J].西北林学院学报,2010,25(4):157-160.
    90.王兴祥,何园球,张桃林,等.低丘红壤花生南酸枣间作系统研究.Ⅳ.光能竞争与剪枝作用[J].土壤,2003a,35(4):320-324.
    91.王兴祥,张斌,王明珠,等.低丘红壤复合农林系统光能竞争与生产力—以花生南酸枣间作为例[J].生态学杂志,2002,21(4):1-5.
    92.王兴祥,张桃林,张斌,等.低丘红壤花生南酸枣间作系统研究.Ⅱ.氮素竞争[J].土壤,2003b,35(1):66-68.
    93.卫春,陈建群,张鹏飞,等.复合农林系统中水杉他感作用的生物测定[J].南京林业大学学报,1999,23(4):85-88.
    94.吴榜华,戚继忠,郝广明,等.论农业复合经营中生态建设的基础[J].吉林农业大学学报,2000,22(专辑):10-16.
    95.吴刚,冯宗炜,秦宜哲.果粮间作生态系统功能特征研宄[J].植物生态学报,1994,18(3):243-252.
    96.吴刚,冯宗炜,王效科,等.黄淮海平原农林生态系统N、P、K营养元素循环[J].应用生态学报,1993,4(2):141-145.
    97.向成华,黄礼隆,姜俊明,等.国内外防护林体系效益研究动态综述[J].四川林业科技,1998,9(1):52-56.
    98.肖笃宁,李秀珍,高峻,等.景观生态学[M].北京:科学出版社,2003.
    99.谢京湘,于汝元,胡涌.农林复合生态系统研究概况[J].北京林业大学学报,1988,10(1):104-108.
    100.熊文愈,王汉杰.论生态界面系统[J].南京林业大学学报,1986,9(2):1-9.
    101.许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244.
    102.许大全.植物光胁迫研究中的几个问题[J].植物生理学通讯,2003,39(5):493-495.
    103.阎树文.农田防护林[M].北京:中国林业出版社,1993.
    104.杨丁丁,罗承德,宫渊波,等.退耕还林区林草复合模式土壤养分动态[J].林业科学,2007,43(增刊):101-105.
    105.杨培岭,罗远培,石元春.土壤-植物根系统的水分传输[J].北京农业大学学报,1993,19(2):25-30.
    106.杨文衡,魏继周,齐三魁,等.核桃根系及其地上部相互关系的观察[J].园艺学报,1980,7(2):11-20.
    107.尤文忠.黄土高原坡地农林复合系统景观边界土壤特征的研究-以陕西永寿地区为例[D].沈阳:沈阳农业大学,2006.
    108.余优森,林日暖,邓振镛,等.人工草地土壤水分周年变化规律的研究[J].土壤学报,1992,29(2):175-181.
    109.袁玉欣,裴保华,王九龄,等.国外混农林业系统中林木与农作物的相互关系研究进展[J].世界林业研究,1999,12(6):11-17.
    110.云雷,毕华兴,任怡,等.晋西黄土区果农间作界面土壤水分分布[J].东北林业大学学报,2009,37(9):70-73.
    111.曾觉民.西南山区的农用林业类型及其评价[J].生态经济,1993,(6):30-38.
    112.曾艳琼,卢欣石.林草复合生态系统的研究现状及效益分析[J].草业科学,2008,25(3):33-36.
    113.翟梅枝,高小红,赵彩霞,等.核桃枝叶水溶物的化感作用研宄[J].西北农业学报,2006,15(3):179-182.
    114.张保华,陈健翔.吉县全面推进新农村建设[N].临汾日报,2010-4-2(B01).
    115.张凤云,翟梅枝,贾彩霞,等.核桃鲜叶挥发油化感作用初步研究[J].西北林学院学报,2005a,20(2):144-146.
    116.张凤云,翟梅枝,毛富春,等.核桃青皮提取物对几种作物幼苗生长的影响[J].西北农业学报,2005 b,14(1):62-65.
    117.张建军,张岩,张波.晋西黄土区水土保持林地的土壤水分[J].林业科学,2009,45(11):63-69.
    118.张建雄,刘春惊,张保军,等.南疆杏棉复合系统条件下棉花冠层的光特性[J].干旱地区农业研究,2010,28(4):173-178.
    119.张劲松,孟平,宋兆民,等.“京九”铁路大兴段绿化模式动力效应的研究[J].林业科学研究,2000,1 5(3):319-322.
    120.张劲松,孟平,辛学兵,等.太行山低山丘陵区苹果生姜间作系统综合效应研究[J].林业科学,2001,37(2):74-78.
    121.张劲松,孟平,尹昌君,等.农林复合系统的水分生态特征研究述评[J].世界林业研究,2003,16(1):10-14.
    122.张劲松,孟平.农林复合系统水分生态特征的模拟研究[J].生态学报,2004,24(6):1172-1177.
    123.张劲松,宋兆民,孟平,等.银杏一小麦间作系统水热效应的研究[J].林业科学研究,2002,15(4):457-462.
    124.张久海,安树青,李国旗,等.林牧复合生态系统研究评述[J].中国草地,1999,(4):52-60.
    125.张均营,刘亚民,吴炳奇,等.河北平原农区农林复合生态系统对生态环境的影响[J].河北林业科技,1999,(增刊):40-42.
    126.张立宇.核(桃)农间作系统小气候效应的研究[D].乌鲁木齐:新疆农业大学,2009.
    127.张先来,李会科,张广军,等.种植不同牧草对渭北苹果园土壤水分影响的初步分析[J].西北林学院学报,2005,20(3):56-59.
    128.张小全,吴可红,Dieter Murach树木细根生产与周转研究方法评述[J].生态学报,2000,20(5):875-883.
    129.张宇清,朱清科,齐实,等.梯田生物埂几种灌木根系的垂直分布特征[J].北京林业大学学报,2006,28(2):34-38.
    130.张元燕,季永华,贾恒,等.遮光处理对不同生育期小麦生物量分配和叶片叶绿素含量的影响[J].植物资源与环境学报,2009,18(4):39-45.
    131.章家恩,段舜山,骆世明,等.赤红壤坡地幼龄果园间种不同牧草的生态环境效应[J].土壤与环境,2000,9(1):42-44.
    132.赵传燕,冯兆东,南忠仁.黄土高原西部土壤水分时空变化模拟研究—以安家坡流域为例[J].冰川冻土,2007,29(5):785-794.
    133.赵斯,赵雨森,王林,等.东北黑土区农林复合土壤效应[J].东北林业大学学报,2010,38(5):68-70.
    134.赵英,张斌,王明珠.农林复合系统中物种间水肥光竞争机理分析与评价[J].生态学报,2006,26(6):1792-1801.
    135.赵勇,陈桢,王科举,等.泡桐、杨树叶水浸液对作物种子萌发的化感作用[J].农业工程学报,2010,26(增刊1):400-405.
    136.赵政阳,李会科.黄土高原旱地苹果园生草对土壤水分的影响[J].园艺学报,2006,33(3):481-484.
    137.周志翔,李国怀,徐永荣.果园生态栽培及其生理生态效应研究进展[J].生态学杂志,1997,16(1):45-52.
    138.朱清科,沈应柏,朱金兆.黄土区农林复合系统分类体系研究[J].北京林业大学学报,1999,21(3):36-40.
    139.朱清科,肖斌,张柏林,等.黄土塬区农—林—路复合生态系统界面附近土壤水分影响因素分析[J].西北林学院学报,1995,10(增刊):103-107.
    140.朱清科,肖斌.淳化泥河沟流域农林复合生态经济系统优势分析[J].西北林学院学报,1994,9(1):52-57.
    141.朱清科,朱金兆.黄土区退耕还林可持续经营技术[M].北京:中国林业出版社,2003.
    142.朱廷曜,周广胜,金昌杰.农田防护林体系区域防风效应初探[J]/防护林体系生态效益及边界物理特征研究(朱廷曜主编).北京:气象出版社,1992.
    143.朱廷曜,周广胜.农牧防护林网区域防风效应及评价模型[J].林业科学,1993,29(6):509-514.
    144.祝心如,王大力.苹果、杨树等林木根系浸提物对小麦生长的潜在影响[J].植物生态学报,1997,21(3):226-233.
    145. Allen S C,Jose S,Nair P K R,et al.Safety-net role of tree roots:Evidence from a pecan(Carya illinoensisK.Koch)-cotton(Gossypium hirsutum L)alley cropping system in the southern United States[J].Forest Ecology and Management,2004,192:395-407.
    146. Baker J M,Barer C H M,Vanbavel C H M. Water transfer through cotton plants connecting soil regions of differing water potential[J]. Agronomy Journal,1988,80:993-997.
    147.Brandle J R,Hodges L,Zhou X H.Windbreaks in North American agricultural systems[J]. Agroforestry Systems,2004,61:65-78.
    148. Brenner A J.Microclimatic modifications in agroforestry.Tree-Crop Interactions:A Physiological Approach CAB International,Wallingford,UK,1996,157-187.
    149. Budelman A.The performance of selected leaf mulches in temperature reduction and moisture conservation in the upper soil stratum[J].Agroforestry Systems,1989,8:53-66.
    150.Caldwell M M,Dawson T E,Richards J H.Hydraulic lift consequences of water efflux from the roots of plant[J].Oecologia,1998,113:115-161.
    151.Caldwell M M,Richards J H.Hydraulic lift:water efflux from upper roots improves effectiveness of water uptake by deep roots[J].Oecologia,1989,79:1-5.
    152.Callaway R M,Delucia E H,Moore D,et al.Competition and facilitation contrasting effects of Artemisia tridentate on desert vs montane pines[J].Ecology,1996,77:2130-2141.
    153.Cannell M G R,Van Noordwijk M,Ong C K.The central agroforestry hypothesis:the tree must acquire resources that the crop would not otherwise acquire[J].Agroforestry Systems, 1996,34:27-31.
    154.Chander K,Goyal S,Nandal D P,et al.Soil organicmatter,microbial biomass and enzyme activities in a tropical agroforestry system[J].Biology and Fertility of Soils,1998,27:168-172.
    155.Chang S X,Amatya G,Beare M H,et al.Soil properties under aPinus radiata-ryegrass silvopastoral system in NewZealand. Part 1.Soil N and moisture availability,soil C,and tree growth[J].Agroforestry Systems,2002,54:137-147.
    156.Chirko C P,Gold M A,Nguyen PV,et al.Influence of direction and distance from trees on wheat yield and photosynthetic photo flux(Qp) density in a Paulownia and wheat intercropping system[J].Forest Ecology and Management,1996,83(3):171-180.
    157.Choesin D,Boerner R E.Vegetation boundary detection:A comparison of two approaches applied to field data[J].Plant Ecology,2002,158:85-96.
    158.Corak S J,Blevins D G,Pallardy S G.Water transfer in an alfalfa/maize associations:survival of maize during drought[J].Plant Physical,1987,84:582-586.
    159.Dawson T E.Hydraulic lift and water use by plants:implications for water balance, performance and plant-plant interactions[J].Oecologia,1993,95:554-565.
    160. Deans J D, Lindley D K, Munro R C.Deep beneath the trees in Senegal.In:Annual Report of the Institute of Terrestrial Ecology 1993-1994,NERC,Swindon,UK,1994,12-14.
    161.Droppelmann K J,Ephrath J E,Berliner P R.Tree/crop complementarity in an arid zone run off agroforestry system in northern Kenya[J].Agroforestey Systems,2000,50:1-16.
    162. Eastam J,Rose C W,Cameron D M,et al.The effect of tree spacing on evaporation from an agroforestry experiment[J].Agricultural and Forest Meteorology,1988,42(4):355-368.
    163.Eastham J,Rose C W,Cameron D M,et al.Tree pasture interactions at a range of tree densities in an agroforestry experiment(Ⅱ)-Water uptake in relation to rooting patterns[J].Australian Journal of Agricultural Research,1990,41(4):697-707.
    164. Everson C S, Everson T M,Niekerk W. Soil water competition in a temperate hedgerow agroforestry system in South Africa[J].Agroforestey Systems,2009,75:211-221.
    165. Fang S Z,Xu X Z,Yu X,et al.Polar in wetland agroforestry:a case study of ecological benefits,site productivity and economics[J].Wetlands Ecology and Management,2005,13: 93-104.
    166. Filella I,Penuelas J.Indications of hydraulic lift by Pinus halepensis and its effects on the water relations of neighbour shrubs[J].Biologia Plantarum,2003,47:209-214.
    167.Fogel R.Root turnover and productivity of coniferous forests[J].Plant and Soil,1983,71: 75-85.
    168.Fraver S.Vegetation responses along edge-to-interior gradients in the mixed hardwood forests of the Roanoke River Basin,North Carolina[J].Conservation Biology,1994,8(3):822-832.
    169. Friday J B,Fownes J H.Competition for light between hedgerows and maize in an alley cropping system in Hawaii,USA[J].Agroforestry Systems,2002,55:125-137.
    170. Gale M R,Grigal D F.Vertical root distribution of northern tree species in relation to successional status Canadian[J].Journal of Forest Research,1987,17(8):829-834.
    171.Gerwitz A,Page E R.An empirical mathematical model to describe plant root systems[J]. Journal of Applied Ecology,1974,11:773-781.
    172.Gillespie A R,Jose S,Mengel D B,et al.Defining competition vectors in a temperate alley cropping system in the midwestern USA:1.Production physiology[J].Agroforestry Systems, 2000,48:25-40.
    173.Haggar J P,Beer J W.Effect on maize growth of the interaction between increased nitrogen availability and competition with trees in alley cropping[J].Agroforestry Systems,1993, 21:239-249.
    174. Hirota I,Sakuratani T,Sato T,et al.A split-root apparatus for examining the effects of hydraulic lift by trees on the water status of neighbouring crops[J].Agroforestry Systems,2004, 60:181-187.
    175.Horton J L,Hart S C.Hydraulic lift:a potentially important ecosystem process[J].Trends in Ecology and Evolution,1998,13(6):232-235.
    176. Hou Q J,Brandle J,Hubbard K,et al.Alteration of soil water content consequent to root-pruning at a windbreak/crop interface in Nebraska,USA[J].Agroforestry Systems,2003, 57:137-147.
    177. Imo M,Timmer V R.Vector competition analysis of a Leucaena-maize alley cropping system in western Kenya[J].Forest Ecology and Management,2000,126(2):255-268.
    178.Jamaludheen V,Kmumar B M,Wahid P A,et al.Root distribution pattern of the Jack tree as studied by32P soil injection method[J].Agroforestry Systems,1997,35:329-336.
    179.Jose S,Gillespie A R,Pallardy S G.Interspecific interactions in temperate agroforestry[J]. Agroforestry Systems,2004,61:237-255.
    180.Jose S,Gillespie A R,Seifert J R,et al.Defining competition vectors in a temperate alley cropping system in the Midwestern USA:3.Competition for nitrogen and litter decomposition dynamics[J].Agroforestry Systems,2000,48:61-77.
    181. Jose S,Gillespie A R,Seifert J R,et al.Defining competition vectors in a temperate alley cropping system in the Midwestern USA:2.Competition for water[J].Agroforestry Systems, 2000,48:41-59.
    182. Jose S,Gillespie A R.Allelopathy in black walnut(Juglans nigra L)alley cropping.Ⅱ.Effects of juglone on hydroponically grown corn(Zea mays L)and soybean(Glycine max L Merr)growth and physiology[J].Plant and Soil,1998,203:199-205.
    183.Jose S,Williams R,Zamora D.Belowground ecological interactions in mixed-species forest plantations[J].Forest Ecology and Management,2006,233(2-3):231-239.
    184. Kang B T.Alley cropping-soil productivity and nutrient recycling[J].Forest Ecology and Management,1997,91 (1):75-82.
    185.Kaur B,Gupta S R,Singh G.Biomelioration of a sodic by silvopastoral systems in northwestern India[J].Agroforestry Systems,2002,54:13-20.
    186. King K F S.The history of agroforestry.In:Nair,P.K.R.(eds)Agroforestry Systems in Tropics.Kluwer[M].Netherlands:Academic Publishers,1989.
    187. Kohli R K,Singh D.Allelopathic impact of volatile components from Eucalyptus on crop plants[J].Biologia Plantarum,1991,33:475-483.
    188. Kort J.Benefits of windbreaks to field and forage crops[J].Agriculture Ecosystems and Environment,1988,22/23:165-191.
    189. Kowalchuk T E.Shelterbelts the their effect on crop yield[J].Canada Journal of Soil Science,1995,75:543-550.
    190. Kumar S S,Kumar B M,Wahid P A,et al.Root competition for phosphorus between coconut,multipurpose trees and kacholam(Kaempferia galanga L.)in Kerala,lndia[J]. Agroforestry Systems,1999,46:131-146.
    191.Lehmann J,Peter I,Steglich C,et al.Below-ground interactions in dry land agroforestry[J]. Forest Ecology and Management,1998,111 (2-3):157-169.
    192. Leihner D E,Schaeben R E,Akond T P,et al.Alley cropping on an Ultisol in sub-humid Benin-Part2:Changes in crop physiology and tree crop competition[J].Agroforestry systems, 1996,34:13-25.
    193.Livesley S J,Gregory P J,Buresh R J.Competition in tree row agroforestry systems.2. Distribution,dynamics and uptake of soil inorganic N[J].Plant and Soil,2002,247:177-187.
    194.Lundgren B O.ICRAF into 1990s[J].Agroforesry Today,1990,2:14-16.
    195.Lundgren B O.Introduction[J].Agroforesry Systems,1982,1:3-61.
    196. Marshall F M.Resource partitioning and productivity of perennial pigeonpea/groundnut agroforestry systems in India Ph D.Thesis,University of Nottingham,UK.1995.
    197.Matlack G R.Microenvironment variation within and among forest edge sites in the eastern united states[J].Biological Conservation,1993,66(3):185-194.
    198. Mayus M,van Keulen H,Stroosnijder L.A model of tree-crop competition for windbreak systems in the Sahel description and evaluation[J].Agroforestry Systems,1999,43:183-201.
    199.Mcintyre R,Riha S J,Ong C K.Competition for water in a hedge-intercrop system[J].Field Crops Research,1997,52(1-2):151-160.
    200. Meiners S J,Pickett S T A.Changes in community and population responses across a forest-field gradient[J].Ecography,1999,22(3):261-267.
    201. Miller A W,Pallardy S G.Resoure competition across the crop-tree interface in a maize-silver maple temperate alley cropping stand in Missouri[J].Agroforestry systems,2001,53:247-259.
    202.Monteith J L,Ong C K,Corlett J E.Microclimatic interactions in agroforestry systems[J]. Forest Ecology and Management,1991,45(1):31-44.
    203. Mooney H A.Further observation on the water relations of Prosopis tamarngo of the Northern Atacama Desert[J].Oecologia,1980,44:177-180.
    204. Moreno G,Obrador J J,Garcia A.Impact of evergreen oaks on soil fertility and crop production in intercropped dehesas[J].Agriculture,Ecosystems&Environment,2007,119(3-4): 270-280.
    205.Murcia C.Edge effects in fragmented forests:implications for conservation[J].Trends Ecology and Evolution,1995,10(2):58-62.
    206.Nair,P K. R.Classification of agroforestry system[J].Agroforesry Systems,1985,3:383-394.
    207.Nambiar E K. S and Sands R.Competition for water and nutrients in forests[J].Canadian Journal of Forest Research,1993,23(10):1955-1968.
    208.Neilson C H N,Mackenthun G.Die horizontale variation der feinwurzelintensit in waldb den in abh ngigkeit von der bestockungsdichte[J].Allg Forst-Jagd Ztg,1991,162:112-119.
    209. Newman S M,Bennett K,Wu Y.Performance of maize,beans and ginger as intercrops in Paulownia plantations in China[J].Agroforestry Systems,1998,39:23-30.
    210.Nissen T M,Midmore D J,Cabrera M L.Aboveground and belowground competition between intercropped cabbage and young Eucalyptus torelliana[J].Agroforestry Systems,1999,46: 83-93.
    211.Noordwijk M V,Lawson G,Soumare A,et al.Root distribution of trees and crops:Competition and/or complementarity[M]//Ong C K,Huxley P.Tree-Crop Interactions:APhysiological Approach.Wallingford:CAB International,1996:319-364.
    212.Noordwijk M V,Lusiana B. WaNuLCAS,a model of water,nutrient and light capture in agroforestry systems[J].Agroforestry Systems,1998,43:217-242.
    213.Odum E P.Fundamentals of ecology(3rd Edition).Saunders,Philadelphia,USA,1971.
    214. Ong C K,Corlett J E,Singh R P.Above and below ground interaction in agroforestry systems[J].Forest Ecology and Management,1991,45(l):45-57.
    215.Osman M,Emmingham W H,Sharrow S H.Growth and yield of sorghum or cowpea in an agrisilviculture system in semiarid India[J].Agroforestry Systems,1998,42:91-105.
    216. Page E R,Gerwitz A.Mathematical models,based on diffusion equations to describe root systems of isolated plants,row crops,and swards[J].Plant Soil,1974,41:243-254.
    217. Peng X B, Zhang Y Y, Cai J,et al.Photosynthesis,growth and yield of soybean and maize in a tree-based agroforestry intercropping system on the Loess Plateau[J]. Agroforestry Systems,2009a,76:569-577.
    218. Perry D A. Forest ecosystems[M].Baltimore,MD:Johns HoPkinsUniversity Press,1994.
    219. Persson H.Root dynamics in a Young Scots pine stand in central Sweden[J].Oikos,1978,30: 508-519.
    220. Pinto L S,Perfecto I,Hernandez J C,et al.Shade effect on coffee production at the northern Tzeltal zone of the state of Chiapas,Mexico.Agriculture,Ecosystems&Environment,2000, 80(1-2):61-69.
    221. Rao M R,Nair P K R,Ong C K.Biophysical interactions in tropical agroforestry systems[J]. Agroforestry Systems,1998,38:3-50.
    222. Rao M R,Ong C K,Pathak P,et al.Productivity of annual cropping and agroforestry systems on a shallow Alfisol in semi-arid India[J].Agroforestry Systems,1991,15:51-63.
    223. Rice E L.Some Possible Roles of Inhibitors In Old?field Succession[M]//In:Biochemical Interactions Among Plants Ntional Academy of Sciences.U.S.A,Washington,D.C.1971.
    224. Richards J H,Caldwell M M.Hydraulic lift:substantial nocturnal water transport between soil layers by Artemisia tridentate roots[J].Oecologia,1987,73:486-589.
    225. Ripple W J,Bradshaw G A,Spies T A.Measuring forest landscape patterns in the Cascade range of Oregon,USA[J].Biology Conservation,1991,57(1):73-88.
    226. Rizvi S J H,Tahir M,Rizvi V,et al.Allelopathic interactions in agroforestry systems[J].Critical Reviews in Plan Sciences,1999,18(6):773-796.
    227.Rowe E C,Hairiah K,Giller K E,et al.Testing the safety-net role of hedgerow tree roots by15N placement at different soil depths[J].Agroforestry Systems,1999,43:81-93.
    228.Sankar C R,Swamy S M.Influence of light and temperature on leaf area index,chlorophyll content,and yield of ginger[J].Journal of Mahrash University,1988,13(2):216-217.
    229. Schipper B,Schroth M N,Hildebrand D C.Examination of water from underground plant parts[J].Plant and Soil,1967,27:81-91.
    230. Schroth G.A review of belowground interactions in agroforestry,focusing on mechanisms and management options[J].Agroforestey Systems,1999,43:5-34.
    231. Sierra J,Dulormne M,Desfontaines L.Soil nitrogen as affected by Gliricidia sepiumin a silvopastoral system in Guadeloupe,FrenchAntilles[J].Agroforestry Systems,2002,54:87-97.
    232. Singh H P,Kohil P K,Batish D R.Effect of Poplar(Populus deltoids)shelterbelt on the growth and yield of wheat in Punjab,India[J].Agroforestry Systems,1998,40:207-213.
    233. Singh R P,Ong C K,Saharan N.Above and below ground interactions in alley-cropping in semi-arid India[J].Agroforestry Systems,1989,9:259-274.
    234. Smith D M,Jarvis P G.Physiological and environmental control of transpiration by trees in windbreaks[J].Forestry Ecology and Management,1998,105(1-3):159-173.
    235.Sudmeyer R A,Speijers J.Influence of windbreak orientation,shade and rainfall interception on wheat and lupin growth in the absence of below-ground competition[J].Agroforestry Systems,2007,71:201-214.
    236.Thevathasan N V,Gordon A M,Simpson J A,et al.Biophysical and ecological interactions in a temperate tree-based intercropping system[J].Journal of Crop Improvement,2004,12(12): 339-363.
    237. Thomas J,Kumar B M,Wahid P A,et al.Root competition for phosphorus between ginger and Ailanthus triphysa in Kerala,lndia[J].Agroforestry Systems,1998,41:293-305.
    238. Van Noordwijk M,Lawson G,Soumare A,et al.Root distribution of trees and crops: competition and/or complementarity.In:Ong C K,Huxley P(eds),Tree-Crop Interactions:A Physiological Approach.CAB Intemational,Wallingford,UK,1996,319-364.
    239. Vetterlein D,Marschner H.Use of microtensiom eter technique to study hydraulic lift in a sandy soil planted eith pearlm illet(Pennisetum americanum)[J].Plant and Soil,1993,149: 275-282.
    240. Wang J,Fu B J,Qiu Y,et al.Geostatistical analysis of soil moisture variability on Danangou catchment of the Loess Plateau,China[J].Environment Geology,2001,41:113-120.
    241. Wang Q,Shogren J F.Characteristics of the crop-paulownia system in China[J].Agriculture Ecosystems and Environment,1992,39(3-4):145-152.
    242. Wanvestraut R H,Jose S,Nair P K R,et al.Competition for water in a pecan(Corya illinoensis K.Koch)-cotton(Gossypium hirsutum Lalley.)cropping system in the southern United States[J]. Agroforestry Systems,2004,60:167-179.
    243. Whittaker R H.Vegetation of the Siskiyou Mountains[J],Oregon and California.Ecological Monographs,1960,30:279-338.
    244. Wu Y Y,Zhu Z H.Temperate agroforestry in China[M]//Gordon AM,Newman SM,eds. Temperate Agroforestry Systems.Wallingford,UK:CAB International Press,1997:149-179.
    245. Xu X,Bland W L.Resumption of water uptake by sorghum afer water stress[J].Agronomy Journal,1993,85:697-702.
    246. Yonker C M,Schimel D S,Paroussis E,et al.Patterns of organic carbon accumulation in a semiarid shortgrass steppe,Colorado[J].Soil Science Society of America Journal,1988,52: 478-483.
    247. Young A.Agroforestry for Soil Management(2nd ed).Wallingford(UK):CAB Internationa. 1997.
    248.Zamora D S,Jose S,Nair P K R,et al.Interspecific competition in a pecan-cotton alley-cropping system in the soutern United States:Is light the limiting factor?[M]//Jose S, Gordon A.Towards Agroforestry Design:an Ecological Aproach. New York:Springer-Verlag, 2008,4:81-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700