用户名: 密码: 验证码:
东北黑土漫岗区大豆变量施肥播种技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着农业现代化的发展,为了生产环境和经济的可持续性,产生了精准农业。基于农田空间差异的变量施肥播种技术是精准农业技术的重要组成部分。本研究根据东北黑土漫岗区坡耕地因多年耕种形成的自身特点,结合大豆农艺研究成果,针对大规模生产大豆精准生产的需求,开展了黑土漫岗区坡耕地空间变异研究,农田三维地形测绘技术研究,变量控制硬件系统研制,开发变量控制软件,对传统精密大豆播种机进行改装,田间大豆变量施肥播种试验。对适合我国东北黑土漫岗区大豆变量施肥播种生产的技术进行了探索。本研究的主要内容和成果有以下几个方面:
     1.进行了黑土漫岗区坡耕地空间变异研究。使用了SPSS Statistics 17.0、MATLAB R2009a、AFS 5.02等工具软件。对红星农场试验地块的高程、碱解氮、速效磷进行了基本统计分析、正态分布检验、相关性分析,发现该试验地块的高程和土壤碱解氮呈现显著的正相关。在嫩江县试验地块进行了土壤GPS定位取样,对试验地块的碱解氮、速效磷、速效钾、pH值、有机质进行了基本统计分析、正态分布检验,作出了Q-Q概率图和频率分布直方图。通过相关性分析表明,土壤有机质与碱解氮呈极强的正相关(r=0.498,P<0.01),地块的高程和土壤碱解氮呈正相关(r=0.253,P<0.05)。制作了试验田高程图,碱解氮、速效磷、速效钾、pH值、有机质的分布图。得出黑土漫岗区坡耕地的高程变化与土壤碱解氮的分布有相关性,坡耕地农田地形与土壤水肥分布有相关性的结论。
     2.进行了农田三维地形测绘技术的研究。通过需求分析认为对于坡耕地三维地形的地块高程数据的精度在亚米级即可满足需求,选用了AgGPS 332接收机,免费接收MSAS2的卫星差分信号后,定位精度达到亚米级。坐标变换采用了UTM投影。开发设计了车载三维地形测量系统,进行了直线行走导航算法研究,制作了导航光耙,开发了导航软件,满足了田间测绘导航的需求。使用小波变换的方式进行了三维地形测量数据处理,研究表明在农田三维地形测绘中,对DGPS连续测得的高程值使用db6小波进行5层分解消噪后,进行坡耕地的三维地形曲面的构建,适用于黑土漫岗区坡耕地具有的较缓的波状起伏,可以很好地反应农田的地形地貌特征。
     3.进行了变量施肥播种机变量控制系统的硬件结构设计。选择了车载计算机,并对其配备的GPS模块进行了动态定位测试。选择了U34-0.75型脉动式机械无级变速器作为变量系统的主工作部件,并对其进行了电控改装。对变量控制器进行了设计,采用了闭环控制方案和双路H桥直流电机驱动模块,使用AT89C52单片机为主控芯片。进行了试验台测试,得出了电控无级变速器传动比与指令之间的回归曲线方程,电控无级变速器输出轴回传值与转速之间的一元线性回归方程。为精准农业变量施肥播种提出了新的硬件解决方法。
     4.进行了变量控制软件设计。研究了控制指令的算法并给出了算例。提出了使用地块平均施肥量、设定变量范围、根据施肥处方图的控制值大小来进行精准变量施肥控制的简易方法。分析了实时施肥量的算法。根据系统转速信号的特点,设计了的复合多级数字滤波器,对快速变化的信号及有脉冲干扰的信号都能获得较好的滤波效果。开发了精准农业变量施肥播种系统软件。软件开发使用VB6.0编程语言及MSComm串口通信控件和MO2.2地理信息控件和Access2000数据库。处方图的形式采用了广泛使用的shape文件格式。软件能自动生成作业记录,机组正常行走作业时,每2秒记录1次数据,同时可实时显示开始作业以来的作业长度和作业面积。设计了记录图显示和作业回放功能,利于用户对变量施肥作业记录信息的使用和生产追溯。
     5.进行了田间变量施肥播种试验。进行了变量施肥播种机改装与调试,对播种系统传动比进行了计算,用于实际播种量的检查与调整。对排肥系统的传动进行了设计,在播种机的排肥传动系统中加入电控无级变速器,使排肥系统的总传动比可在1.89~3.77的范围内变化,从而能做到变量施肥和在定量施肥时对施肥量能进行快捷调整。对改装的播种机的施肥量进行了调试,使播种地块的农艺决策平均施肥值在播种机最大施肥量和最小施肥量的中值附近,保证可靠控制变量施肥。根据大豆栽培农艺需求和土壤养分的相关性,对高程数据进行正线性相关无量纲化处理,对有机质数据进行负线性相关无量纲化处理,用两者无量纲的平均值作为处方图的决策值,生成了混合肥的施肥处方图,实现了根据地块空间差异变量配方平衡施肥。试验地块施肥量变量范围确定为±5%,地块施肥量变化范围为213.75~236.25 kg/hm~2。通过田间播种试验表明,研制的变量施肥控制系统使用方便、工作稳定、变量控制可靠、效果良好。
Abstract: With the development of agricultural modernization, in order to ensure the environmental and economic sustainability, precision agriculture has emerged. The variable rate fertilizing and seeding technology is an important component of the precision agriculture based on field spatial variability. The slope land of the black soil gentle hilly regions of the northeast China cultivated for many years formed their own characteristics, combined with agronomic research and large-scale production of soybean accurate product demand, research work carried out including spatial variability of slope farmland, land three-dimensional topographic mapping technology, variable control hardware systems research and development of variable control software, the traditional soybean planter be modified, soybean variable rate fertilizer application and seeding experiments in fields. The variable rate fertilizing and sowing techniques are explored, which is suitable of black soil hilly areas soybean production. The main contents and results in the following areas:
     1. Study on the the black soil gentle hilly regions spatial variability of slope land. Using the SPSS Statistics 17.0, MATLAB R2009a, AFS 5.02 software and other tools, elevation, available N, available P of experimental field in the Hongxing Farm were descriptive statistics analysis, normality test, correlation analysis, found that the land elevation and soil available N showed a significant positive correlation. GPS positioning and soil sampling conducted on experimental field in Nenjiang County, available N, P, K, pH, OM were basic statistical analysis, normality test, made a Q-Q probability plots and frequency distribution histograms. The correlation analysis indicated that soil OM and available N was strong positive correlation (r = 0.498, P <0.01), land elevation and soil available N was positively correlated (r = 0.253, P <0.05). Experimental field elevation map, available N, P, K, pH, OM distribution were produced. The results show that slope farmland’s elevation in the black soil gentle hilly regions and the distribution of soil available N is correlated, the topography of slope farmland correlate with distribution of soil water and fertilizer.
     2. Three-dimensional topographic mapping conducted techniques. Through needs analysis that the elevation data of sloping land terrain in the sub-meter accuracy can meet the demand, the choice of the AgGPS 332 receiver which free receive MSAS2 satellite differential signal and achieve sub-meter positioning accuracy. The UTM projection was used for coordinate transformation. The vehicled 3D-terrain measuring system was developed, straight line navigation algorithm was given, a navigation light bar was produced. The software was developed to meet the needs of the field mapping navigation. The wavelet transform was used for 3D-terrain survey data processing, research shows using a db6 wavelet 5 level decomposition denoising for elevation data measured by DGPS continuously was suitable for the 3D-terrain farmland surveying and mapping in black soil hilly area which farmland have the more moderate wavy. Farmland can be a good response to topography features.
     3. The variable control system’s hardware architecture was designed for variable rate fertilizer planter. Select a on-board computer which equipped GPS module was tested for dynamic positioning. Select the U34-0.75 type mechanical impulse stepless speed variator as the main working parts, and modified it for the electronic control. The variables controller was design by using a closed-loop control scheme and the dual H bridge DC motor driver module, using AT89C52 micro-controller as the master chip. Experimental test was conducted and regression curve equation was obtained for electronically controlled CVT transmission ratio and instruction, the linear regression equation between output shaft speed and the return value. The new hardware solution was proposed for variable fertilizing and seeding of precision farming.
     4. The design of variable control software. The control instruction algorithm and example were studied. Simple methods for accurate variable rate fertilizer control have been proposed that the use of average fertilizer of field and set the variable range, accurate control variable rate fertilizing based on control value of fertilizer prescription map. The real-time fertiling algorithm was analysised. According to the characteristics of the system speed signal, multi-level complex digital filter is designed which can get a better filtering effect for the fast-changing signals and a pulse interference signal. The variable rate fertilizer seeding software for precision agriculture is developed. Software developed using VB6.0 programming language and MSComm serial communication control and MO2.2 geographic information control and Access2000 database. The shape file format is used which is widely form in Prescription map. Software can automatically generate operating records. When sowing machine normal operation, every two seconds record one set of data, real-time display length of operation and operating area since the job beginning. The record showing and operations playback function is designed, which will help users to use record information and production traceability.
     5. The experiment of variable rate fertilizing and seeding was implemented in the field. Variable rate fertilizer planter was modified and debuged. The transmission ratio of the seeding system was calculated for the actual amount of the check and adjustment of planting. The transmission of fertilizer system was designed that add a electric continuously variable transmission in the planter, the total ratio of fertilizer transmission system can be changed beween 1.89 to 3.77, which can be variable rate fertilization and the quantitative amount of fertilizer can be quickly adjusted. The fertilizer of planter was modified, so that average value of agricultural decision-making fertilizer could be around the median of the planter maximum and minimum fertilizer, to ensure reliable control of variable rate fertilization. According to soybean cultivation agronomic demand and soil nutrient relevance, the elevation data is processed by positive linear related dimensionles, the OM data is processed by negative linear related dimensionles, with the average of the two data as a prescription decision values to produce a mixed fertilizer prescription map to achieve the variable rate fertilization based on field spatial variability. The scope variable is±5% of experiment of field fertilization, fertilizer ranged from 213.75 to 236.25 (kg/hm2). The field experiments show that variable rate fertilizer control system developed easy to use, stable, variable control reliable, have a good effect.
引文
[1]张学俭,武龙甫.东北黑土地水土流失修复[M].北京∶中国水利水电出版社,2007,1-84.
    [2]中华人民共和国水利部.SL 190-96.土壤侵蚀分类分级标准[s].北京:中国水利水电出版社,1997.
    [3]王礼先,朱金兆.水土保持学(第2版) [M].北京∶中国林业出版社,2005,2-3.
    [4]范昊明,蔡强国,崔明.东北黑土漫岗区土壤侵蚀垂直分带性研究[J].农业工程学报,2005,21(6):8-11.
    [5]王连铮,郭庆元.现代中国大豆[M].北京:金盾出版社,2007:17-18,763-803.
    [6]刘忠堂.制定生产计划采用大豆窄行密植栽培技术[J].大豆科技, 2009,2:19.
    [7]张明芳.黑龙江省北部大豆窄行密植栽培技术[J].现代化农业,2007,3:9-10.
    [8]林惠霞,董广林.大豆窄行密植栽培技术要点[J].农村实用科技信息,2009,10:4
    [9]魏冀西,王国春,刘忠堂等.大豆大垄窄行密植栽培技术[J].大豆通报,1999,5:12-13.
    [10]刘永安,刘雪蜂,郭坤友.大豆大垄窄行密植栽培应用技术[J].大豆通报,2003,2:20.
    [11]张桂荣.大豆大垄窄行密植栽培关键技术[J].大豆通报,2006,3:34.
    [12]徐凤杰.大豆高产栽培技术[J].科技博览, 2010,2:72.
    [13]李德永.辽西半干旱区优质大豆高产栽培技术[J].黑龙江农业科学,2009(6):177-178.
    [14]庄卫东.GPS和GIS在精准农业中的应用研究[M].北京:光明日报出版社,2009:1-3.
    [15]汪懋华.精细农业发展与工程技术创新[J].农业工程学报,1999, 15(1):1-8.
    [16]彭望禄、Pierre Robert、程惠贤.农业信息技术与精确农业的发展[J].农业工程学报,2001,17(2):9-11.
    [17] Stan G.Daberkow, William D.McBride. Farm and operator characteristics affecting the awareness and adoption of precision agriculture technologies in the US [J]. Precision Agric, 2003, 4:163–177.
    [18] M. Reichardt, C. Jürgens, U. Kl?ble, et al. Dissemination of precision farming in Germany: acceptance, adoption, obstacles, knowledge transfer and training activities [J]. Precision Agric, 2009, 10:525–545.
    [19] R. Bongiovanni. Precision agriculture and sustainability [J]. Precision Agriculture, 2004,5:359-387.
    [20] S.A. Al-Kufaishi, B.S. Blackmore, H. Sourell. The feasibility of using variable rate water application under a central pivot irrigation system [J]. Irrig Drainage Syst, 2006, 20:317-327.
    [21] Pinaki Mondal, V.K.Tewari. Present status of precision farming: a review [J]. International Jouranl of Agricultural Research, 2007, 2(1):1-10.
    [22] P. C. Robert. Precision agriculture: a challenge for crop nutrition management [J]. Plant and Soil, 2002, 247:143-149.
    [23] Randal K. Taylor, Scott Staggenborg, Mark D. Schrock. Using a GIS to evaluate the potential of variable rate corn seeding. ASAE Paper No. 00AETC105. February 23-25, 2000
    [24] John F. Shanahan, Thomas A. Doerge, Jerry J. Johnson, et al. Feasibility of site-specific management of corn hybrids and plant densities in the Great Plains [J]. Precision Agriculture, 2004, 5: 207-225.
    [25] Nicolás F. Martín, Germán Bollero, Donald G. Bullock. Associations between field characteristics and soybean plant performance using canonical correlation analysis [J]. Plant and Soil. 2005. 273: 39-55.
    [26] Y. Miao, D. J. Mulla, P. C. Robert. Spatial variability of soil properties, corn quality and yield in two Illinois, USA fields: implications for precision corn management [J]. Precision Agric, 2006, 7:5-20.
    [27] D. Ehlert, J. Schmerler, U. Voelker. Variable rate nitrogen fertilization of winter wheat based on a crop density sensor [J]. Precision Agriculture, 2004,5:263-273.
    [28] J. D. Mccauley. Simulation of cotton production for precision farming [J]. Precision Agriculture,1999, 1: 81-94.
    [29] James A. Larson, Roland K. Roberts, Burton C. English, et al. Factors affecting farmer adoption of remotely sensed imagery for precision management in cotton production [J]. Precision Agric, 2008, 9:195–208.
    [30] Richard E. Engel, Dan S. Long, Gregg R. Carlson, et al. Method for precision nitrogen management in spring wheat: I fundamental relationships [J]. Precision Agriculture, 1999, 1: 327-338.
    [31] Robert N. Carrow, Joseph M. Krum, Ian Flitcroft, et al..Precision turfgrass management: challenges and field applications for mapping turfgrass soil and stress [J]. Precision Agric, 2010, 11:115–134.
    [32] G. Gambolati, M. Putti, P. Teatini, et al. Subsidence due to peat oxidation and impact on drainage infrastructures in a farmland catchment south of the Venice Lagoon [J]. Environ Geol, 2006, 49: 814-820.
    [33] Luigi Tosi, Pietro Teatini, Tazio Strozzi, et al. Ground surface dynamics in the northern Adriatic coastland over the last two decades [J]. Rend. Fis. Acc. Lincei, (2010, 21 (Suppl 1):115–129.
    [34] Christiane Hudon, Douglas Wilcox, Joel Ingram. Modeling wetland plant community response to assess water-level regulation scenarios in the lake ontario–ST.Lawrence river basin [J]. Environmental Monitoring and Assessment, 2006, 113: 303–328.
    [35] Stefan Patzold, Franz Michael Mertens, Ludger Bornemann, et al. Soil heterogeneity at the field scale: a challenge for precision crop protection [J]. Precision Agric, 2008, 9:367–390.
    [36] S. R. Raine, W. S. Meyer, D. W. Rassam, et al. Soil–water and solute movement under precision irrigation: knowledge gaps for managing sustainable root zones [J]. Irrig Sci, 2007, 26:91–100
    [37] Dragoljub Pokrajac. A data generator for evaluating spatial issues in precision agriculture [J]. Precision Agriculture, 2002, 3:259–281.
    [38] George Milliken, Jeffrey Willers, Kevin McCarter, et al. Designing experiments to evaluate the effectiveness of precision agricultural practices on research fields:part 1 concepts for their formulation [J]. Oper Res Int J, 2010, 10:329-348.
    [39] F. Mazzetto, A. Calcante, A. Mena, et al. Integration of optical and analogue sensors for monitoring canopy health and vigour in precision viticulture [J]. Precision Agric, 2010, 11:636–649.
    [40] S. M. Mazloumzadeh, M. Shamsi, H. Nezamabadi-pour. Fuzzy logic to classify date palm trees based on some physical properties related to precision agriculture [J]. Precision Agric, 2010, 11:258–273.
    [41] D. C. Slaughter, P. Chen, R. G. Curley. Vision guided precision cultivation [J]. Precision Agriculture, 1999,1: 199-216.
    [42] Albert Stoll, Heinz Dieter Kutzbach. Guidance of a forage harvester with GPS[J]. Precision Agriculture,2000,2:281-291
    [43] G.J.Devlin, K.P.McDonnell, S.M.Ward. Performance accuracy of low-cost dynamic non-differential GPS on articulated trucks[J]. 2007 ASABE Journals, Applied Engineering in Agriculture, Vol. 23(3): 273-279.
    [44] Albert Stoll, Heinz Dieter Kutzbach. Guidance of a forage harvester with GPS[J]. Precision Agriculture,2000,2:281-291.
    [45] B.C.Heidman, Real-Time tree localization in orchards[J], 2008 ASABE Journals, Applied Engineering in Agriculture, Vol. 24(6): 707‐716.
    [46] L.A.Smith, S.J.Thomson. GPS position latency determination and ground speed calibration for the SATLOC M3[J]. 2005 ASABE Journals, Applied Engineering in Agriculture, Vol. 21(5): 769?776.
    [47] Georg Ru? and Alexander Brenning. Spatial variable importance assessment for yield prediction in precision agriculture [J]. Lecture Notes in Computer Science 2010, Volume 6065/2010, 184-195.
    [48] Alex McBratney, Brett Whelan,Tihomir Ancev. Future directions of precision agriculture [J]. Precision Agriculture,2005,6:7-23.
    [49]汪懋华. 21世纪农业工程科技发展展望[J].中国农业科学,2001, 34(增刊):113-117.
    [50]汪懋华.把握发展机遇加快推进农业机械化[J].农机科技推广,2008, 12:4-6.
    [51]何勇,方慧,冯雷.基于GPS和GIS的精准农业信息处理系统研究[J].农业工程学报,2002, 18(1):145-149.
    [52]张淑娟.基于GPS和GIS的精准农业田间信息的采集和处理方法的研究[D].杭州:浙江大学, 2003.
    [53]裘正军.基于GPS、GIS及虚拟仪器的精准农业信息采集与处理技术的研究[D].杭州:浙江大学, 2003.
    [54]方慧.基于掌上电脑的农田信息采集系统的研究[D].杭州:浙江大学, 2003.
    [55]陈素珊.基于GPS的农田信息采集技术及提高使用精度的研究[D].杭州:浙江大学, 2003.
    [56]林芬芳.不同尺度土壤质量空间变异机理、评价及其应用研究[D].杭州:浙江大学,2009.
    [57]许红卫.田间土壤养分与作物产量的时空变异及其相关性研究[D].杭州:浙江大学,2004.
    [58]宋海燕.基于光谱技术的土壤、作物信息获取及其相互关系的研究[D].杭州:浙江大学, 2006.
    [59]刘刚.支持精细农业实践的农田空间分布信息处理的方法与试验研究[D].北京:中国农业大学,2001.
    [60]张漫.农田谷物产量空间分布信息采集、处理与系统集成技术研究[D].北京:中国农业大学, 2003.
    [61]张小超.面向精准农业的GPS信号处理与定位方法研究[D].北京:中国农业大学, 2004.
    [62]邝继双.基于GIS组件的农田空间信息管理系统的开发研究[D].北京:中国农业大学, 2003.
    [63]袁左云,毛志怀,魏青.基于计算机视觉的作物行定位技术[J].中国农业大学学报,2005,10(3):69-72
    [64]周建军,张漫,汪懋华,等.基于模糊控制的农用车辆路线跟踪[J].农业机械学报,2009,40(4):151-156
    [65]张漫,陈雨,贾文涛等.三维地形信息测量系统的设计[J].吉林大学学报(工学版), 2007, 37(6): 1451-1454.
    [66]陈立平.精准农业变量施肥理论与试验研究[D].北京:中国农业大学,2003.
    [67]贾文涛,刘峻明,于丽娜,等.基于GPS和GIS的土地整理现场调查技术开发与应用[J].农业工程学报,2009,25(5):197-201.
    [68] Yang Qing, Pang Shujie, Yang Chenghai, et al. Variable rate irrigation control system integrated with GPS and GIS[J]. Transactions of the CSAE. 2006,22(10):134-138.
    [69]杨青,张征,庞树杰等.一种基于GPS和GIS农业装备田间位置的监控系统[J].农业工程学报,2004,20(4):84-87.
    [70]张征.基于GPS和GIS的田间车辆监控及信息管理系统的开发[D].杨凌:西北农林科技大学, 2003.
    [71]刘继龙.土壤水分特性的分形特征与传递函数研究[D].陕西杨凌:西北农林科技大学,2010.
    [72]李志伟.基于3S技术的农田信息采集系统的研究与开发[D].南京:南京农业大学, 2005.
    [73]吴隆江.基于GPS/GIS的农用车辆导航信息系统研究[D].南京:南京农业大学, 2004.
    [74]吴才聪.精确农业变量施肥决策研究与技术经济分析[D].长春:吉林大学,2003.
    [75]廖宗建.基于GPS、GIS的精确农业自动变量施肥控制系统的研究[D].长春:吉林大学,2005.
    [76]张智刚,罗锡文,李俊岭.轮式农业机械自动转向控制系统研究[J].农业工程学报,2005,21(11):77-80.
    [77]张智刚,罗锡文,周志艳,等.久保田插秧机的GPS导航控制系统设计[J].农业机械学报,2006,37(7):95-97,82
    [78]张智刚,罗锡文.农业机械导航中的航向角度估计算法[J].农业工程学报,2008,24(5):110-114.
    [79]孟志军,赵春江,王秀,等.基于GPS的农田多源信息采集系统的研究与开发[J].农业工程学报,2003,19(4):13-18.
    [80]潘瑜春,赵春江.地理信息技术在精准农业中的应用[J].农业工程学报,2003,4:1-6.
    [81]孟志军,付卫强,刘卉,等.面向土地精细平整的车载三维地形测量系统设计与实现[J].农业工程学报, 2009, 25(S2): 255-259.
    [82]于婧.基于GIS和地统计学方法的土壤养分空间变异及应用研究[D].武汉:华中农业大学, 2007.
    [83]叶涛.精准农业的农田信息采集系统研究与开发[R],博士后研究工作报告.北京:中国农业科学院, 2006,7.
    [84]李瑞.规模经营条件下土壤养分精准管理研究[D].北京:中国农业科学院,2006.
    [85]王振颖.基于GIS辽宁省灌区管理信息系统的研究[D].北京:北京林业大学, 2006.
    [86]冯友兵.面向精确灌溉的WSN数据传输关键技术研究[D].镇江:江苏大学, 2009.
    [87]麻清源.基于空间信息技术的数字农业研究——以上海市农工商现代农业园区为例[D].上海:华东师范大学,2007. [D].上海:华东师范大学,2007.
    [88]王熙.精准农业大豆变量施肥控制技术研究[D].大庆:黑龙江八一农垦大学,2010.
    [89]王新忠,王熙,汪春,等.黑龙江垦区大豆变量施肥播种应用试验[J].农业工程学报,2008,24(5):143-146.
    [90]庄卫东,汪春,王熙.基于GPS和土壤养分图的变量施肥控制软件开发[J].农机化研究, 2010,7:189-192.
    [91] Zhuang Weidong, Wang Chun, Han Jing. Development of agriculture machinery aided guidance system based on GPS and GIS[J].Computer and computing technologies in agriculture-Ⅱ, 2010,Volume 24:313-317.
    [92]庄卫东,杨超,汪春,等.基于GPS和GIS的农机作业导航系统[J].黑龙江八一农垦大学学报2008,20(5):32~34
    [93]庄卫东,汪春,王熙.基于WebGIS的农机作业GPS定位监控系统应用研究[A].中国农业机械学会农垦农机化分会.农垦农机化研讨论文集[C].北京:中国农业出版社,2008.63~65.
    [94]庄卫东,汪春,王熙,等.基于WebGIS的农田地理信息系统开发[J].农业网络信息.2007,11:22~24.
    [95]庄卫东,汪春,刘福来.农机直线行走作业DGPS导航软件开发[J].黑龙江八一农垦大学学报,2007,19(5):38~41.
    [96]庄卫东,汪春.农机直线行走作业DGPS导航算法研究[J].黑龙江八一农垦大学学报,2006,18(6):50~53.
    [97]庄卫东,汪春,王熙.基于GPS和GIS的农机田间作业回放研究[J].农业网络信息,2006,8:10~12.
    [98]庄卫东,汪春,王熙.Flexi-Coil变量播种机使用设置的分析[J].农机化研究.2006年,3:56~57,60
    [99]庄卫东,汪春. DGPS在数字农业中应用技术研究[J].现代化农业, 2005,11:30~32.
    [100]庄卫东,汪春.精准农业中UTM投影及反算应用研究[J].黑龙江八一农垦大学学报, 2005,17(3):47~50.
    [101]赵军,庄卫东,王熙,等.基于GPS的土壤养分数据的可视化[J].农业网络信息, 2005,10:80-81.
    [102]庄卫东,王海波,杨忠国等. DGPS数据分析及定位精度研究[J].黑龙江八一农垦大学学报, 2004,16(4):40~42.
    [103]庄卫东.DGPS在土壤取样中的应用[J].现代化农业.2003,1:30~31.
    [104]庄卫东,刘振东,王熙. GPS数据处理及其单点定位精度研究[J].黑龙江八一农垦大学学报.2003,15(2):51~53
    [105]庄卫东.DGPS在精准农业中的应用研究[D].杭州:浙江大学,2002.
    [106]郝桂娟.大兴安岭东麓旱作丘陵区耕地质量演变与可持续利用[D].北京:中国农业科学院,2009.
    [107]李娜,魏永霞. MATLAB和SPSS在对坡耕地土壤水分空间变异性研究中的应用[J].东北农业大学学报, 2009,40(6):109-113.
    [108]崔明,蔡强国,张永光等.漫岗黑土区坡耕地中雨季浅沟发育机制[J].农业工程学报,2007,23(8):59-65.
    [109]陈延良,雷国平.松嫩平原南部土壤养分空间变异规律分析及其等级评价[J].扬州大学学报(农业与生命科学版), 2010,31(2):43-47.
    [110]杨新,刘宝元,刘洪鹄.东北黑土区丘陵漫岗夏季坡面土壤水分差异分析[J].水土保持通报, 2006,26(2):37-39,44.
    [111]胡刚,伍永秋,刘宝元等. GPS和GIS进行短期沟蚀研究初探——以东北漫川漫岗黑土区为例[J].水土保持通报, 2004,18(4):16-19,41.
    [112]王忠波,白雪峰,肖建民.黑龙江垦区中部漫川漫岗治理区冲刷沟类型及其治理措施[J].东北农业大学学报, 2005,36(3):385-387.
    [113]蔡旭晖,刘卫国,蔡立燕.MATLAB基础与应用教程[M].北京:人民邮电出版社,2009:1-3.
    [114]苏金明,傅荣华,胡御文.基于MATLAB的地学可视化实现[J].地质灾害与环境保护, 2009, 20(1):83-86.
    [115]张德丰. Matlab小波分析与工程应用[M].北京:国防工业出版社,2008.2.
    [116]任红飞,郑勇,何峰.小波分析技术在GPS动态测量数据处理中的应用.测绘科学, 2009,34(3): 87-88, 213.
    [117]卓宁.小波分析技术在GPS数据预处理中的应用[J].煤炭学报, 2009,17(2):184-186.
    [118]郭秋英,胡振琪.基于小波变换的GPS快速精密定位[J].煤炭学报, 2007,32(11):1179-1182.
    [119]魏迎梅,周侃,吴玲达.基于小波变换的地形绘制关键技术研究[J].计算机应用研究, 2009,26(11):4378-4381.
    [120]于浩,杨勤科,张晓萍等.基于小波多尺度分析的DEM数据综合研究[J].测绘科学, 2008, 33(3): 93-95, 115.
    [121]王会肖,张超.利用MATLAB研究土壤水分空间变异初探[J].中国生态农业学报, 2007,15(1):127-130.
    [122]李丹,黄兴元.脉动式无级变速器传动研究及发展概况[J].机械设计与制造, 2006,9:167-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700