用户名: 密码: 验证码:
褐煤提质及其燃烧行为特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐煤的高含水量不仅增加运输成本,而且降低锅炉燃烧效率,增加二氧化碳的排放,因此褐煤提质技术的开发是清洁和有效利用褐煤的关键。本文针对褐煤的提质行为特性及提质处理对褐煤热解和燃烧反应性的影响进行研究。
     对一种印度尼西亚褐煤(用YN表示)和两种中国神华褐煤(分别用SH1和SH2表示)的干燥特性进行实验研究,考察温度、粒径等不同因素对干燥速率的影响;采用相关系数判别法对褐煤干燥动力学特性进行解析,确定干燥过程的动力学参数和反应机理函数;借助SEM和FTIR定性分析褐煤十燥过程中物理和化学结构的变化。结果表明:粒径小于10mm的褐煤,干燥速率不受传热限制,干燥过程符合随机成核与随后生长机理。干燥过程中会发生大孔的收缩,干燥过程中有羟基、羰基和羧基官能团的分解而逸出H20和CO2气体。
     利用自主设计的双辊成型机制备出高强度的无粘结剂型煤,研究水分含量、压缩比等因素对型煤强度的影响。结果表明:十燥后的褐煤水分含量对于无粘结剂成型是一个关键的因素。增加成型压力、减小粒径、提高成型温度以及采用水蒸气干燥可以改善型煤的冷压强度,同时也会增加设备的磨损,提高产品的成本。YN型煤的表面致密、有光泽,成型特性好,冷压强度最高,能够满足长时间在水中浸泡后强度的要求。
     对YN褐煤干燥后的水分再吸收动力学特性进行了实验研究和理论分析。结果表明:由于煤中孔结构在干燥过程中发生了不可逆的崩塌,使得褐煤干燥后吸湿表现出一定的滞后性;干燥后的煤样吸湿速率与粒径无关而与干燥温度有关,提高干燥温度会降低吸湿速率和平衡水分;褐煤干燥后重新吸收水分过程是水蒸气物理吸附在褐煤表面和毛细孔中的过程,没有发现其与煤的表而官能团形成氢键的迹象。
     利用高温沉降炉和热重分析仪对提质处理后褐煤的热解及燃烧特性进行了实验研究,其中燃烧特性包括在空气(O2/N2)和富氧(O2/CO2)燃烧条件下的燃烧特性。结果表明:提质后的型煤与原煤相比,挥发份产量降低,可燃性指数、燃尽指数和燃烧综合指数降低。
     对制备的YN型煤进行了工业应用研究,包括配煤炼焦实验和工业燃烧实验。结果表明:YN型煤可以用于配煤炼焦。YN褐煤经过提质后,热值显著提高,自燃着火倾向明显降低,具有较好的可磨性和较高的燃尽率,属于中等轻微结渣煤,燃烧后SO2和NOx的生成量相对较低。
The development of upgrading technology is the key to the clean and effective use of lignites because the high moisture content of lignites leads to high transportation cost, the low thermal efficiency of boilers firing lignites and high carbon dioxide emissions. This thesis studies the behavior of lignite during upgrading and the effects on pyrolysis and combustion reactivity by means of various experimental approaches.
     The drying experiments focusing on the characteristics of an Indonesian lignite coal (assigned as YN sample) and two Chinese Shenhua lignite coals (assigned as SH1 and SH2 samples) were carried out and the factors influencing the drying rates were carefully investigated, including drying temperature and particle size, et al. The drying kinetic parameters and mechanistic functions in drying process were obtained by correlative judging method. The physical and chemical structure changes during drying process were qualitatively analyzed using SEM and FTIR. The results showed that drying rate was not limited by heat transfer when the coal particle size was smaller than 10mm, and the drying process may be described with random nucleation and growth mechanism function. As water was progressively removed, the macropores tended to collapse and shrinkage took place while hydroxyl, carbonyl and carboxyl groups decomposed to release H2O and CO2.
     The high-strength binderless briquettes were produced by a specially designed double-ring roller briquetting machine. Factors influencing the compressive strength were investigated, including briquette moisture content and compression ratio, et al. The results showed that moisture was a critical factor in the binderless briquetting of dried lignites. The compressive strength could be improved by increasing the compressing pressure, reducing particle size and higher drying temperature. The surface of the YN briquettes was visually compact, smooth and lustrous. The YN briquettes had good molding characteristics, and had the highest compressive strength and the strength after water immersion among the three coals.
     The kinetics of moisture re-adsorption was studied experimentally and theoretically. The results showed that the moisture desorption and readsorption isotherms of the coal showed irreversibility in the desorption-readsorption cycles, indicative of irreversible coal structure changes during drying, which was dependent on drying temperature and independent of coal particle size. The moisture readsorption rate and equilibrium moisture content decreased with increasing drying temperature. The water vapor was physically adsorbed on the particle surface and capillary pore surfaces. The formation of hydrogen bond between the water molecules and the surface functional groups during the moisture re-adsorption process was not evident.
     Pyrolysis and combustion characteristics of YN lignite were studied under air (O2/N2) and oxy-fuel (O2/CO2) conditions using a drop tube furnace and a thermogravimetric analyzer. Raw coal, dried coal and binderless briquette samples of the same coal were used in the experiments and the effects of drying and binderless briquetting on the reactivity of the coal under different conditions were investigated. The results showed that the briquetted coal had a decreased volatile matter yield, flammability index, burnout index and combustion synthesis index.
     The industry application potential of YN briquettes was investigated through coking tests and burnout experiments on a pilot scale boiler. The results showed that the YN briquettes could be used for blending for coking. Upgrading of YN lignite has improved its calorific value and achieved favourable results in milling. Laboratory tests for spontaneous combustion indicated that YN briquettes had low to moderate propensity to spontaneous combustion. The burnout was high and the briquetted coal belonged to moderate slight-slaging coal. The emission of SO2 and NOX was low compared to reference coals.
引文
[1]陈鹏.中国煤炭性质、分类和利用[M].北京:化学工业出版社,2007.
    [2]Li Chun-zhu, Advances in Science of Victorian Brown coal[M]. London:Elsevier,2004.
    [3]Herman H. The Newport experimental drying and pulverising plant for the treantment of brown coal[J]. SECV Bulletin 1926,No.1,1-40.
    [4]Potter O E. Drying brown coal in steam-heated steam-fluidised beds[J]. Drying technology,1984.
    [5]Potter O E, Keogh A J. Drying high-moisture coals before liquefaction or gasification[J]. Fuel Processing Technology,1981,4:217-227.
    [6]Warrack G W. Overview of low rank coal drying[J]. International Journal of Coal Preperation and Utilization,1997,18:1-15.
    [7]Aryadi S, Hamdani. Upgrading the Indonesians low rank coal by superheated steam drying with tar coating process and its application for preparation of CWM[J]. International Journal of Coal Preperation and Utilization,1999,21:149-159.
    [8]Stadish N, Worner H, Kaul H. Microvave drying of brown coal agglomerates[J]. Microvave Power and Electromag Energy,1988,23:171-175.
    [9]Anderson B. Optimisation of design parameters for a solar dried brown coal slury plant, Australian Institute of Energy National Conference[C]. Melbourne,1985.
    [10]Helmer W, Hasheminejad F. Secondary coal recovery from slurry ponds utilizing solar drying[J]. Powder Technology,1984,40:247-255.
    [11]Herman H. Brown Coal[M]. SECV, Melbourne,1952.
    [12]Evans D G, Siemon S R. Dewatering brown coal before combustion[J]. Fuel,1970,43:413-419.
    [13]Allardice D J, Anderson B, Woskoboenko F. Developments and opportunities in the hydrothermal dewatering of low rank coal, The Fifth Japan-Austrian Joint Technical Meeting on Coal[C]. Adelaide, 1995.
    [14]Datin F U, Hiromoto U, Bukin D. Effects of processing temperature of hot water drying on the properties and combustion characteristics of an Indonesian low rank coal[J]. International Journal of Coal Preperation and Utilization,2005,25:313-322.
    [15]Berger S, Bergins C, Strauss K, et al. Mechanical-thermal dewatering of brown coal [J]. VGA Power Tech,1992,2:44-49.
    [16]Bergins C. Mechanical/thermal dewatering of lignite. Part 2:A rheological model for consolidation and creep process[J]. Fuel,2004,83:267-276
    [17]Bergins C. Kinetics and mechanism during mechanical/thermal dewatering of lignite[J]. Fuel,2003, 82:355-364
    [18]汪建寿.褐煤干燥成犁工艺技术综述[J].化肥设计,2009(05):1-9.
    [19]汀建寿.褐煤干燥成型多联产在工程实践中的应用和发展[J].化工进展,2010(08):1379-1387.
    [20]万永周,肖雷,陶秀祥,等.褐煤脱水预干燥技术进展[J].煤炭工程,2008(8):91-93.
    [21]Yu Jianglong, Li Xianchun. Final Report To Banpu Public Company Limited. Drying and briquetting of Indonesian Jorong Coal[R].2008.
    [22]范新,李元哲.物料干燥特性的实验研究[J].太阳能学报,1989,(01):09-12.
    [23]张浙,杨世铭.多孔介质对流干燥机理及其模型[J].化工学报,1997(2):52-59.
    [24]刘相东.干燥过程原理研究概况[J].干燥技术与设备,2004,(03):03-05.
    [25]王维,陈国华.固体干燥的物理解释和建模综述[J].干燥技术与设备,2004,(04):180-188.
    [26]Allardice D J, Evans D G. The brown-coal/water system:Part 1. The effect of temperature on the evolution of water from brown coal[J]. Fuel,1971,50:201-210.
    [27]Allardice D J, Evans D G. The brown-coal/water system:Part 2. Water sorption isotherms on bed-moist Yallourn brown coal[J]. Fuel,1971,50:236-253.
    [28]Murray J B, Evans D G. The brown-coal/water system:Part 3. Thermal dewatering of brown coal[J]. Fuel,1972,51:290-296.
    [29]Evans D G. The brown-coal/water system:Part 4. Shrinkage on drying[J]. Fuel,1973,52:186-190.
    [30]Ramin A, Leslie I. Drying kinetics of Lignite, Subbituminous coals, and high-volatile Bituminous coals[J]. Energy & Fuels,1990,4:448-452.
    [31]Vorres K S, Wertz D L, Malhotra V, et al. Drying of Beulah-Zap lignite[J]. Fuel,199271: 1047--1053.
    [32]Vorres K S. Effect of temperature, sample size, and gas flow rate on drying on Beulah-Zap lignite and Wyodak subbituminous coal[J]. Energy & Fuels,1994,8:320--323.
    [33]Deevi S C, Suuberg E M. Physical changes accompanying drying of western US lignites[J]. Fuel, 1987,66:454--460.
    [34]Geoffrey D, Jackson W, Fedir W. Pressurized steam drying of Australian low-rank coals Part 2. shrinkage and physical properties of steam dried coals, preperation of dried coals with very high porosity[J]. Fuel Processing Technology,2000,64:13-23.
    [35]Unal S, Wood D G, Harris I J. Effects of drying methods on the low temperature reactivity of Victorian brown coal to oxygen[J]. Fuel,1992,71:183-192.
    [36]Martin L, Stephen C, Jon S. Coal physical structure:porous and macromolecular network[J]. Fuel Processing Technology,1986,12:31-49.
    [37]Hai-Hui Wang. Kinetic analysis of dehydration of a Bituminous coal using the TGA technique[J]. Energy & Fuel,2007,21:3070-3075.
    [38]Cai Z, George F, Hongwei W, et al. Effects of Pretreatment in Steam on the Pyrolysis Behavior of Loy Yang Brown Coal[J]. Energy & Fuels,2006,20:281-286.
    [39]Cai Z, Sam C, Hongwei W, et al. Effects of Dewatering on the Pyrolysis and Gasification Reactivity of Victorian Brown Coal[J]. Energy & Fuels,2007,21:399-404.
    [40]Muthusamy K, Zhonghua W, Mujumdar A S. Low rank coal drying technology-Current status and new developments[J]. Drying Technology,2009.27:403-415.
    [41]王雷,章明川,吕太,等.粉煤灰干燥特性的实验研究[J].化学工程,2005,(04):8-11.
    [42]王伟云,李爱民.温度及特征尺度对污泥表观干燥动力学的影响研究[J].安全与环境学报,2007,(06):34-37.
    [43]卢涛.毛细多孔介质干燥过程中传热传质模刑研究及应用[D].大连:大连理工大学,2003.
    [44]雷廷宙.秸秆干燥过程的实验研究与理论分析[D].大连:大连理工大学,2006.
    [45]易浩勇.污泥干燥特性及干燥过程研究[D].南京:东南大学,2006.
    [46]王海峰,朱全书,任红星,等.通辽褐煤在流化床干燥器中的干燥特性研究[J].选煤技术,2007 (08):43-47.
    [47]何屏,张绪祎,尹承绪,等.昭通褐煤的干燥、破碎及粒度分析研究[J].昆明理工大学学报,2002(05):45-47.
    [48]邸传耕,吕舜.低温干燥对褐煤性能的影响[J].煤炭加工与综合利用,2008(04):26-28.
    [49]李文,李保庆.煤的低温氧化与自燃[J].煤炭转化,1995(01):10-18.
    [50]刘旭光,李保庆.褐煤的降自燃活性研究[J].中国矿业大学学报,2000(05):266-270
    [51]赵虹,郭飞,杨建国.YN褐煤的吸附特性及脱水研究[J].煤炭学报,2008,(07):799-802.
    [52]徐振刚,刘随芹.型煤技术[M].北京:煤炭工业出版社,2001.
    [53]Clark K, Meakins R, Attalla M. Final Report of Australian Coal Association funded project No 3100. Agglomeration and Stabilisation of Collie Coals by Binderless Briquetting [R].1997.
    [54]邵俊杰.褐煤提质技术现状及我国褐煤提质技术发展趋势初探[J].神华科技,2009(02):17-22.
    [55]余江龙,李先春,宋辉,等.内辊式高压型煤机:中国专利,200820010514.5[P].2008,01,28.
    [56]Beker U G, Kucukbayrak S.Briquetting of Istanbul-Kemerburgaz lignite of Turkey[J]. Fuel Processing Technology,1996,47:111-118.
    [57]Friesen W I,Ogunsola O I.Principal component analysis of upgraded Western Canadian coals[J]. Fuel Processing Technology,1994,38:139-151.
    [58]Richards S R. Briquetting peat and peat-coal mixtures[J]. Fuel Processing Technology,1990,25: 175-190.
    [59]Richards S R. Pilot production of briquettes from coal fines[C]. Wellington,1985.
    [60]Yaman S,Haykiri M H. Fuel briquettes from biomass-lignite blends[J]. Fuel Processing Technology, 2001,72:1-8.
    [61]Beker U G. Briquetting of Af in-Elbistan lignite of Turkey using different waste materials[J]. Fuel Processing Technology,1997,51:137-144.
    [62]Ellison G, Stanmore B R.High strength binderless brown coal briquettes part Ⅰ. Production and properties[J]. Fuel Processing Technology,1981,4:277-289.
    [63]Ellison G, Stanmore B R. High strength binderless brown coal briquettes part Ⅱ. An investigation into bonding[J]. Fuel Processing Technology,1981,4:291-304.
    [64]Richards S R. Physical testing of fuel briquettes[J]. Fuel Processing Technology,1990,25:89-100.
    [65]Altun N E, Hicyilmaz C.Influence of coal briquette size on the combustion kinetics[J]. Fuel Processing Technology,2004,85:1345-1357.
    [66]КРОХИНВ.Н.褐煤无粘结剂成型的理论基础[J].煤炭加工与综合利用,1988,(02):53-58.
    [67]尹公善.褐煤无粘结剂成型[J].煤炭转化,1981,(S1):25-30.
    [68]田忠坤,朱书全.褐煤无粘结剂热压成型特性[J].辽宁工程技术大学学报(自然科学版),2009,(03):494-497.
    [69]王娜,朱书全,单晓云,等.褐煤轻度热解与成型关系的研究[J].选煤技术,2007(03):3-6.
    [70]王娜,朱书全,杨玉立,等.含氧官能团对褐煤热态提质型煤防水性的影响[J].煤炭科学技术,2010,(03):36-38.
    [71]赵玉兰,常鸿雁,吉登高,等.粉煤成型机理研究进展[J].煤炭转化,2001,(03):12-14.
    [72]常鸿雁.粉煤成型机理研究[D].太原:太原理工大学,2002.
    [73]赵玉兰,刘翼州,韩晋民,等.粉煤可压缩性与成型特性的研究[J].煤炭学报,1999,(02):203-206.
    [74]赵玉兰,韩晋民,翟英达,等.粉煤成型特性研究(Ⅰ)粉煤弹性和可塑性与其成型特性的关系[J].燃料化学学报,1999,(02):184-186.
    [75]赵玉兰,王琳,刘翼州.原煤成型特性研究(Ⅱ)煤岩类刑与煤成型特性的关系[J].煤炭转化,1999,(02):56-58.
    [76]赵玉兰.原煤成型特性研究(Ⅲ)煤的硬度和脆度与其成型效果的关系[J].煤炭转化,1999,(02):59-61.
    [77]Terry F W. Combustion processes for carbon capture[J]. Proceedings of the Combustion Institute, 2007,31:31-47.
    [78]李庆钊,赵长遂.燃煤电站二氧化碳控制技术研究[J].锅炉技术,2007(06):65-69.
    [79]黄进.电站煤粉锅炉污染物生成的数值模拟[D].鞍山:辽宁科技大学,2009.
    [80]Kimura N, Omata K, Kiga T, et al. The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery[J]. Energy Convers Manage 1995,36(6-9):805-808.
    [81]Santos S. Oxy-coal combustion technology[R].2nd APP Oxyfuel working group capacity building course, Beijing, China,2010.
    [82]Buhre B P, Elliott L K, Sheng C D, et al. Oxy-fuel combustion technology for coal-fired power generation[J]. Progress in Energy and Combustion Science,2005(31):283-307.
    [83]Nozaki T, Takano S. Analysis of the flame formed during oxidation of pulverized coal by an O2/CO2 mixture[J]. Energy,1997,22(3):199-205.
    [84]Ligang Z, Furimsky E. Assessment of coal bombustion in O2/CO2 by equilibrium calculations[J]. Fuel Processing Technology,2003,81:23-34.
    [85]Liu Hao, Ramlan Z, Bernard M G. Comparisons of pulverized coal combustion in air and in mixture of O2/CO2[J]. Fuel,2005,84:833-840.
    [86]Liu Hao, Ramlan Z, Bernard M. Pulverized coal combustion in air and in mixture with NOx recycle[J]. Fuel,2005,84:2109-2115.
    [87]Varheyi G, S P, Jakab E, et al.. Mathematical modeling of char reactivity in Ar-O2 and CO2-O2 mixture[J]. Energy & Fuels,1996,10:1208-1214.
    [88]Varheyi G, Till F. Comparison of temperature-programmed char combustion in CO2-O2 and Ar-O2 mixture at elevated pressure[J]. Energy & Fuels,1999,13:539-540.
    [89]Shaddix C R, Murphy J J. Coal char combustion reactivity in oxy-fuel applications,20th Annual Pittsburgh Coal Conference[C]. Pittsburgh:PA,2003,354-368.
    [90]刘彦丰,阎维平,朱之平.炭/碳粒在CO2/O2气氛中燃烧速率的研究[J].工程热物理学报,1999,(06):769-772.
    [91]刘彦,周俊虎,方磊,等.O2/CO2气氛煤粉燃烧及固硫特性研究[J].中国电机工程学报,2004,(08):224-228.
    [92]毛玉如,方梦祥,骆仲泱,等.循环流化床富氧燃烧技术的实验研究[J].锅炉技术,2004,(06):27-31.
    [93]骆仲泱,毛玉如,吴学成,等.02/CO2气氛下煤燃烧特性实验研究与分析[J].热力发电,2004,(06):14-18.
    [94]毛玉如,方梦祥,吴学成,等.富氧气氛下煤焦热重实验与模拟[J].热力发电,2005,(03):17-18.
    [95]李庆钊,赵长遂,陈晓平,等.O2/C02气氛燃煤半焦孔隙特性分析[J].上程热物理学报,2009,(09):1605-1608.
    [96]李庆钊,赵长遂,武卫芳,等.02/CO2气氛下煤粉燃烧反应动力学的实验研究[J].动力工程,2008,(03):39-43.
    [97]李庆钊,赵长遂,武卫芳,等.基于TG-FTIR研究O2/CO2气氛下烟煤的燃烧特性[J].东南大学学报(自然科学版),2007,(06):990-995.
    [98]樊越胜,邹峥,高巨宝,等.富氧气氛中煤粉燃烧特性改善的实验研究[J].西安交通大学学报,2006,(01):18-21.
    [99]牛胜利,路春美,赵建立,等.O2/CO2气氛下煤粉的燃烧规律与动力学特性[J].动力工程,2008,(05):769-773.
    [100]Terry F W, Yinghui L, Chris S, et al. An overview on oxyfuel coal combustion-State of the art research and technology development[J]. Chemical Engineering Research and Design,2009,87: 1003-1016.
    [101]Renu K R, Liza K E, Terry F W, et al. Differences in reactivity of pulverised coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions[J]. Fuel Processing Technology,2009,90:797-802.
    [102]蒋维钧,雷良恒,刘茂林.化工原理(下册)[M].北京:清华大学出版社,2003.
    [103]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2001.
    [104]胡荣祖,高胜利,赵凤起,等.热分析动力学[M].北京:科学出版社,2008.
    [105]李靖华,张桂恩,黄山.草酸锰分解过程的机理函数判别和动力学研究[J].高等学校化学学报,1991,(11):1513-1516.
    [106]李靖华,张桂恩.固体热分解反应动力学的研究(Ⅰ)—水合草酸钾脱水过程的动力学[J].河南师范大学学报(自然科学版),1991,(03):40-44.
    [107]李靖华,张桂恩.硫酸氢铵分解动力学及其分解机理的研究[J].物理化学学报,1992,(01):123-127.
    [108]成庆堂,李晓桃,李靖华,等.p—环糊精与水包合物的脱水过程机理及动力学研究[J].河南师范大学学报(自然科学版),1996,(04):44-47.
    [109]成庆堂,李靖华,娄向东.用相关判别法研究—水合草酸钙脱水过程[J].物理化学学报,1993,(05)
    [110]Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data[J]. Nature,1964,201: 68-69.
    [111]Wang H,Dlugogorski BZ,Kennedy EM. Theoretical analysis of reaction regimes in low-temperature oxidation of coal[J]. Fuel,1999,78:1073-1081.
    [112]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002.
    [113]吴国光,王祖讷.低阶煤的热重-傅里叶变换红外光谱的研究[J].中国矿业大学学报,1998,(02):181-184.
    [114]余江龙,李先春,宋辉,等.低阶煤干燥与型煤生产工艺及成套设备:中国,200810010240[P].2008,01,28.
    [115]Mahajan O P, Walker P L. Water adsorption on coals[J]. Fuel,1971,50:308-317.
    [116]Mujumdar A S. Handing book of industrial drying[M]. New York:Marcel Dekker Inc,1995.
    [117]潘永康,王喜忠,刘相东.现代干燥技术(第二版)[M].北京:化学上业出版社,2007.
    [118]徐艳阳,张敏,孙金才,等.脱水竹笋的等温吸湿特性的研究[J].食品研究与开发,2005,(05)43-45.
    [119]胡有持,徐亮,张威,等.云南烤烟的吸湿特性研究[J].烟草科技,2000,(09):8-12.
    [120]文友先.稻谷吸附等温线模型及计算机模拟[D].武汉:华中农业大学,1999.
    [121]庞贵冬,黄天栋.物理化学[M].北京:北京农业大学出版社,1993.
    [122]童钧耕,吴孟余,王平阳.高等上程热力学[M].北京:科学出版社,2006.
    [123]文友先,张家年,张声华,等.谷物吸附与解吸过程中的热力学参数[J].粮食与饲料工业,1998,(09):16-17.
    [124]Basu S, Shivhare U S, Mujumdar A S. Moisture adsorption isoherms and glass transition temperature of Xanthan gum[J]. Drying Technology,2007,25:1577-1582.
    [125]Francis P M, Daniel A N, Thomas F T, et al. Effect of different drying methods on coal structure and reactivity toward liquefaction[J]. Energy & Fuels,1996,10:631-640.
    [126]周军.石油焦燃烧特性的实验研究[D].北京:清华大学,2006.
    [127]刘彦,刘彦丰,徐江荣.O2/CO2煤粉燃烧污染物特性实验和理论研究[M].北京:科学出版社,2009.
    [128]Niksa S, Mitshell R E, Hencken K R, et al. Optically determined temperatures, sizes, and velocities of individual carbon particles under typical combustion conditions[J]. Combustion and Flame,1985, 60:183-193.
    [129]YongHo Y, SangDone K, JongMin L, et al. Kinetic studies of dehydration, pyrolysis and combustion of paper sludge[J]. Energy,2002,27:457-469.
    [130]郭树才,袁庆春,朱盛维.褐煤热重法热解动力学研究[J].燃料化学学报,1989,(01):55-61.
    [131]郭嘉,曾汉才.混煤热解特性及热解机理的热重法研究[J].锅炉技术,1994,(08):5-7.
    [132]魏兴海,顾永达,沈平,等.煤的热解动力学研究[J].燃料化学学报,1992,(01):102-105.
    [133]陈建原,孙学信.煤的挥发分释放特性指数及燃烧特性指数的确定[J].动力工程,1987,(05):13-18.
    [134]平传娟,周俊虎,程军,等.混煤热解反应动力学特性研究[J].中国电机工程学报,2007,(17):6-10.
    [135]王爽,王宁,于立军,等.海藻的热解特性分析[J].中国电机工程学报,2007,(14):102-106.
    [136]吴波.神东和平朔煤在不同反应器中的热解特性[D].大连:大连理工大学,2009.
    [137]周强.煤的热解行为及硫的脱除[D].大连:大连理工大学,2004.
    [138]傅维标.煤燃烧理论及其宏观通用规律[M].北京:清华大学出版社,2003.
    [139]Kimber G M, Gray M D. Rapid devolatilization of small coal particles[J]. Combustion and Flame, 1967,11:360-362.
    [140]Michael C, Tao W, Richelieu B, et al. Char characterisation and its application in a coal burnout model[J]. Fuel,2003,82:1989-2000.
    [141]Angeles G B, Diego A. Comparison of Chars Obtained under Oxy-Fuel and Conventional Pulverized Coal Combustion Atmospheres[J]. Energy & Fuels,2007,21:3171-3179.
    [142]Biswas S, Choudhury N, Sarkar P, et al. Studies on the combustion behaviour of blends of Indian coals by TGA and Drop Tube Furnace[J]. Fuel Processing Technology,2006,87:191-199.
    [143]Violeta A, Alan W S. T.g.a. and drop-tube reactor studies of the combustion of coal blends[J]. Fuel, 1993,72:927-933.
    [144]Borrego A G, Osorio E, Casal E D, et al. Coal char combustion under a CO2-rich atmosphere: Implications for pulverized coal injection in a blast furnace[J]. Fuel Processing Technology,2008, 89:1017-1024.
    [145]Sushil G,Yaser A,Veena S, et al. Influence of carbon structure and mineral associate of coals on their combustion characteristics for pulverized coal injection applicaton[J]. Metallurgical and Materials Transactions,2006,37:457-473.
    [146]刘全润.煤的热解转化和脱硫研究[D].大连:大连理工大学,2006
    [147]降文萍.煤热解动力学及其挥发分析出规律的研究[D].太原:太原理工大学,2004.
    [148]宋绍勇.煤热解动学及其机理的实验研究[D].太原:太原理工大学,2002.
    [149]赵巍,汪琦,邹宗树,等.塑料和橡胶垃圾的热解机理及动力学分析[J].工程热物理学报,2008,(11):47-52.
    [150]赵巍,汪琦,刘海啸,等.热分析-质谱联用分析生物垃圾热解机理[J].环境科学与技术,2010,(05):55-59.
    [151]Miura K, Maki T. A Simple method for estimating f(E) and kO(E) in thedistributed activationenergy model[J]. Energy & Fuels,1998,12:864-869.
    [152]Benfell K E. Assessment of char morphology in high pressure pyrolysis and combustion[D]. Newcastle:Univ, of Newcastle,2001.
    [153]Liu G S. Mathematical modelling of coal char reactivity in a pressurised entrained flow gasifier[D]. Newcastle:Univ. of Newcastle,1999.
    [154]Bailey J G, Tate A, Diessel C F K, et al. A char morphology system with applications to coal combustion[J]. Fuel,1990,69:225-39.
    [155]Benfell K E, Bailey J G. Comparison of combustion and high pressure pyrolysis chars from Asutralian black coals,8th Australian coal science conference proceedings[C]. Sydney, Australia, 1998,157-62.
    [156]Jianglong Y, John A, Terry F W. Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties:A review[J]. Progress in Energy and Combustion Science,2007,33:135-170.
    [157]朱群益,李瑞扬,秦裕琨,等.煤粉燃烧反应动力学参数的实验研究[J].动力工程,2000,(03):703-706.
    [158]赵凤杰,刘剑.煤的热重分析技术及其应用[J].辽宁工程技术大学学报,2005(增刊):25-27.
    [159]祝文杰.利用热天平研究煤的着火特性[D].杭州:浙江大学,2004.
    [160]梁爱云,惠世恩,徐通模,等.几种生物质的TG-DTG分析及其燃烧动力学特性研究[J].可再生能源,2008,(04):56-61.
    [161]肖三霞.煤的热天平燃烧反应动力学特性的研究[D].武汉:华中科技大学,2004.
    [162]聂其红,孙绍增,李争起.褐煤混煤燃烧特性的热重分析研究[J].燃烧科学与技术,2001(01):72-76.
    [163]魏砾宏.超细煤粉燃烧机理研究[D].哈尔滨:哈尔滨工业大学,2007.
    [164]姜秀民,李巨斌,邱健荣.超细化煤粉燃烧特性的研究[J].中国电机工程学报,2000,(06):71-74.
    [165]陈晓平,谷小兵,段钰锋,等.半焦加压燃烧特性研究[J].工程热物理学报,2004,(02):345-347.
    [166]顾菁,李莉,吴诗勇,等.程序升温热重法研究神府高温煤焦-CO2气化反应性[J].华东理上大学学报(自然科学版),2007,(03):354-358.
    [167]Alonso M J G, Borrego A G, Alvarez D, et al.Influence of pyrolysis temperature on char optical texture and reactivity[J]. Journal of Analytical and Applied Pyrolysis,2001,58-59:887-909.
    [168]Coda B, Tognotti L, The prediction of char combustion kinetics at high temperature[J]. Experimental Thermal and Fluid Science,2000,21:79-86.
    [169]Cai H Y, Guell A J, Chatzakis I N, et al. Combustion reactivity and morphological change in coal chars:Effect of pyrolysis temperature, heating rate and pressure[J]. Fuel,1996,75:15-24.
    [170]Jeffrey J M, Christopher R S. Combustion kinetics of coal chars in oxygen-enriched environments[J]. Combustion and Flame,2006,144:710-729.
    [171]Yewen T, Eric C, Mark A D, et al. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas[J]. Fuel,2006,85:507-512.
    [172]Gutierrez M C, Cukierman A L, Lemcoff N O. Kinetic study of the reaction of a subbituminous coal char with oxygen[J]. Reactivity of Solids,1987,4:227-236.
    [173]Russell N V, Beeley T J, Man C K, et al. Development of TG measurements of intrinsic char combustion reactivity for industrial and research purposes[J]. Fuel Processing Technology,1998,57: 113-130.
    [174]Kizgut S, Yilmaz S. Characterization and non-isothermal decomposition kinetics of some Turkish bituminous coals by thermal analysis[J]. Fuel Processing Technology,2004,85:103-111.
    [175]Robert G J, Satyendra P N, Philip L W. Reactivity of heat-treated coals in air at 500 ℃[J]. Fuel, 1973,52:288-293.
    [176]Mahajan O P, Richard Y, Philip L. Unification of coal-char gasification reaction mechanisms[J]. Fuel,1978,57:643-646.
    [177]Hongwei W, Jun-ichiro H, Tadatoshi C, et al. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part V. Combined effects of Na concentration and char structure on char reactivity[J]. Fuel,2004,83:23-30.
    [178]Dimple M Q, Hongwei W, Jun-ichiro H, et al. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part IV. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity[J]. Fuel 2003,82: 587-593.
    [179]Benfell K E, Liu G X, Roberts D G, et al. Modeling char combustion:The influence of parent coal petrography and pyrolysis pressure on the structure and intrinsic reactivity of its char[J]. Proceedings of the Combustion Institute,2000,28:2233-2241.
    [180]Liu G, Benyon P, Benfell K E, et al. The porous structure of bituminous coal chars and its influence on combustion and gasification under chemically controlled conditions[J]. Fuel,2000,79:617-626.
    [181]李春柱,谢克昌,凌大琦.影响煤焦反应性的因素分析[J].煤化工,1988(1):32-43.
    [182]Ceylan K, Karaca H, Onal Y. Thermogravimetric analysis of pretreated Turkish lignites[J]. Fuel, 1999,78:1109-1116.
    [183]Alonso M J G, Borrego A G,Alvarez D, et al. A reactivity study of chars obtained at different temperatures in relation to their petrographic characteristics[J]. Fuel Processing Technology,2001,69:257-272.
    [184]车得福,庄正宁,李军,等.锅炉[M].西安:西安交通大学出版社,2008.
    [185]容銮恩,袁振福,刘志敏,等.电站锅炉原理[M].北京:中国电力出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700