用户名: 密码: 验证码:
离心风机多目标优化及旋转失速机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风机属于通用机械范畴,在国民经济的各部门应用十分广泛。尤其在火力发电厂中,风机是保证电厂安全、经济运行及实现节能减排的重要设备之一,因此对其经济性和安全性两个方面进行研究具有重要意义。本文以G4-73型离心风机为研究对象,采用数值模拟与实验研究相结合的方法,在分析风机内部流动机理及结构参数对性能影响规律的基础上,利用遗传算法对风机性能进行优化,设计高效叶轮及旋涡破碎装置,并深入研究旋转失速现象的产生机理及流体动力学特征。主要研究内容及成果如下:
     (1)离心风机流场动力学特征研究及参数化数值计算平台开发。在分析网格划分策略及湍流模型等对计算精度的影响基础上,对离心风机的内部流场特征进行了数值研究及熵产计算,计算结果与实验数据吻合良好,为实现风机性能预测和优化奠定了基础。研究发现,湍流耗散是引起熵产的主要原因,而粘性耗散的影响几乎可以忽略,其中叶轮体内熵产最大。在确定计算模型的基础上采用VB编程语言开发了基于参数化的离心风机数值计算平台,包括参数化建模、FLUENT计算及数据分析三个模块,实现了叶轮结构参数变化时几何建模、高质量网格生成、计算模型设置、后处理及数据库查询等功能的完全自动化与体化,为深入研究叶轮结构参数变化对风机性能的影响奠定了基础。
     (2)离心风机性能的多目标优化及实验研究。基于参数化数值计算平台研究了叶轮结构参数包括叶片数、叶片出口安装角和叶轮出口宽度等对风机性能的影响规律。设计正交试验构造训练样本,基于BP神经网络构建了离心风机性能参数预测模型,并利用遗传算法对风机全压和效率进行多目标优化,获得了新型叶轮结构参数组合。为验证优化结果的正确性,对加装新型叶轮的风机分别进行了数值模拟和实验研究。结果表明,加装新型叶轮后风机全压和效率提高,且高效区拓宽,在65%-100%相对流量范围内,风机噪声降低。
     (3)风机蜗壳流场动力学特征分析及优化。研究了离心风机蜗壳内部流动规律,发现蜗壳内部存在螺旋向前推进的类S型大型旋涡运动。基于减小流动损失和泄漏损失的思想,设计了一种旋涡破碎装置。对加装漩涡破碎装置前后的风机分别进行了数值模拟及性能和噪声实验。模拟结果表明,加装旋涡破碎装置后,大尺度旋涡得到破碎且强度减弱,蜗壳体内熵产明显降低,泄漏损失减小。实验结果表明,加装旋涡破碎装置后,相对流量大于45%时,风机全压明显增大,且高效区拓宽;风机噪声降低,且在最高效率点处,风机中、低频段噪声明显降低。
     (4)离心风机旋转失速动力学特征的机理研究。基于编写的UDF节流阀函数对离心风机旋转失速现象进行了数值模拟,通过在流场中设置监视点获得了失速团的传播速度及失速频率。探讨了旋转失速的发生机理及影响因素,分析了从失速先兆发展到失速团的径向、轴向和周向全三维的非定常迁移过程,及失速特征和失速团个数的变化。深入探讨了失速团的周向传播机理,且揭示了小流量区风机全压波动及其频率的重要原因。研究结果为风机旋转失速故障的预防、监测与诊断奠定了基础。
As one of universal machines, fans have been widely used in lots of departments of the national economy. It is one of major devices for ensuring safe and economic operation for power plants as well as realizing energy saving and emission reduction, thus it's of great significance to study fan's economy and safety. In this paper, G4-73 centrifugal fan is chosen as the study object. Combined with numerical simulation and experimental research, the flow mechanism and influence law of structure parameters on fan performance is analyzed. Then, the impeller structure parameters are optimized by genetic algorithm and vortex-broken device is designed for improving fan performance. Moreover, the mechanism and dynamic characteristics of rotating stall are investigated. Main contents and results of the paper are as follows.
     (1) Study on dynamic characteristics of flow field for centrifugal fan and development of parametric numerical calculation platform. After analyzing the influence of mesh division strategy and turbulence models on computational accuracy, the flow field is solved by numerical simulation and entropy generation calculating. Numerical results are in good agreement with the experimental data, setting a basis for the realization of performance prediction and optimization of fan. Results show that turbulent dissipation is the primary cause of entropy generation while viscous dissipation is almost negligible. Entropy generation is largest inside the impeller. After confirming the calculation models, parametric numerical calculation platform for centrifugal fan is developed with VB programming language, including three modules, parametric modeling, FLUENT calculating and data analysis. The platforms can realize full functional automation and integration of geometric modeling, high-quality mesh generation, model setup, post-processing, data-base query and so on when structural parameters of the impeller change, to set a basis for in-depth study on the impacts of structural parameter variation on fan's performances.
     (2) Multi-objective optimization and experimental research of centrifugal fan performance. The influence laws of impeller structural parameters including the blade number, outlet installation angle of blade, and width of the impeller outlet on fan performance is studied with parametric numerical calculation platform. After obtained the training samples by orthogonal test, prediction model for centrifugal fan performance parameters is constructed based on BP neural network, and we obtain a new type of impeller structure parameters through multi-objective optimization to full pressure and efficiency of the fan by genetic algorithms. In order to verify the accuracy of optimization results, numerical and experimental studies are conducted to the fan with the new impeller. The results show that full pressure and efficiency of the fan improved after installation of the new impeller, the effective area expanded and the fan noise reduces as relative flowrate ranged from 65%to 100%.
     (3) The characteristics analysis and improvement for flow field of fan volute. The internal flow rules of volute are studied and S-like large-scale spiral whirls in volute are push forward. A vortex-broken device is designed for reducing flow loss and leak loss. Numerical simulation, performance and noise experiments are carried out respectively before and after the installation of the device. The simulation results show that large-scale swirl is broken and its intensity becomes weaker, entropy generation inside volute is reduced sharply, as well as the leak loss is decreased with the device. The experimental results illustrate that after the device was added, when relative flowrate more than 45%, full pressure increase significantly and efficiency area to broaden. Fan noise reduction, mid-frequency and low-frequency noise significantly decrease at the maximum efficiency point.
     (4) The mechanism investigation on dynamic characteristics of rotating stall for centrifugal fan. Phenomenon of rotating stall is numerical simulated with the throttle valve function compiled with user defined function. The speed of stall cell and stall frequency are obtained by the terms of setting monitoring points in flow field. Production mechanism of rotating stall was discussed. The full three dimensional unsteady transport processes including the radial, axial and circumferential directions is analyzed from the stall inception become to stall cell. Also, the change of stall characteristics and numbers of stall cell is studied. Mechanism of circumference transmission for stall cell, reasons that full pressure fluctuation and its frequency in low flowrate condition are explored. The results will provide a foundation for fault prevention, monitoring and diagnosis of rotating stall.
引文
[1]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年)[EB/OL]. (2006-02-09). [2010-10-01]. http://www.gov.cn/jrzg/2006-02/09/cont--ent 183787.htm
    [2]王松岭,雷泳,李春曦,等.电厂离心风机容积损失的数值分析[J].华北电力大学学报,2006,33(1):60-63
    [3]Radan P. Fan System in the European Union:Energy Consumption, Energy Saving Potentials and CO2 Emission[C]. Proceeding of Fan Noise. France,2003
    [4]安连锁.泵与风机[M].北京:中国电力出版社.2001
    [5]Wood C O. Failure Cause Analysis-Fans[R]. EPRI Report, CS-1693
    [6]国家电力监管委员会电力可靠性管理中心.2007年全国电力可靠性指标[EB/OL]. (2007-05-11). [2010-10-01]. http://www.chinaer.org
    [7]国家电力监管委员会电力可靠性管理中心.2009年全国电力可靠性指标[EB/OL]. (2010-05-28). [2010-10-01]. http://www.chinaer.org
    [8]侯军虎.基于多参数的风机状态监测与故障诊断的研究[D].保定:华北电力大学,2003
    [9]侯军虎,王松岭,安连锁,等.基于一类改进谐波小波的离心风机旋转失速特征分析[J].动力工程,2003,23(6):2814-2818
    [10]唐狄毅.叶轮机非定常流[M].北京:国防工业出版社.1992
    [11]Eck B. Fans[M]. New York:Pergramon Press,1973
    [12]Adler D. Status of Centrifugal Impeller Internal Aerodynamics, Part 1:Inviscid Flow Prediction Methods[J]. ASME Journal of Engineering for Power,1980, 102(3):728-737
    [13]Adler D. Status of Centrifugal Impeller Internal Aerodynamics, Part 2: Experiments and Influence of Viscosity[J]. ASME Journal of Engineering for Power,1980,102(3):738-746
    [14]Eckardt D. Detailed Flow Investigations Within a High-Speed Centrifugal Compressor Impeller[J]. Transactions of the ASME Journal of Fluids Engineering,1976,98(3):390-402
    [15]Sentker A, Riess W. Measurement of Unsteady Flow and Turbulence in a Low Speed Axial Compressor[J]. Experiment Thermal and Fluid Science,1998,17: 124-131
    [16]徐月亭,陈殿兰.旋转流场测量技术的探讨和实际[J].气动实验与测量控制,1994,8(1):37-41
    [17]Chan V S S, Turner J T. Velocity Measurement Inside a Motored Internal Combustion Engine Using Three-Component Laser Doppler Anemometry[J]. Optics and Laser Technology,2000,32(7):557-566
    [18]Tisserant D, Breugelmans F A E. Rotor Blade-to-Blade Measurements Using Particle Image Velocimetry[J]. Journal of Turbomachinery,1997,119(2): 176-181
    [19]Wernet M P. Application of DPIV to Study Both Steady State and Transient Turbomachinery Flows[J]. Optics and Laser Technology,2000,32(7):497-525
    [20]Wernet M P. Planar Particle Imaging Doppler Velocimetry, A 3-Component Velocity Measurement Technique[J]. AIAA Journal,2005,3(8):479-488
    [21]Fischer K, Thoma D. Investigation of the Flow Condition in a Centrifugal Pump[J]. Transactions of the ASME,1932,54 (8):45-56
    [22]Acosta A J, Bowerman R D. An Experimental Study of Centrifugal Pump Impellers[J]. Transctions of the ASME,1957,79:1821-1839
    [23]Howard J H G, Kittmer C W. Measured Passage Velocities in a Radial Impeller with Shrouded and Unshrouded Configuration[J]. ASME Journal of Engineering for Power,1975,97(2):207-213
    [24]Fowler H S. The Distribution and Stability of Flow in a Rotating Passage[J]. ASME Journal of Engineering for Power,1968,90:229-236
    [25]Moore J. A Wake and an Eddy in a Rotating Radial Flow Passage, Part 2:Flow Model[J]. ASME Journal of Engineering for Power,1973,95(3):213-219
    [26]Raj D, Swim W B. Measurements of the Mean Flow Velocity and Velocity Fluctuations at the Exit of an FC Centrifugal Fan Rotor[J]. ASME Journal of Engineering for Power,1981,103(2):393-400
    [27]吕伟领,席光,宫武旗,等.前向多翼离心风机叶片尾迹和蜗壳二次流动的试验研究[J].西安交通大学学报,2005,39(1):21-25
    [28]张莉,陈汉平,王启杰.离心叶轮机械有叶扩压器内部流动的PIV测量[J].机械工程学报,2002,38(5):105-108
    [29]张伟,宫武旗,樊孝华,等.高速离心风机叶片扩压器前缘倾角对其性能影响的实验研究[J].工程热物理学报,2009,30(8):1306-1308
    [30]周浩,李立人,沈承龙.离心风机蜗壳流场的烟线法显示及基于变分原理的数值计算[J].气动实验与测量控制,1991,5(4):70-75
    [31]曹淑珍,祁大同,张义云,等.小流量工况下离心风机蜗壳内部的三维流动测量分析[J].西安交通大学学报,2002,36(7):688-692
    [32]Katanis. Use of Arbitrary Quasi-Orthogonal Line for Calculating Flow Distribution in the Meridional Plane of Turbomachine[R]. NASA, TND-2546,1964
    [33]Hirsch C, Wargee G. A Finite Element Method of Through Flow Calculation in Turbomachines[J]. ASME Journal of Fluids Engineering,1976,98(3):403-421
    [34]Senno Y, Nakase Y. A Blade Theory of an Impeller with an Arbitrary Surface of Revolution [J]. ASME Journal of Engineering for Power,1971,93(3):454-460
    [35]Wu C H. A General Theory of Three-dimensional Flow in Subsonic and Supersonic Turbo-machines of Axial-, Radial-and Mixed-flow Types[R]. NACA, TN 2604,1952
    [36]Krimerman Y, Alder D. The Complete Three-Dimensional Calculation of the Compressible Flow Field in Turbo Impeller[J]. Journal of Mechanical Engineering Science,1978,20:149-158
    [37]Johnson J P, Eide S A. Turbulent Boundary Layers on Centrifugal Compressor Blades:Prediction of the Effects of Surface Curvature and Rotation[J]. ASME Journal of Fluids Engineering,1976,98(3):374-381
    [38]Ekeral H, Railly J W. A Theory for Boundary Layer Growth on the Blade for Radial Impeller including End-Wall Influence[C]. ASMP Paper,82-GT-90,1982
    [39]Zhang J, Lakshiminarayana B. Computation and Turbulence Modeling for Three-Dimensional Turbulent Boundary Layers Including Turbomachinery Rotor Blades[J]. AIAA Journal,1990,28(11):1861-1869
    [40]Rai M M. Three-Dimensional Navier-Stokes Simulation of Turbine Rotor/stator Interaction[J]. AIAA Journal of Propulsion,1989,5(3):367-374
    [41]Moore J, Moore J G, Timmis P H. Performance Evaluation of Centrifugal Compressor Impellers Using Three-Dimensional Viscous Flow Calculations[J]. ASME Journal of Engineering for Gas Turbine and Power,1984,106(2): 475-481
    [42]Dawes W N. A Simulation of the Unsteady Interaction of a Centrifugal Impeller with its Vaned Diffuser:Flow Analysis[J]. ASME Journal of Turbomachinery, 1995,117(2):213-222
    [43]刘立军.离心压气机内定常或非定常粘性流动的数值分析与试验研究[D].西安:西安交通大学,1999
    [44]Baldwin B, Lomax H. Thin Layer Approximation and Algebraic Model for Separated Flow [C]. AIAA Paper,1978:78-0257
    [45]Lauder B E, Spalding D B. The Numerical Calculation of Turbulent Flows [J]. Computation Methods in Applied Mechanics and Engineering,1974,3(1): 269-289
    [46]Speziale C G. On Nonlinear k-a Model of Turbulent Flows [J]. Journal of Fluid Mechanics,1987,178:459-475
    [47]Speziale C G, Thangam S. Analysis of an RNG Based Turbulence Model for Separated Flows [J]. Int. Journal Engineering Science,1992,30(10):1379-1388
    [48]Shih T H, Liou W W, Shabbir A., et al. A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation[J]. Computers Fluids,1995,24(3):227-238
    [49]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000
    [50]Sinha M, Katz J, Meneveau C. Quantitative Visualization of the Flow in a Centrifugal Pump with Diffuser Vanes, Ⅱ:Addressing Passage-Averaged and Large-Eddy Simulation Modeling Issues in Turbomachinery Flows[J]. Journal of Fluids Engineering,2000,122(1):108-116
    [51]Conway S, Caraeni D, Fuchs L. Large Eddy Simulation of the Flow through the Blades of a Swirl Generator [J]. Int. J. Heat and Fluid Flow,2000,21(5): 664-673
    [52]Jang C M, Furukawa M, Inoue M. Analysis of Vertical Flow Field in a Propeller Fan by LDV Measurements and LES. Part Ⅱ:Unsteady Nature of Vertical Flow Structures due to Tip Vortex Breakdown[J]. Journal of Fluids Engineering,2001, 123(4):755-761
    [53]Lee S, Runchal A K, Kim H J. Computation of Turbulent Flows and Aeroacoustics from an Axial Fan[C]. Bangalore, ISABE-2001-KO-9,2001
    [54]Kato C, Kaiho M, Manabe A. An Overset Finite Element Large-Eddy Simulation Method With Applications to Turbomachinery and Aeroacoustics [J]. Journal of Applied. Mechanics,2003,70(1):32-43
    [55]Lee S, Kim H J, Runchal A. Large Eddy Simulation of Unsteady Flows in Turbomachinery[J]. Journal of Power and Energy,2004,218(7):463-475
    [56]张昌兵.水轮机全三维粘性大涡模拟数学模型研究[J].四川大学学报,2006,38(3):24-28
    [57]吴玉林.离心泵叶轮内部固液两相流动的大涡模拟[J].清华大学学报,2001, 41(10):93-96
    [58]Spalart P R. Strategies for Turbulence Modeling and Simulations[J]. Int J. Heat Fluid Flow,2000,21:252-263
    [59]Spalart P R, Jou W H, Strelets M., et al. Comments on the Feasibility of LES for Wings, and on a Hybrid RNS/LES Approach[C]. Columbus:Greyden Press, 1997
    [60]Travin A, Shur M, Strlets M, et al. Detached-Eddy Simulations Past a Circular Cylinder [J]. Int. J. Flow Turbulence and Combustion,2000,63(1-4):293-313
    [61]Nikitin N V, Nicoud F, Wasistho B, et al. An Approach to Wall Modeling in Large-eddy Simulations[J]. Physics of Fluids,2000,12(7):1629-1632
    [62]Michel T, Zoubida E L, Alex R, et al. Investigation of the Tonal Noise Radiated by Subsonic Fans using the Aero-acoustic Analogy[C]. Proceedings of the Fan Noise 2003 International Symposium, Senlis,2003
    [63]Khalil I,Tabakoff W, Hamed A. Viscous Flow Analysis in Mixed Flow Rotors[J]. ASME Journal of Engineering for Power,1980,102(1):193-201
    [64]Peeters M F, Habashi W G, Dueck E G. Finite Element Stream Function-Vorticity Solution of the Incompressible Navier-Stokes Equations[J]. Int. Journal for Numerical Methods in Fluids,1987,7(1):17-27
    [65]Raul R, Bernard P S, Buckley F T. An Application of the Vorticity-Vector Potential Method to Laminar Cube Flow[J]. Int. Journal for Numerical Methods in Fluids,1990,10(8):875-888
    [66]Hamed A, Abdanah S. Internal Three-Dimensional Viscous Flow Solution Using the Streamlike Function[J]. ASME Journal of Fluids Engineering,1986,108(3): 348-353
    [67]Patankar S, Spalding D B. A Calculation Procedure for Heat, Mass and Momentum Transfer in Three Dimensional Parabolic Flows[J]. Int. Journal of Heat Transfer,1972,15(10):1787-1806
    [68]Maccormak R W. A Numerical Method for Solving the Equations of Compressible Viscous Flows [J]. AIAA Journal,2003,20(9):1275-1281
    [69]Jameson A, Schmidt W, Baker T J. Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Scheme[C]. AIAA Paper,1981:81-1259
    [70]Jameson A. Solution of the Euler Equations for Two Dimensional Transonic Flow by a Multigrid Method[J]. Applied Mathematics and Computation,1983, 13(3-4):327-355
    [71]Jameson A, Baker T J. Multigrid Solution of the Euler Equations for Aircraft Configurations[C]. AIAA Paper,1984:84-0093
    [72]Martinelli L, Jameson A, Grasso F. A Multigrid Method for the Navier-Stokes Equations[C]. AIAA Paper,1986:86-0208
    [73]Liu F, Jameson A. Multigrid Navier-Stokes Calculations for Three-Dimensional Cascades[J]. AIAA Journal,1993,31(10):1785-1791
    [74]Demon J D. A Time Marching Method for Two and Three Dimensional Blade to Blade Row[R]. ARC R&M,1974
    [75]Demon J D. An Improved Time-Marching Method For Turbomachinery Flow Calculation[J]. ASME Journal Engineering for Power,1983,105(3):514-524
    [76]Demon J D. The Use of a Distributed Body Force to Simulate Viscous Effects in 3D Flow Calculation [C]. ASME Paper,86-GT-144,1986
    [77]Ni R H. A Multiple Grid Scheme for Solver the Euler Equations[C]. AIAA Paper, 1981:81-1025
    [78]Van Doormaal J P, Raithby G D. Enhancement of the SIMPLE Method for Predicting Imcompressible Fluid Flows[J]. Numerical Heat Transfer,1984,7(2): 147-163
    [79]Patankar S V. A Calculation Procedure for Two-Dimensional Elliptic Situations[J]. Numerical Heat Transfer,1981,4(4):409-425
    [80]Issa R T. The Computation of Compressible and Incompressible Recirculating Flows by a Non-Iterative Implicit Scheme[J]. Journal of Compute Physics,1986, 62:66-82
    [81]Steger J L, Warming R F. Flux Vector Splitting of the Inviscid Gasdynamic Equations with Application to Finite-difference Methods[J]. Journal of Computational Physics.1981,40(2):263-293
    [82]Seaford C M, Hassan H A. Transonic flow Calculations Using a Flux Vector Splitting Method for the Euler Equations[C]. AIAA Paper,1984:84-0090
    [83]Harten A. High Resolution Schemes for Hyperbolic Conservation Laws[J]. Journal of Computational Physics,1983,49(3):357-393
    [84]Harten A, Engquist B, Osher S, et al. Uniformly High Order Accurate Essentially Nonoscillatory Schemes[J]. Journal of Computational Physics,1987,71(2): 231-303
    [85]张涵信.无波动、无自由参数的耗散的差分格式[J].空气动力学学报,1988,6(2):144-165
    [86]Ma Y W, Fu D X. Numerical Solutions of Compressible Flow With Compact Scheme[C]. AIAA Paper,1987:87-1123
    [87]Fu D X, Ma Y W. A High Order Accurate Difference Scheme for Complex Flow Fields[J]. Journal of Computational Physics,1997,134(1):1-15
    [88]Rogalsky T P. Aerodynamic Shape Optimization of Fan Blades[D]. Master's thesis of University of Manitoba,1998
    [89]Kazuyuki S. Aerodynamic Shape Optimization and Knowledge Data Mining of A Centrifugal Fan[J]. Turbomachinery,2006,34(6):357-365
    [90]Chon Y, Kim I K, Kim K. A Knowledge-Based System for Centrifugal Fan Blade Design[J]. Engineering Applications of Artificial Intelligence,1993,6(5): 425-435
    [91]李景银,梁亚勋,田华.不同型线离心风机叶轮的性能对比研究[J].工程热物理学报,2008,29(6):963-966
    [92]李景银,牛子宁,梁亚勋.可控减速法设计离心风机两元叶片的研究[J].西安交通大学学报,2009,43(9):67-70
    [93]于跃平,胡继孙,陈启明,等.叶片型线对离心风机气动性能影响试验研究与叶轮流场计算[J].流体机械,2007,35(7):25-29
    [94]黄东涛,边晓东,唐旭东,等.长短叶片开缝技术在离心风机设计中的应用[J].清华大学学报(自然科学版),1999,39(4):6-9
    [95]王建.离心风机叶轮附加小叶片长度的优化研究[D].保定:华北电力大学,2006
    [96]蒋恩臣,蒋亦元.叶片宽度对锥体叶轮离心风机性能影响的试验研究[J].农机化研究,1995,2:5-8
    [97]Dilin P A. Computational and Experimental Evaluation of the Performance of A Centrifugal Fan Volute[J]. Proceedings of the Institution of Mechanical Engineers.Part A, Journal of Power and Energy,1998,212(4):235-246
    [98]黄建德,张泉,陆火庆.前向多叶离心风机蜗壳内流场的试验[J].上海交通大学学报,1999,33(3):285-288
    [99]祁大同,姚承范,朱营康.离心风机蜗壳型线的改进设计与实验[J].流体机械,1995,23(9):9-12
    [100]Pan D, Whitefield A, Wilson M. Design Considerations for the Volutes of Centrifugal Fans and Compress[J]. Journal of Mechanical Engineering Science, 1999,213(4):401-411
    [101]Yamazaki S, Hashimoto K, Fukasaku Y. Influence of Shape Change of Impeller and Scroll in the Axial Direction on Performance and Noise for Multiblade Blower[C]. Papers of Transactions of the Japan Society of Mechanical Engineers,1997,63(614):3325-3329
    [102]Yamazaki S, Satoh R. An Experimental Study on the Aerodynamic Performance of Multi-Blade Blowers[C]. Papers of Transactions of the Japan Society of Mechanical Engineers,1987,53(485):108-113
    [103]王企鲲,戴韧,陈康民.离心风机梯形截面蜗壳内旋涡流动的数值分析[J].工程热物理学报,2004,25(1):66-68
    [104]吴克启,黄坚.风机蜗壳内部旋涡流动的数值分析[J].工程热物理学报,2001,22(3):316-319
    [105]Herwig H, Kock F. Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems[J]. Heat and Mass Transfer,2007,43(3):207-215
    [106]Kock F, Herwig H. Local Entropy Production in Turbulent Shear Flows:A High-Reynolds Number Model with Wall Functions[J]. International Journal of Heat and Mass Transfer,2004,47(10):2205-2215
    [107]Bejan A. Entropy Minimization:the New Thermodynamics of Finite-Size Devices and Finite-Time Processes[J]. Applied Physics,1996,79(3):1191-1218
    [108]Walsh E, Hernon D. Unsteady Volumetric Entropy Generation Rate in Laminar Boundary Layers[J]. Entropy,2006,8(1):25-30
    [109]周建辉,杨春信.基于熵产最小曲线型散热器参数优化设计[J].航空动力学报,2009,24(5):970-978
    [110]Cumpsty N A. Compressor Aerodynamics[M]. Longaman Group,1989
    [111]Emmons H W, Pearson C E, Grant H P. Compressor Surge and Stall Propagation[J]. Trans.ASME,1955,77(4):455-469
    [112]Koch C C. Experimental Evaluation of Outer Case Blowing or Bleeding of Single StageAxial Flow Compressor[R]. NASA, CR-54592,1970
    [113]蔡运金,钟玉玲,钱鲁泓.应用端弯叶片增加压气机喘振裕度[J].航空动力学报,1988,3(3):215-218
    [114]陶德平,彭泽琰,魏星禄.压气机二次流及其控制[J].航空动力学报.1990,5(3):251-256
    [115]Epstein A H. Smart Engine Components:A Micro in Every Blade[J]. Aerospace America,1986,24(1):60-64
    [116]Greitzer E M. The Stability of Pumping Systems-The 1980 Freeman Scholar Lecture[J]. Journal of Fluids Engineering,1981,103:193-242
    [117]Moore F K, Greitzer E M. A theory of Post-Stall Transients in Axial Compressor:Part 1 Development of the Equation[J]. Journal of Engineering for Gas Turbines and Power,1986,108(1):68-76
    [118]Greitzer E M, Moore F K. A Theory of Post-Stall Transients in Axial Compressor:Part 2 Application[J]. Journal of engineering for gas turbines and power,1986,108(4):231-240
    [119]于兰兰,胡骏,屠宝锋,等.轴流压缩系统中主动抑制旋转失速的数值模拟[J].航空动力学报,2010,25(1):92-100
    [120]Ffocws Williams J E, Huang X Y. Active Stabilization of Compressor Surge[J]. Journal of Fluid Mechanics,1989,204:245-262
    [121]Pinsley J E, Guenette G R, Epstein A. H., et al. Active Stabilization of Centrifugal Compressor Surge[J]. Journal of Turbomachinery,1991,113(4): 723-732
    [122]聂超群.压缩系统喘振现象主动控制的试验研究[D].北京:中国科学院工程热物理研究所,1994
    [123]Paduano J D, Epstein A H, Valavani L, et al. Active Control of Rotating Stall in a Low-Speed Axial Compressor[J]. Journal of Turbomachinery,1993,115(1): 48-56
    [124]Day I J. Active Suppression of Rotating Stall and Surge in Axial Compressors[J]. Journal of Turbomachinery,1993,115(1):40-47
    [125]Kriebel A R, GS chnuind R. Stall Propagation in a Cascade of Air Foils[R]. NACA,1960
    [126]Lennemann E. Unsteady Flow Phenomenon in Rotating Centrifugal Impeller Passages[J]. Journal of Engineering for Power,1970,92(1):65-72
    [127]Rodgers C. A Diffusion Factor Correlation for Centrifugal Impeller Stalling[J]. Transactions of the ASME, Journal of Engineering for Power,1978,100(4): 592-603
    [128]Kammer N, Rautenberg M. A Distinction Between Diffuser Types of Stall in a Centrifugal Compressor Stage[J]. Journal of Engineering for Gas Turbines and Power,1986,108(1):83-92
    [129]Hideaki K, Takane I, Keiichi N. A Consideration Concerning Stall and Surge Limitations within Centrifugal Compressor[J]. Journal of Engineering Power, 1982,104(4):782-787
    [130]Wernet P, Bright M, Skoch J. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV[J]. Journal of Turbomachinery, 2001,123(2),418-428
    [131]葛宁.轴流风扇旋转失速时的流场测量与分析[J].航空动力学报,1997,12(1):9-12
    [132]孙涛,徐光华,张春梅.基于喘振频域特性的失稳预警技术研究[J].西安交通大学学报,2007,41(11):1321-1325
    [133]聂超群,陈静宜,蒋浩康,等.低速轴流压气机旋转失速先兆特征的实验分析[J].工程热物理学报,1998,19(3):293-298
    [134]王松岭,侯军虎,安连锁.基于谐波小波变换的4-73风机压力侧失速特性分析[J].热能动力工程,2004,19(3):295-298
    [135]侯军虎,王松岭,王强,等.基于小波变换的离心风机弱失速特征分析[J].热能动力工程,2003,18(3):280-283
    [136]Sisto F, Jonnavithula S, Thanqam S. Computational Study of the Effect of Cascade Parameters on Stall Propagation in Axial Compressors[C]. Advances and Applications in Computational Fluid Dynamics, Chicago,1988:101-107
    [137]Outa E, Ohta Y, Kato D, et al. Two Dimensional Study on Evolution of Deep Rotating Stall under Uniform Inlet Conditions in an Axial Compressor Cascades[C]. ISABE,1999:99-7219
    [138]He L. Computational Study of Rotating-stall Inception in Axial Compressor[J]. Journal of Propulsion and Power,1997,13(1):31-38
    [139]Masaki D, Kaji S. Numerical Analysis of Transonic Compressor Rotor Flow near Stall Points[C]. Proceedings of the 1997 International Gas Turbine & Aeroengine Congress & Exposition, Orlando,1997
    [140]Hah C, Schulze R, Wahnar S, et al. Numerical and Experimental Study for Short Wavelength Stall Inception in a Low-Speed Axial Compressor[C].14th International Symposium on Air Breathing Engines, Florence,1999
    [141]Niazi S, Stein A, Sankar L N. Numerical Studies of Stall and Surge Alleviation in a High-Speed Transonic Fan Rotor[C]. AIAA Paper,2000:2000-0225
    [142]Sano T, Yoshida Y, Tsujimoto Y, et al. Numerical Study of Rotating Stall in a Pump Vaned Diffuser[J]. Journal of Fluids Engineering,2002,124(2):363-370
    [143]Stein A. Computational Analysis of Stall and Separation Control in Centrifugal Compressor[D]. Georgia Institute of Technology,2000
    [144]蒋康涛.低速轴流压气机旋转失速的数值模拟研究[D].北京:中国科学院研究生院,2004
    [145]郭强.带无叶扩压器的离心压缩机失速现象的实验和数值研究[D].上海:上海交通大学,2007
    [146]Lane G, Rigby G, Evans G. Pressure Distribution on the Surface of Rushton Turbine Blades-Experimental Measurements and Prediction by CFD[J]. Journal of Chemical Engineering,2001,34(5):613-620
    [147]Bujalski W, Jaeorski Z, Nienow A. CFD Study of Homogenization with Dual Rushton Turbines-Comparison with Experimental Results:Part Ⅱ:the Multiple Reference Frame[J]. Chemical Engineering Resarch Design,2002,80(1): 97-104
    [148]Kock F, Herwig H. Local Entropy Production in Turbulent Shear Flows:A High-Reynolds Number Model With Wall Functions[J]. Heat Mass Transfer, 2004,47(10-11):2205-2215
    [149]Jaszkiewicz A. Genetic Local Search for Multi-objective Combinatorial Optimization[J]. Euoropean Journal of Operational Research,2002,137(1): 50-71
    [150]Illya K, Anronio P B. An Efficient Multi-Objective Learning Algorithm for RBF Neural Network[J]. Neurocomputing,2010,73(18):2799-2808
    [151]Rumelhart D E, Hinton G E, Williams R J. Learning Representations by Back-Propagation Error[J]. Nature,1986,323(9):533-536
    [152]田雨波.混合神经网络技术[M].北京:科学出版社,2009
    [153]MATLAB中文论坛.MATLAB神经网络30个案例分析[M].北京:北京航空航天大学出版社,2010
    [154]陆桂林,朱仲文.离心风机涡流噪声的研究[J].上海交通大学学报,1989,23(5):103-108
    [155]Gourdain N, Burguburu S, Leboeuf F, et al. Simulation of Rotating Stall in a Whole Stage of an Axial Compressor[J]. Computers and Fluid,2010,39(9): 1644-1655

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700