用户名: 密码: 验证码:
草原龙胆生殖生物学及其差异蛋白质组学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草原龙胆(Eustoma grandiflorum)属于龙胆科草原龙胆属,是鲜切花中的特优种类,具有极高的观赏特性。通过草原龙胆生殖过程中发育规律及分子机制的研究,不仅能为育种实践提供理论依据,而且对高等植物生殖生物学的研究具有重要的意义。本文通过对草原龙胆花蕾、花柱及子房的观察与统计,分析在有性生殖过程中的形态特征;建立大小孢子发生及雌雄配子体发育过程中外部形态特征与内部发育阶段之间的关系;统计了受精作用各个发育阶段的时间间隔期。此外,针对于生殖过程中几个主要发育阶段,进行了蛋白质组的差异表达研究,分析草原龙胆生殖过程中蛋白质表达的情况并鉴定了差异表达的蛋白质。
     1、草原龙胆生殖生物学的特征研究结果如下:
     1)大小孢子发生及雌雄配子体的发育
     (1)花药壁的发育属于双子叶型。异型腺质绒毡层。(2)小孢子母细胞减数分裂过程中的胞质分裂属于同时型。四分体的排列成正四面体型或左右对称型。成熟花粉是二细胞型的,具有三条萌发沟。(3)子房二心皮一室,倒生型胚珠,多胚珠,侧膜胎座。薄珠心、单珠被。大孢子母细胞由珠心表皮下的孢原细胞直接分化而来。减数分裂后形成线形或T型排列的四个大孢子。合点端的大孢子行使功能大孢子的功能。两个极核在受精之前融合为次生核。成熟胚囊是七细胞七核。蓼型胚囊。(4)在同一个胚珠中发现有双胚囊或双大孢子母细胞等现象,但这种现象发生的几率很小。(5)统计了花蕾及子房的长度与其内部发育阶段的对应关系。
     2)受精作用及胚和胚乳的发育
     (1)草原龙胆为湿型柱头。闭合型花柱,花柱中有引导组织。(2)人工授粉后4小时,花粉管在柱头表面萌发;授粉后8小时,花粉管进入花柱。授粉后24小时,生殖细胞分裂形成两个精子。(3)授粉后48小时,花粉管进入子房。通过退化的助细胞进入胚囊,在珠孔端释两个精子。在1%的胚囊中两个助细胞均退化,不只2条花粉管进入胚囊。(4)授粉后60小时,另一个精核贴附在次生核的核膜上,随后与之融合。授粉后72小时,初生胚乳核形成。草原龙胆胚乳的发育属于核型。初生胚乳核没有休眠期。胚乳的细胞化过程从中央细胞细胞壁的附近,向逐步细胞中央推进。(5)授粉后72小时,精核进入卵细胞。授粉后4-5天,合子形成。合子的休眠期为15天左右。授粉后20天左右,合子分裂为2细胞原胚。(6)精核与次生核的融合比精卵的融合速度快。(7)双受精过程属于有丝分裂前配子融合类型。
     2、草原龙胆生殖过程中蛋白质组的差异研究的结果如下:
     利用2D-DIGE的技术体系研究了草原龙胆有性生殖过程中特定阶段的差异蛋白质,具体包括孢原、小孢子母细胞、成熟的花粉和胚囊、及受精后精子进入退化助细胞、核融合、合子形成等几个阶段。选择了小孢子母细胞和孢原、以及成熟花粉与小孢子母细胞阶段的差异蛋白质进行了质谱分析及比较,得到可信度达到90%以上的蛋白质30个。其中腺苷高半胱氨酸水解酶(Adenosylhomocysteinase)、5-甲基四氢蝶酰三谷氨酸高半胱氨酸甲基转移酶(5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase)、推测的S-腺苷甲硫氨酸合成酶(putative S-adenosylmethioninesynthetase)这三种蛋白都参与了与甲基转移相关的反应,由此可以推测与甲基转移相关的反应,如DNA的甲基化等,对草原龙胆从孢原到成熟花粉的整个发育阶段起到了定程度的调控作用。另外,与花色素合成相关的蛋白——黄烷酮3-羟化酶(flavanone 3-hydroxylase)也存在于这个发育阶段。还发现了参与叶绿体中光合作用的蛋自质,如光系统Ⅱ放氧复合体(oxygen evolving complex)、果糖二磷酸醛缩酶1(fructose-bisphosphate aldolase 1, chloroplastic)及核酮糖-1.5-二磷酸羧化酶(ribulose 1,5-bisphosphate carboxylase, large subunit),在成熟花粉阶段表达量升高,可推测在这一时期光合作用较强。鉴定出来的其他蛋白质还参与了基础代谢、防御胁迫、DNA代谢、细胞循环、转录、蛋白质合成、氧化代谢、糖酵解等代谢过程。这些都为揭示基因对草原龙胆生殖过程的调控机制提供了参考。
Eustoma grandiflorum (Raf.) Shinn. [lisianthus, Russell prairie gentian (Gentianaceae)] is a perennial herbaceous ornamental species, that is used as gond cut flower due to its big and attractive flowers, long stalks, and long duration in vases. The study on development and molecular mechanism duiring reproduction in Eustoma grandiflorum, not noly suppy the theory evidence on breeding, but also provide reference for reproductive characters of Angiosperms. On the base of the observation and analysis of buds, styles and ovaries, reproductive characters during sexual reproduction have been obtained. And then, the the relationship between the length of buds or ovaries and their inner developmental stages has already been counted, the fertilization time courses of various developmental stages have been statistic yet. Otherwise, differential expression of some proteome during the reproduction were analysed for studying the expression of these proteins.
     1. The study results of Reproductive Biology in Eustoma grandiflorum are as follows:
     1) Microsporogenesis and microgametogenesis, megasporogenesis and megagametogenesis in Eustoma grandiflorum
     (1) The formation of anther walls follows the dicotyledonous type. The tapetum follows the heteromorphic and glandular type. (2) Cytokinesis in microsporocyte meiosis follows the simultaneous type, microspore tetrads were tetrahedral.2-celled mature pollen grains had 3 germ furrows. (3) The bicarpellary syncarpous and unilocular ovary has parietal placentas. Ovules were anatropous and numerous. The archespore under the nucellar epidermis directly developed into a megaspore mother cell, which underwent meiotic division in turn to form 4 megaspores arranged in a line or T-shape. The chalazal megaspore was observed to be functional. The formation of the embryo sac follows the polygonum type.The 2 polar nuclei fused into a secondary nucleus before fertilization. The mature embryo sac included 7 cells. (4)
     2 megasporocytes or 2 embryo sacs in an ovule were observed at a very low rate. (5) The relationship between the length of buds or ovaries and the inner developmental stages is analysed.
     2) Fertilization, and the development of endosperm and embryo in Eustoma grandiflorum
     (1) The stigma is wet. The style is belonged to the closed type,.and in the style, there are transmitting tissue. (2) During 4 Hours After Pollination(HAP), pollen grains germinate on the tissues of the stigma. At about 4 hours later, pollen tubes enter the style. About 24 HAP, the genital cell comes into division cycle, and becomes two sperms. (3) About 48 HAP, the pollen tube enters the ovary. And then, it enters the embryo sac by one degenerated synergid, releasing 2 sperms in the micropylar end. In about 1% embryo sacs, both 2 synergids are degenerated, and more than 2 pollen tubes enter the embryo sac. (4) About 60 HAP, the sperm nucleus of another sperm is nestles on the nucleus membranes of the secondary nucleus, and then fusing with it. About 72 HAP male and female nucleoli are fusing, it means the formation of primary endosperm nucleus. The development of endosperm in E. grandiflorum was of the nuclear type. There is no dormancy stage in the development of primary endosperm nucleus. Cellularization of endosperm coenocyte starts from the wall of central cell to the middle of that cell. (5) About 72 HAP, sperm nucleus enters the egg cell.4-5 days after pollination, zygote forms. The dormancy stage of zygote is about 15 days long.20 days after pollination, zygote begins dividing into 2-cell proembryo. (6) The fusion between sperm nucleus and the egg cell is more slowly than that with the polar nucleus. (7) Double fertilization follows the type of the Premitotic gametogamy.7. The embryo development belongs to the solanad type.
     2. The study results of differential proteome analyse in Eustoma grandiflorum are as follows:
     The differential proteomes were studying by 2D-DIGE during the developmental stages of archespore, microsporocyte, mature pollen and embryo sac, and the sperm in the degenerated synergid, karyogamy and zygote in Eustoma grandiflorum. The developmental stages of archespore, microsporocyte, mature pollen were choosed by analysis and contrast using the identification results of mass spectrum. Among the results, thirty proteins were more than 90 percent of reliability. Three proteins, Adenosylhomocysteinase,5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, and putative S-adenosylmethionine synthetase, had a finger in the reaction of transmethylation. So, it is supposed that the reaction of transmethylation, such as DNA methylation, had played a certain regulation role in the developmental stages from archespore to mature pollen. Otherwise, flavanone 3-hydroxylase, related to the anabolism of anthocyanins, was found in microsporocyte and mature pollen. Proteins in chloroplast were also expressed during the developmental stage of mature pollen, such as oxygen evolving complex, fructose-bisphosphate aldolase 1 and ribulose 1,5-bisphosphate carboxylase. It is supposed that photosynthesis was intense in this development stage. Other proteins took part in the metabolic processes of basal metabolism, defense and stress, DNA metabolism, the cell cycle,transformation, Protein Synthesis, oxidation, glycolysis, and so on. All these were to reveal the regulation metabolism duiring the reproduction in Eustoma grandiflorum.
引文
[1]大川清.花専科育种と栽培.Eustoma束京:誠文堂新光社,1995:10-14
    [2]黄素梅,蓝福生,姚军等.我国花卉产业现状及其发展前景探讨.广西植物.2000,20(3):277-283
    [3]宋晓荭,文绍金,韩文婷等.借鉴经验,强化特色,加快结构调整步伐.青海农技推广2003.2:61-62
    [4]郝立勤,顾金凤.云南花卉产业发展对策研究.云南科技管理.2002.4:12-15
    [5]李竹英,姜跃丽.洋桔梗的种植与管理.云南农业.2008.5:18
    [6]杜忠友,王文华,龙云芝,廖文豪,梁华强,熊元.贵阳地区洋桔梗栽培及管理技术.贵州农业科学.2009.37(4):153-154
    [7]郭香宝,沈秀叶.滨海盐碱地草原龙胆的日光温室栽培.中国花卉园艺.2006.20:32-33
    [8]赵素君.洋桔梗的繁殖与栽培技术.农业科技通讯.2006.2:54
    [9]陈小凤,龚明霞,康德贤,方峰学.国内洋桔梗组培快繁技术的研究进展.北方园艺.2008.6:67-69
    [10]丁兵,王江.草原龙胆种苗繁育及优质切花生产技术.种子世界.2006.9:42
    [11]罗伟其,王剑.洋桔梗大田栽培技术.花卉.2008.2:37
    [12]孟欣欣.草原龙胆快速繁殖体系建立及转基因研究.吉林农业大学硕士论文.2005:20-36
    [13]傅玉兰,杨海燕,姚萍.植物激素在洋桔梗组培快繁中的应用研究.安徽农业科学.2005.33(10):69-70
    [14]何家涛.洋桔梗无菌播种与离体培养的技术研究.江西农业大学学报.2006.2:74-77
    [15]安永辉,田会倩,魏健.草原龙胆无性快繁体系建立的初探.安徽农业科学.2008,36(32):13962-13963
    [16]乔学义.洋桔梗的栽培管理.中国花卉园艺.2007.2:25-26
    [17]夏忠强,吴艳华,王再鹏.洋桔梗切花设施栽培技术.北方园艺.2008.7:119-120
    [18]王江,徐启江,李玉花.草原龙胆新品种‘单轮朱砂’和‘千堆雪’.园艺学报.2007,34(2):533
    [19]李昀辉,李玉花.草原龙胆(Eustoma grandiflorum)单、重瓣花器官分化的形态学观察.园艺学报.2005.32(3):458-462
    [20]徐启江.草原龙胆花器官MADS-box基因克隆与表达分析.东北林业大学博士论文.2007.
    [21]徐启江,关录飞,吴笑女,李玉花.利用抑制性差减杂交技术筛选草原龙胆花器官发育特性基因.生物技术通讯.2007.18(3):401-404
    [22]徐启江,关录飞,吴笑女,孙丽,谭文勃,聂玉哲,李玉花.草原龙胆MADS-box基因的克隆及表达分析植物学通报.2008.25(4):415-429
    [23]张坤.草原龙胆耐盐相关基因群的表达分析.东北林业大学硕士论文.2007.
    [24]王继刚.草原龙胆抗盐相关基因表达谱分析及BADH基因的遗传转化.东北林业大学博士论文.2008.
    [25]王继刚,张坤,李葵花,冯国军,李玉花.高盐胁迫下的草原龙胆基因表达分析.北方园艺.2008.11:139-142
    [26]周恒,田如英.化学药剂预处理对洋桔梗蕾期切花保鲜效果的研究.安徽农业科学.2005.33(5):838,851
    [27]张旸,聂玉哲,解莉楠,刘福全,李玉花.激光对草原龙胆自交结实及自交后代幼苗生物量的影响.激光生物学报.2008.17(2):191-196。
    [28]陈小凤,龚明霞,方锋学,梁家作,刘文君.自然光及NH4^+对洋桔梗玻璃化的影响.广西农业科学.2008.39(4):519-522
    [29]马源.外源开花素基因FT对洋桔梗的转化及育种研究.天津大学硕士论文.2008
    [30]黄彬城.PSY基因植物表达载体的构建及对洋桔梗转化的研究.吉林大学硕士论文.2006.
    [31]刘佳.花色调节基因Lc转化洋桔梗的研究.上海师范大学硕士论文.2005
    [32]Ohkawa K, Maloupa E. Flower Industry in Northeast Asia:Development and Introduction of New Crops. Acta Horticulturae.2000.541:125-133
    [33]Ohkawa K, Sasaki E, Fischer G (Ed.). Eustoma (Lisianthus)--Its Past, Present, and Future. Acta Horticulturae,1999.482:423-426
    [34]Oka M, Tasaka Y, Iwabuchi M et al., Elevated sensitivity to gibberellin by vernalization in the vegetative rosette plants of Eustoma grandiflorum and Arabidopsis thaliana. Plant Science.,2001.160:(6):1237-1245
    [35]Mototsugu Yanagida, Masanobu Mino, Masaki Iwabuchi et al.,. Reduced Glutathione is a Novel Regulator of Vernalization Induced Bolting in the Rosette Plant Eustoma grandiflorum. Plant Cell Physiol,2004.45:129-137
    [36]Liao LiJen, Lin YuHan, Huang KuangLiang et al..Vase life of Eustoma grandiflorum as affected by aluminum sulfate. Botanical Bulletin of Academia Sinica.2001.42(1):35-38
    [37]Ichimura K, Goto R. Acceleration of senescence by pollination of cut'Asuka no nami' Eustoma flowers. Journal of the Japanese Society for Horticultural Science.2000.69:166-170
    [38]Ichimura K, Korenaga M. Improvement of vase life and petal color expression in several cultivars of cut Eustoma flowers using sucrose with 8 hydroxyquinoline sulfate. Ornamental Plants and Tea.1998.13:31-39
    [39]Shimizu-Yumoto H, Ichimura K. Abscisic acid, in combination with sucrose, is effective as a pulse treatment to suppress leaf damage and extend foliage vase-life in cut Eustoma flowers. The journal of horticultural science and biotechnology,2009,84 (1):107-111
    [40]Ichimura K, Shimamura M., Hisamatsu T. Role of ethylene in senescence of cut Eustoma flowers. Postharvest Biology and Technology.1998.14(2):193-198
    [41]Y. Hojjati, A.Khalighi.and A.R. Farokhzad. Chemical treatments of Eustoma cut flower cultivars for enhanced vase life. Journal of agriculture and social sciences.2007.3(3):75-78
    [42]Hiroko Shimizu-Yumoto and Kazuo Ichimura. Combination pulse treatment of 1-naphthaleneacetic acid and aminoethoxyvinylglycine greatly improves postharvest life in cut Eustoma flowers. Postharvest Biology and Technology.2010.56(1):104-107
    [43]Yamada Asuka, Tanigawa Takahiro, Suyama Takuro, Matsuno Takatoshi, Kunitake Toshihiro. Improvement of Eustoma grandiflorum (Raf.) Shinn. cut flower quality for early-autumn shipping with long-day treatment using light sources that delay flower bud formation. Journal of the Japanese Society for Horticultural Science.2008.77(3):296-303
    [44]Nazrul Islam, Grete Grindal Patil,Hans Ragnar Gislerφd Effect of photoperiod and light integral on flowering and growth of Eustoma grandiflorum (Raf.) Shinn.Scientia Horticulturae 103 (2005)441-451
    [45]Kawabata, S., Y. Kusuhara, Y.Li and R. Sakiyama. The regulation of anthocyanin biosynthesis in Eustoma grandiflorum under low light conditions. J. Japan. Soc. Hort. Sci. 1999.68:519-526.
    [46]Yamada Asuka, Tanigawa Takahiro, Suyama Takuro, Matsuno Takatosh, Kunitake Toshihiro. Night break treatment using different light sources promotes or delays growth and flowering of Eustoma grandiflorum (Raf.) Shinn. Journal of the Japanese Society for Horticultural Science.2008.77(1):69-74
    [47]Asuka Yamada, Takahiro Tanigawa, Takuro Suyama, Takatoshi Matsuno and Toshihiro Kunitake. Red:far-red light ratio and far-red light integral promote or retard growth and flowering in Eustoma grandiflorum (Raf.) Shinn. Scientia Horticulturae. 2009. 120(1):101-106
    [48]Yoshioka Yosuke, Ohsawa.Ryo, Iwata Hiroyoshi, Ninomiya Seishi, Fukuta Naoko. Quantitative evaluation of petal shape and picotee color pattern in lisianthus by image analysis. Journal of the American Society for Horticultural Science.2006.131(2)261-266
    [49]Saneyuki Kawabata, Mihoshi Yokoo and Kaeko Nii. Quantitative analysis of corolla shapes and petal contours in single-flower cultivars of lisianthus. Scientia Horticulturae. 2009.121(2):206-212
    [50]Naonobu Noda, Yoshiaki Kanno, Naoki Kato, Kohei Kazuma and Masahiko Suzuki. Regulation of gene expression involved in flavonol and anthocyanin biosynthesis during petal development in lisianthus (Eustoma grandiflorum). Physiologia Plantarum. 2004.122(3):305-313
    [51]Saneyuki Kawabata, Yuhua Li, Taku Saito and Bo Zhou. Identification of differentially expressed genes during flower opening by suppression subtractive hybridization and cDNA microarray analysis in Eustoma grandiflorum. Scientia Horticulturae. 2009.122(1):129-133
    [52]Antonio Mercuri, Andrea Sacchetti, Laura De Benedetti, Tito Schiva, Saverio Alberti, Green fluorescent flowers Plant Science.2001.161:961-968
    [53]Dina Aranovich, Efraim Lewinsohn and Michele Zaccai. Post-harvest enhancement of aroma in transgenic lisianthus(Eustoma grandiflorum) using the Clarkia breweri benzyl alcohol acetyltransferase (BEAT) gene. Postharvest Biology and Technology.2007. 43(2):255-260
    [54]胡适宜.被子植物胚胎学.北京:人民教育出版社,1982
    [55]胡适宜.被子植物生殖生物学.北京:高等教育出版社,2005
    [56]许智宏,刘春明.植物发育的分子机制.北京:科学出版社,1999
    [57]白书农.植物发育生物学.北京:北京大学出版社,2003
    [58]胡适宜,杨弘远.被子植物受精生物学.北京:科学出版社,2002
    [59]Friedman W E. Sexual Reproduction in Ephedra Nevadensis (Ephedraceae):Further Evidence of Double Fertilization in a Nonflowering Seed Plant. Amer J Bot,1990, 77:1582-1598
    [60]Friedman W E. Double Fertilization in Ephedra Trifurca, a Nonflowering Seed Plant:the Relationship Between Fertilization Events and the Cell Cycle. Protoplasma, 1991,165:106-120
    [61]Carmichael J S, Friedman W E. Double Fertilization in Gnetum Gnemon:the Relationship Between the Cell Cycle and Sexual Reproduction. Plant Cell,1995, 7:1975-1988
    [62]Russell S D. Double Fertilization. Int Rev Cyt,1992,140:357-388
    [63]彭雄波,孙蒙祥.被子植物受精作用的分子和细胞生物学机制.植物学通报,2007,24(3):355-371
    [64]Russell S D. Attraction and yransport of male gametes for fertilization. Sex Plant Reprod,1996,9:337-342
    [65]Faure J E, Aldon D, Rougier M. Emerging data on pollen tube growth and fertilization in flowering plants,1990-1995. Protoplasma,1996,193:132-143
    [66]Higashiyama, T. The synergid cell:Attractor and acceptor of the pollen tube for double fertilization. J.Plant Res.2002.115:149-160.
    [67]Elizabeth, M. L. and S. D. Russell.2002. The mechanisms of polliantion and fertilization in plants. Annu. Rev. Cell Dev. Biol.18:81-105.
    [68]Higashiyama, T., S.Yabe, N. Sasaki, Y. Nishimura, S.-y. Miyagishima, H. Kuroiwa and T. Kuroiwa. Pollen tube attraction by the synergid cell. Science.2001.293:1480-1483.
    [69]Sandaklie-Nikolova, L., R. Palanivelu, J. K. Edward, P. C. Gregory and N. D. Gary.2007. Synergid cell death in Arabidopsis is triggered following direct interaction with the pollen tube. Plant Physiol.144(4):1753-1762.
    [70]杨弘远.受精过程中助细胞退化机理的研究进展.植物学通报,1994,11:1-5
    [71]Russell S D, Mao L G. Patterns of Embryo Sac Organization, Synergid degeneration and cotyledon orientation in Linum Usitatissimum L. Planta,1990,182:52-57
    [72]Huang B Q, Russell S D. Synergid degeneration in Nicotiana:a quantitative, fluorochromatic and chlorotetracycline study. Sex Plant Reprod,1992,5:151-155
    [73]Raghavan, V.2003. Some reflections on double fertilization, from its discovery to the present. New Phytol.159,565-583.
    [74]Raghavan, V.2004. Plant embryology during and after Panchanan Maheshwari's time-Changing face of research in the embryology of flowering plants. Curr. Sci. India.87(12): 1660-1665.
    [75]Weterings, K. and S. D. RUSSELL.2004. Experimental analysis of the fertilization process. Plant Cell 16:S107-S118.
    [76]何廷农,刘建全.线叶龙胆的胚胎学研究.西北植物学报,1999,19(2):234-240
    [77]何廷农,陈世龙.条纹龙胆的胚胎学研究(英文).西北植物学报,2000,20(6):960-967
    [78]朱雪红,申家恒.东北龙胆大小孢子发生及雌雄配子体发育(Ⅰ).哈尔滨师范大学自然科学学报,1989,15(3):63-73
    [79]朱雪红,申家恒.东北龙胆的受精作用及胚和胚乳的发育(Ⅱ).哈尔滨师范大学自然科学学报,1989,5(4):58-67
    [80]李惠娟,王耀芝.秦艽的胚胎学研究.西北植物学报,1994,14(4):243-248
    [81]刘建全,何廷农.黑边假龙胆的胚胎学研究.云南植物研究,1996,18(2):151-158
    [82]Davis G L. Systematic Embryology of the Angiosperms. John Wiley and Sons, Inc., New York, London and Sydney,1966
    [83]何大澄,肖雪媛.差异蛋白质组学及其应用.北京师范大学学报(自然科学版).2002.38(4):558-562
    [84]Wilkins,M.R.Government backs proteome proposal.Nature.1995.378:653
    [85]刘卫群,李浩.差异蛋白质组学在植物研究中的应用.安徽农业科学.2006.34(17):42021-4203
    [86]孙言伟,姜颖,贺福初.差异蛋白质组学的研究进展[J].生命科学.2005.17(2):137-140
    [87]Klose,J.,Nock,C.,Herrmann,M.,et al.Genetic analysis of the mouse brain proteome.Nat.Genet.2002,30(4):385-393
    [88]Unlu,M.,Margan,M.E.and Minden,J.S.Difference gel electrophoresis:asinglegel method for detecting changes in protein extracts.Electrophoresis.1997.18:2071-2077
    [89]Lopez,M.F.,Kristal,B.S.,Chernokalskaya,E.,et al.High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis.2000,21:2617
    [90]Pandey,A.and Mann,M.Proteomics to study genes and genomes.Nature.2000,405:837-846
    [91]Moore,L.E.,Pfeiffer,R.,Warner,M.,et al.Identification of biomarkers of arsenic exposure and metabolism in urine using SELDI technology.Biochem.Mol. Toxicol.2005,19(3):176
    [92]Kiga,C.,Nakagawa,T.,Koizumi,K.,et al.Expression patterns of plasma proteins in spontaneously diabeticratsafteroral administration of a Kampo medicine, Hachimi-jio-gan,using SELDI Protein Chip platform.Biol.Pharm Bull.2005,28(6):1031-1037
    [93]Lilley,K.S.,Razzaq,A.and Dupree,P.Two-dimensional gel electrophoresis:recent advances in sample preparation,detection and quantitation.Current Opinion Chemacl Biology.2002,6(1):46-50
    [94]Shi,Y.,Xiang,R.,Horvath,C.,et al.The role of liquid chromatography in proteomics.J.Chromatogr A.2004,1053(1-2):27-36
    [95]Wu,S.L.,Choudhary,G.,Ramstrom,et al.Evaluation of shotgun sequencing for proteomic analysis of human plasma using HPLC coupled with either ion trap or Fourier transform mass spectrometry.J.Proteome Res.2003,2:383-393
    [96]Thulasiraman,V.,Wang,Z.,Katrekar,A.,et al.Simultaneous monitoring of multiple kinase activities by SELDI-TOF mass spectrometry.Methods Mol.Biol.2004,278:205-214
    [97]苏智广,文富强,冯玉麟.SELDI蛋白质芯片技术及其应用[J].生命的化学.2004,24(4):356-358
    [98]李鑫.比较蛋白质组学研究与应用进展[J].国际免疫学杂志.2006.29(3):156-160
    [99]甄艳,许淑萍,赵振洲,施季森.2D-DIGE蛋白质组技术体系及其在植物研究中的应用.分子植物育种.2008.6(2):405-412
    [100]Malone J.P., Radabaugh M.R., Leimgruber R.M., and Gerstenecker G.S. Practical aspects of fluorescent staining for proteomic applications, Electrophoresis.2001.22(5): 919-932
    [101]Lilley K.S., and Friedman D.B. All about DIGE:quantification technology for differential-display 2D-gel proteomics. Expert Rev. Proteomics.2004.1(4):401-409
    [102]Unlu M., Morgan M.E., and Minden J.S. Difference gel electrophoresis:a single gel method for detecting changes in protein extracts. Electrophoresis.1997.18(11):2071- 2077
    [103]Lilley K.S., an d Dupree P. Methods of quantitative proteomics and their application to plant organelle characterization. J. Exp. Bot.2006.57(7):1493-1499
    [104]Gade D., Thiermann, J., Markowsky, D., and Rabus R. Evaluation of two-dimensional difference gel electrophoresis for protein profiling. J. Mol. Microbiol. Biotechnol.2003.5 (4):240-251
    [105]S. Bohlerl, M. Bagard, M. Oufir, S. Planchon, L. Hoffmann, Y. Jolivet, J.F. Hausman, P. Dizengreme and J. Renaut. A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism. Proteomics.2007.7:1584-1599
    [106]Kubis S., Baldwin A., Patel R., Razzaq A., Dupree P., Lilley K.S.,Kurth J., Leister D., and Jarvis P.,2003, The Arabidopsis ppil mutant is specifically defective in the expression, chloroplast import, and accumulation of photosynthetic proteins, Plant Cell, 15(8):1859-1871
    [107]Kubis S., Patel R., Combe J., Bedard J., Kovacheva S., Lilley K.,Biehl A., Leister D., Ri os G., Koncz C., and Jarvis P. Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors. Plant Cell.2004.16(8):2059-2077
    [108]Maeda K., Finnie C., and Svensson B. Cy5 maleimide labeling for sensitive detection of free thiols in native protein extracts:identification of seed proteins targeted by barley thioredoxin hisoforms. Biochem. J.2004.378(2):497-507
    [109]Maltman D.J., Gadd S.M., Simon W.J., and Slabas A.R.Differential proteomic analysis of the endoplasmic reticulum from developing and germinating seeds of castor (Ricinus communis) identifies seed protein precursors as significant components of the endoplasmic reticulum. Proteomics.2007.7(9):1513-1528
    [110]Ndimba B.K., Chivasa S., Simon W.J., and Slabas A.R. Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry, Proteomics.2005.5 (16):4185-4196
    [111]Amme S., Matros A., Schlesier B., and Mock H.P. Proteome analysis of cold stress response in Aabidopsis thaliana using DIGE-technology, J. Exp. Bot.2006.57 (7):1537-1546
    [112]黄华宏,童再康,朱玉球,高燕会,许长寿,何福基.矮化杉木蛋白质组的差异凝胶电泳分析.浙江林学院学报.2006.23(3):265-269
    [113]Initiative the Arabidopsis Genome. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.Nature,2000,408(6814):796-815.
    [114]Peck S.C.Update on proteomics in arabidopsis.Where do we go from here?.Plant Physiol,2005,138(2):591-599.
    [115]孙志宾.盐芥Th TRXh功能分析和盐芥不同生态型的比较蛋白质组学初步研究.山东 师范大学硕士论文,2006.
    [116]Pandey A.and Lewitter F.Nucleotide sequence databases:A gold mine for biologists.Trends Biochem Sci,1999,24(7):276-280.
    [117]Brenner S.E.Errors in genome annotation.Trends Genet,1999,15(4):132-133.
    [118]Gygi Steven P.,Rochon Yvan,et al.Correlation between protein and mrna abundance in yeast.Mol Cell Biol,1999,19(3):1720-1730.
    [119]Dunnwald M.,Varshavsky A.,et al.Detection of transient in vivo interactions between substrate and transporter during protein translocation into the endoplasmic reticulum.Mol Biol Cell,1999,10(2):329-344.
    [120]Santoni V, Bellini C, Caboche M. Use of two-dimensional protein pattern analysis for the characterization of Arabidopsis thaliana mutants. Planta,1994,192(4):557-566.
    [121]Gallardo K, Job C, Groot S P C, Puype M, Demol H, Vandekerckhove J, Job D. Proteomics of Arabidopsis seed germination:A comparative study of wild-type and gibberellin deficient seeds.Plant Physiol,2002,129(5):823-837.
    [122]Gottlieb L D, de Vienne D. Assessment of pleiotropic effects of a gene substitution in pea by two-dimensional polyacrylamide gel electrophoresis. Genetics,1988,119(3): 705-710.
    [123]Damerval C, Le Guilloux M. Characterization of novel proteins affected by the o2 mutation and expressed during maize endosperm development. Mol Gen Genet,1998, 257(2):354-361.
    [124]Finnie C, Melchior S, Roepstorff P, Svensson B. Proteome analysis of grain filling and seed maturation in barley. Plant Physiol 2002,129(6):1308-1319.
    [125]Finnie C, Maeda K, ostergaard O, Bak-Jensen K S, Larsen J, Svensson B. Aspects of the barley seed proteome during development and germination. Biocheml Soc Trans,2004, 32(3):517-519.
    [126]Franco O L, Rigden D J, Melo F R, Grossi-de-Sa M F. Plant a-amylase inhibitors and their interaction with insect a-amylases Structure, function and potential for crop protection. Eur J Biochem,2002,269(2):397-412.
    [127]Gallardo K, Signor C L, Vandekerckhove J, Thompson R D, Burstin J. Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol,2003,133(9):664-682.
    [128]Hajduch M, Gapathy A, Stein J W, Thelen J J. A systematic proteomic study of seed filling in soybean.Eestablishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol,2005,137(4): 1397-1419.
    [129]Lee S, Lee E J, Yang E J, Lee J E, Park A R, Song W H, Park O K. Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell,2004,16(5): 1378-1391.
    [130]Bailey, L. H. Eustoma.1950. P.1176. In:Bailey, L. H. (eds.). The standard encyclopedia of horticulture. Macmillan, New York.
    [131]Bhojwani, S. S. and S. P. Bhatnagar. The embryology of angiosperms.3rd ed., Publ. House, New Delhi.1979.
    [132]刘建全,何廷农.喉毛花的胚胎学研究.植物分类学报.1996.34(6):577-585
    [133]Chen, S. L., T. N. Ho, J. Q. Liu and D. Y. Hong. Embryology of Crawfurdia delavayi (Gentianaceae) and its systematic value. Israel J. Plant Sci.2000a.48:113-119.
    [134]Chen, S. L., T. N. Ho, J. Q. Liu and D. Y. Hong. Embryology of Tripterospermum cordatum (Gentianaceae). Acta Bot. Yunnan.2000b.22:53-58.
    [135]Ho,T. N.,S. L. Chen,J. Q. Liu and D. Y. Hong. Embryology of Gentiana striata (Gentianaceae). Acta Bot. Bor. Occid. Sinica 2000.20:960-967.
    [136]Johri, B. M., D. K. Ambegaokar and P. S. Srivastava. Comparative embryology of angiosperms. Springer, Berlin.1992.
    [137]Xue, C. Y., T. N. Ho and J. Q. Liu. Embryology of Swertia tetraptera Maxim. (Gentianaceae) and its systematic implications. Acta Phytotaxon. Sinica 1999.37:259-263.
    [138]Xue, C. Y., T. N. Ho and D. Z. Li.. Embryology of Swertia cincta (Gentianaceae) and its systematic value. Acta Bot. Yunnan.2002a 24:75-81.
    [139]Xue, C. Y., T. N. Ho and D. Z. Li. Megasporogenesis and female gametogenesis development of the Tibetan medicine'Zang Yin Chen'-Swertia mussotti. Guihaia 2002b.22:249-251.
    [140]Xue, C. Y. and D. Z. Li. Embryology of Megacodon stylophorus and Veratrilla Baillonii (Gentianaceae):descriptions and systematic implications. Bot. J. Linnean Soc.2005.147: 317-331.
    [141]王耀芝,崔凯荣,宫葵.蚕豆花药和胚珠发育进程的相互关系,西北植物学报,1986,6:36-41
    [142]蔡雪,申家恒.甘草胚胎学研究.植物学报,1992,34:676-681
    [143]张满朝,王耀芝,丁惠宾.当归的胚胎学研究1.胚珠的发育.兰州大学学报(自然科学版),1991,27:193—195
    [144]Haig D. Conflicts, Among Megaspores. J. Theor. Biol.1986,123:471-480
    [145]Bent, A. F. Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol.2000.124:1540-1547.
    [146]Grini, P. E., G. Jurgens and M. Hulskamp. Embryo and endosperm development is disrupted in the female Gametophytic capulet mutants of Arabidopsis. Genetics.2002.162: 1911-1925.
    [147]Olsen, O. A. Nuclear Endosperm Development in Cereals and Arabidopsis thaliana. Plant Cell.2004.16:S214-S227, Supplement.
    [148]Sandaklie-Nikolova, L., R. Palanivelu, J. K. Edward, P. C. Gregory and N. D. Gary. Synergid Cell Death in Arabidopsis Is Triggered following Direct Interaction with the Pollen Tube. Plant Physiol.2007.144(4):1753-1762.
    [149]Higashiyama, T. The synergid cell:Attractor and acceptor of the pollen tube for double fertilization. J.Plant Res.2002.115:149-160.
    [150]Higashiyama, T., S.Yabe, N. Sasaki, Y. Nishimura, S.-y. Miyagishima, H. Kuroiwa and T. Kuroiwa. Pollen tube attraction by the synergid cell. Science.2001.293:1480-1483.
    [151]Kapil, R. N. and A. K. Bhatnagar. A fresh look at the process of double fertilization in angiosperms. Phy to morphology.1975.25:334-368.
    [152]Hoorn E.J., Hoffert J.D., and Knepper M.A. The application of DIGE-based proteomics to renal physiology. Nephron Physiol.2006.104(1):61-72
    [153]Qin S., Ferdinand A.S., Richie J.P., O'Leary M.P., Mok S.C.,and Liu B.C. Chromatofocusing fractionation and two-dimensional difference gel electrophoresis for low abundance serum proteins, Proteomics.2005.5(12):3183-3192
    [154]Schagger H., Cramer W.A., and Von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem.1991. 199(2):223-231
    [155]Rais I.. Karas M., and Schagger H. Two-dimensional electrophoresis for the isolation of integral membrane proteinand mass spectrometric identification. Proteomics.2004.4 (9): 2567-2571
    [156]Macfarlane D.E. Two dimensional benzyldimethyl-n-hexadecylammonium chloride-sodium dodecyl sulfate preparative polyacrylamide gel electrophoresis:a high capacity high resolution technique for the purification of proteins from complex mixtures, Anal. Biochem.1989.176(2):457-463
    [157]Helling S., Schmitt E., Joppich C., Schulenborg T., Mullner S.,Felske-Muller S., Wiebringhaus T., Becker G., Linsenmann G., Sitek B., Lutter P., Meyer H.E., and Marcus K.2-D differential membrane proteome analysis of scarce protein samples, Proteomics. 2006.6(16):4506-4513
    [158]Knepper, M.A., and Masilamani S. Targeted proteomics in the kidney using ensembles of antibodies, Acta Physiol.Scand.2001.173(1):11-21
    [159]陈昕,王琳.S-腺苷-L-高半胱氨酸水解酶及其抑制剂的研究进展.中国药物化学杂志.1998.8(1):66—72
    [160]Tanaka H, Masuta C, Uehara K, Kataoka J, Koiwai A, Noma M. Morphological changes and hypomethylation of DNA in transgenic tobacco expressing antisense RNA of the S-adenosyl-L-homocysteine hydrolase gene. Plant Mol Biol.1997,35:981-986
    [161]Shu S, Mahadeo D C, Liu X, Liu W L, Parent C A, Korn E D. S-adenosylhomocysteine hydrolase is localized at the front of chemotaxing cells, suggesting a role for transmethylation during migration. Proc Natl Acad Sci USA.2006.103:19788-19793
    [162]Palmer J L, Abeles R H. The mechanism of action of S-adenosylhomocysteine hydrolase. J Biol Chem.1979.254(4):1216-1217
    [163]佘义斌,朱一超,张天真,郭旺珍.棉花腺苷高半胱氨酸水解酶cDNA的克隆、表达及染色体定位.作物学报.2008.34(6):958-964
    [164]Dietmar Schomburg, Ida Schomburg and Antje Chang.5-Methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase, in Springer Handbook of Enzymes. Springer Berlin Heidelberg.2006.28:84-89
    [165]岳昌武,肖静,凌锌,曾霓.低温胁迫对甘薯S-腺苷甲硫氨酸合成酶mRNA表达水平的影响.农业科学与技术:英文版.2008.9(1):11-14,156
    [166]许志茹,崔国新,李春雷,孙燕,李玉花.芜菁黄烷酮3-羟化酶基因的克隆、序列分析及表达.分子植物育种.2008.6(4):787-792
    [167]Naoki Mizusawa, Isamu Sakurai, Hisako Kubota,Hajime Wada.Role of Phosphatidylglycerol in Oxygen-Evolving Complex of Photosystem II. In Photosynthesis. Energy from the Sun,14th International Congress on Photosynthesis. Springer Netherlands.2008:463-466
    [168]Perham R N. The fructose-1,6-bisphosphate aldolases:same reaction, different enzymes. Biochem Soc Trans.1990 18(2):185-187.
    [169]Schulze J, Tesfaye M, Litjens R H, Bucciarelli B, Trepp G, Miller S, Samac D, Allan D, Vance C P. Malate p lays a central role in p lant nutrition. Plant and Soil.2002.247:133-139.
    [170]Knight, S. Andersson, I. Branden, C. Crystallographic analysis of ribulose 1,5-bisphosphate carboxylase from spinach at 2.4 A resolution. Subunit interactions and active site. J Mol Biol.1990.215(1):113-160
    [171]李大朋,张敏,高潜,胡勇,何奕昆.高等植物质体的分裂.植物学报.2009.44(1):43-51
    [172]Kevin A. Pyke. Plastid division and development. The Plant Cell.1999.11:549-556
    [173]杨福愉.蛋白质跨线粒体膜的运送的研究进展.生命科学.2008.4:514-518
    [174]冯海霞,郭尚敬,李妹芳,孟庆杰,王光全.植物线粒体热激蛋白的生物学功能.北方园艺.2009.6:115-118
    [175]H P Braun, U K Schmitz.The mitochondrial processing peptidase The International Journal of Biochemistry & Cell Biology.1997.29:1043-1045
    [176]李常健,林清华,张楚富.高等植物谷氨酰胺合成酶研究进展.生物学杂志.2001.18(4):1-3
    [177]吴德,吴忠道,余新炳.磷酸甘油酸激酶的研究进展.中国热带医学.2005.5(2):385-387
    [178]Nandi D, Tahiliani P, Kumar A, Chandu D. The ubiquitin-proteasome system. J. Biosci. 2006.31(1):137-155.
    [179]孙爱清,刘箭,张杰道.植物中的金属蛋白酶FtsH.植物生理学通讯.2006.42(1):148-154
    [180]刘海英,李有忠,柳娜,司怀军,王蒂.马铃薯无机焦磷酸酶基因cDNA克隆及其反义植物表达载体构建.分子植物育种.2008.6(1):131-135
    [181]Faye F,Floc' h F le,Le Floc' h F.Adenosine kinase of peach tree flower buds:purification and properties. Plant Physiology and Biochemistry.1997.35(1):15-22
    [182]Cruz de Carvalho MH, d'Arcy-Lameta Agn e s, Roy-Macauley H, Gareil M, Maarouf HE, Pham-Thi AT, Zuily-Fodil Y. Aspartic protease in leaves of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata L. Walp):enzymatic activity, gene expression and relation to drought susceptibility, FEBS Lett.2001.492:242-246
    [183]Holmes-Davis R,Tanaka C K,VenseI W H,Hurkman W J,McCormick S. Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics.2005.5:4864-4884
    [184]Noir S,Brautigam A,Colby T,Schmidt J,Panstruga R.A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem Biophys Res Com mun.2005.337:1257-1266
    [185]Dai SJ, Lei L, Chen TT, Chong K, Xue YB, Wang T. Proteomic analysis of Oryza saliva mature pollen novel proteins associated potentially with pollen germination and tube growt h. Proteomics.2006.6:2504—2529.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700